This disclosure relates to a steerable drogue for in-flight refuelling.
A drogue is commonly attached to a fuel hose which is extended from the refuelling aircraft. It comprises a reception coupling arranged to receive a probe fitted on the receiving aircraft, and a parachute structure for stabilising the drogue and guiding the probe into the coupling. Typically, the parachute comprises a canopy mounted on an array of support arms extending from the coupling.
A difficulty with in-flight refuelling is in aligning the refuelling probe with the drogue. Various ways of controlling the position of the drogue have been suggested, such as the use of movable control surfaces or thrusters. However these tend to be complex and heavy components.
According to an embodiment, there is provided a steerable drogue for in-flight refuelling comprising a reception coupling for receiving a probe, a canopy carried by a plurality of support arms, and a steering mechanism arranged to selectively alter the configuration of at least one of the support arms such that the support arm(s) produce(s) an aerodynamic force on the drogue in a chosen direction.
Preferably, the steering mechanism is arranged to change the angle of incidence to the air flow of the support arm(s). For example, the support arms may comprise a substantially planar body portion, which extends radially of the drogue. The steering mechanism may be arranged to twist the support arm(s) along the length thereof, away from the radial direction. Preferably the configuration of at least two or more of the support arms is altered; for example a plurality of substantially evenly spaced support arms, or all of the support arms may be altered.
In one convenient arrangement, the steering mechanism is arranged within a reception coupling which mounts the support arms, the mechanism engaging the base of some or each of the support arms. For example, the proximal ends of the arms may pass through an actuating member such as a control ring, the ring being selectively moveable to alter the angle of the support arms to the airflow direction. With this arrangement, the ring may be provided with two motors arranged to move the ring in perpendicular directions in a plane across the drogue, perpendicular to the airflow direction. In this manner, the control ring may be moved in any chosen direction in the plane.
With this arrangement, movement of the control ring produces a change in the angle of each of the support arms which differs progressively according to the position of the support arm around the drogue. Those support arms aligned with the direction of the movement of the ring experience minimum change, and those extending across the direction of movement experience maximum change. This has the effect of producing an aerodynamic force in the direction of movement of the control ring. Thus this arrangement provides a simple steering mechanism.
Where the ring engages with all or many of the support arms, there is a small relative change in the angle of the twist of adjacent arms is small. Thus, the drogue may comprise intercostal members such as tie wires or nets for facilitating the guidance of the probe towards the reception coupling, and alleviating the problem of the probe penetrating between the support arms.
The drogue may also comprise a controller for operating the steering mechanism. The controller may receive information concerning the position or acceleration of the drogue, calculate the required movement of the drogue, and operate the steering mechanism accordingly. For example, the drogue may include accelerometers arranged to measure acceleration of the drogue, and the controller may operate the steering mechanism to stabilise the drogue. Alternatively or in addition, the controller may receive information concerning the relative position of the probe, and operate the steering mechanism to align the drogue with the probe.
An embodiment also relates to the method of steering a drogue as defined above. According to an embodiment, a method of steering a drogue for in-flight refuelling, the drogue having a canopy mounted on the array of support arms, includes selectively altering the configuration of at least one support arm such that the or each support produces an aerodynamic force in a chosen direction.
In order that the embodiments may be more readily understood, reference will now be made to the accompanying drawings, in which:
Referring to
Referring now to
It can be seen that translational movement of the control ring 22 turns the crank 18 of the arm 6 such that the body the arm 6 rotates around is longitudinal axis (see also
The canopy 8 may also be movably mounted by means of a pivotal mount 24 on the distal end of the support arm 6, such that the canopy 8 may maintain its shape despite the twisting movement of the arm 6.
Referring also to
Some or all of the support arms 6 may be connected to the reception coupling in the manner described above. Referring to
Referring now to
As the control of the ribs may demand significantly peak power, a flywheel 12 is provided in the shaft. The flywheel 12 is sized so as to store sufficient kinetic energy to meet peak power requirements. In particular when aerodynamic forces and mechanical friction are taken into account, a peak occurs with high aero loads at maximum rotational speed of the support arms. However, in general, the power requirement will be less than this peak. Thus the flywheel enables the turbine and generator to be sized to meet the average power demand.
Alternatively or in addition, the drogue can be stabilised using a pair of accelerometers 42 provided on perpendicular axes. The controller then uses information from the accelerometers 42 to provide restoring forces via the motors 10.
Number | Date | Country | Kind |
---|---|---|---|
0722060.1 | Nov 2007 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2008/003780 | 11/10/2008 | WO | 00 | 7/20/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/060224 | 5/14/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5255877 | Lindgren et al. | Oct 1993 | A |
6604711 | Stevens et al. | Aug 2003 | B1 |
7219857 | Takacs et al. | May 2007 | B2 |
7887010 | Takacs et al. | Feb 2011 | B2 |
20040050998 | Edwards | Mar 2004 | A1 |
20060284019 | Takacs et al. | Dec 2006 | A1 |
20080054124 | Takacs et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
0 807 577 | Aug 2001 | EP |
0 807 577 | Aug 2001 | EP |
1 736 407 | Sep 2009 | EP |
2 237 251 | May 1991 | GB |
WO 9106471 | May 1991 | WO |
WO 02055385 | Jul 2002 | WO |
WO 2006085986 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100282913 A1 | Nov 2010 | US |