The present technology relates generally to the field of medical devices to be used for cardiological procedures. More specifically, the technology is in the subfield of catheterization devices to be used for epicardial pacing.
Congestive heart failure effects between 4 and 5 million people in the United States and accounts for about $15 billion per year in hospitalization costs alone. While medical therapy, such as prescription drugs, may benefit a number of patients, side effects prevent some patients from completing therapy. Moreover, few patients are completely cured of their symptoms.
In recent years simultaneous pacing of both ventricles (via a biventricular pacemaker) has been shown in multiple studies to improve the quality of life and extend survival of such patients. The American College of Cardiology and American Heart Association has, therefore, recommended that all patients having class II, III or IV heart failure with a wide QRS complex (electrocardiograph deflections of the Q, R and S waves) receive a biventricular pacemaker. This recommendation alone encompasses up to one million people per year in the US, and uses for this type of device are expanding.
Unfortunately, due to inherent difficulties in placing left ventricular (LV) leads, less than 15% of eligible patients are able to receive this device. Unlike the RV, the electrical lead can not be placed directly into the LV due to the unacceptably high risk of stroke. The lead must, therefore, be placed on the surface of the LV. In order to accomplish this placement, a lead is threaded through the right atrium (RA) using a venous system, and passed through the coronary sinus (CS) to any of a number of small veins in communication with the surface of the LV.
Quantitative clinical results, especially those reporting the statistics of negative outcomes, are seldom published. However, in procedures conducted at the inventors' high volume university hospital, 20% of patients have been found to have a very difficult access to the CS, resulting in an abandonment of the procedure. In an additional 20% of patients, a vein in communication with an optimal location on the LV can not be found within the CS. As an example, if one is trying to place a lead on the lateral aspect of the LV (an ideal location), but there is no vein extending from within the CS to the lateral aspect of the LV, a lead can not be placed here. Worse still, many of these patients have multiple areas of dead heart tissue, so even if a lead can be placed within a vein, it might not pace the heart. Even moving the lead slightly would help, but the vein acts like a railroad track to limit placement. All of these limitations result in an unpredictable procedure time, making it difficult for hospitals and doctors to plan the operation.
At present, the most effective option to pace the LV is through invasive surgery requiring cardiac surgeons. The newest techniques allow surgeons to either open a patient's chest or cut between the ribs to place the lead anywhere on the LV. Even the most “minimally invasive” leads currently available require a lateral thoracotomy necessitating a surgeon. Both the Ncontact® and Heartlander® tools, which are not designed to pace, require surgical incisions.
There are two significant barriers to widespread application of these surgical techniques. First, surgical procedures are generally more invasive and require longer recovery times. Second, most cardiologists consider it the standard of care to attempt an initial placement of a lead via CS access; only after that fails is surgery considered. To avoid the need for additional surgical intervention, a cardiologist may choose a sub-optimal location for lead placement. This is typically in keeping with the wishes of most patients; minimally invasive techniques are preferred whenever possible.
There is therefore a need in the art whereby one would be able to place a lead for pacing on any optimal site of the LV based solely on what is clinically efficient for the patient and not the heart's anatomy. Moreover, if this could be accomplished by a cardiologist (non-surgeon) without the need for invasive surgery, the procedure would be used more often. Thus, instead of only 15% of patients receiving biventricular pacing, close to 100% of patients could receive it.
The following U.S. patent documents discuss catheterization tools for cardiology: U.S. Pat. No. 7,142,919 to Hine et al.; U.S. Pat. No. 7,130,699 to Huff et al.; U.S. Pat. No. 7,120,504 to Osypka; U.S. Pat. No. 7,101,362 to Vinney; U.S. Pat. No. 7,090,637 to Danitz et al.; U.S. Pat. No. 7,089,063 to Lesh et al.; U.S. Pat. No. 7,059,878 to Hendrixson et al.; U.S. Pat. No. 7,041,099 to Thomas et al.; U.S. Pat. No. 7,027,876 to Casavant et al.; U.S. Pat. No. 7,008,418 to Hall et al.; U.S. Pat. No. 6,973,352 to Tsutsui et al.; U.S. Pat. No. 6,936,040 to Kramm et al.; U.S. Pat. No. 6,921,295 to Sommer et al.; U.S. Pat. No. 6,876,885 to Swoyer et al.; U.S. Pat. No. 6,868,291 to Bonner et al., all of which are incorporated by reference herein in their entirety. No reference discloses the conceptual arrangements for an integrated cardiological device for epicardial pacing.
To overcome these limitations, we have conceived the subject device and method of use, as described in the Summary of the Invention and Detailed Description of the Drawings below.
These and other objects, along with advantages and features of the invention disclosed herein, will be made more apparent from the description, drawings and claims that follow.
An aspect of an embodiment (or partial embodiment thereof) of the present invention includes an apparatus and means for treating congestive heart failure and arrhythmias (both bradycardias and tachycardias) of the heart. For example, the invention provides for a novel means and method of placing an epicardial lead within a patient for the purpose of permanent multi-site, cardiac pacing and defibrillation, including left ventricular pacing.
An aspect of an embodiment (or partial embodiment thereof) of the present invention includes a lead that paces LV, RV, LA and RA at the same time or in sequence. It could even pace two separate points on the same chamber (the LV or the RV) at the same time or at some offset. This has an important advantage, for example, if a region of tissue ever dies in heart attack, the present invention method can still pace from elsewhere.
An aspect of an embodiment (or partial embodiment thereof) of the present invention may include placing a bipolar pacing lead through a subxiphoid incision and then channeling it back to a pacemaker. The procedure may evolve through three distinct stages. In the earliest stage, one would place the lead on the left ventricle and tunnel it underneath the pectoral muscle back to the chest wall where the pacemaker would normally be placed. In the second, one would place the lead back to the subxiphoid process, attach it to a battery that is positioned just on the outside of the xiphoid process and have it wirelessly communicate with the main pacemaker. Lastly one would place a button-like object right on the top of the left ventricle and then communicate wirelessly back to the main pacemaker. Still yet, another embodiment of the means and method of the invention may include having the battery, anode and cathode means all compounded on the end of the lead so that there would not be any need to have another excision to bring any of the components back out of the heart.
An aspect of an embodiment or partial embodiment of the present invention (or combinations of various embodiments in whole or in part of the present invention) comprises an epicardial pacing system. The system may comprise: an epicardial catheter configured to be disposed in the middle mediastinum of the thorax of a subject for use in electrical pacing of the heart at one or more locations on the epicardial surface. The epicardial pacing catheter comprising: a proximal portion, distal portion, and a longitudinal structure there between; and at least one electrode in communication with the distal portion, wherein the at least one electrode is insulated on at least one side to allow pacing of the heart without damage to adjacent anatomical structures.
An aspect of an embodiment or partial embodiment of the present invention (or combinations of various embodiments in whole or in part of the present invention) comprises a method for use with an epicardial pacing catheter. The method may comprise: disposing the epicardial pacing catheter in the middle mediastinum of the thorax of a subject; and pacing the heart at one or more locations with electrical energy from an at least one electrode; and at least partially insulating the electrical energy to allow pacing of the heart without damage to adjacent anatomical structures.
The epicardial pacing system and related method includes an epicardial catheter configured to be disposed in the middle mediastinum of the thorax of a subject for use in electrical pacing (and/or other diagnostic or therapeutic procedure) of the heart at one or more locations on the epicardial surface. The epicardial pacing catheter may include at least one electrode whereby the electrode is insulated on at least one side to allow pacing of the heart without damage to adjacent anatomical structures.
These and other objects, along with advantages and features of the invention disclosed herein, will be made more apparent from the description, drawings and claims that follow.
The accompanying drawings, which are incorporated into and form a part of the instant specification, illustrate several aspects and embodiments of the present invention and, together with the description herein, serve to explain the principles of the invention. The drawings are provided only for the purpose of illustrating select embodiments of the invention and are not to be construed as limiting the invention.
The following detailed description is of the best presently contemplated modes of carrying out the invention. This description to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention.
The control means 150 may be in communication with the proximal portion of the catheter 10, wherein the control means 150 is controllably connected to at least one electrode 43. In one embodiment, the control means may be a control handle or controller as desired or required. In another embodiment, the control handle (or control means) may be removable. The epicardial pacing catheter 10 may further comprises a processor 164 or computer. The processor 164 may be in communication with said epicardial pacing catheter 10 and system. The processor 164 may be located at or near the patient's shoulder, for example. The epicardial pacing catheter 10 further comprises an interface member 162 in communication with said epicardial pacing catheter 10. The interface member 162 may be in remote and/or local communication with the processor 164, pacing system 5, catheter 10, controller 150, power supply 166, and/or voice control instrumentation to provide information to and/or from a patient, physician, technician, or a clinician. Further, any of the components and systems illustrated in
As discussed, the epicardial pacing system 5 may comprise a power supply 166. The power supply 166 may comprise a small battery located at the subxiphoid area, preferably of a silicone silver-gallium kind designed specifically for use in implantable cardiac defibrillators (ICDs). The power characteristics of the particular battery may be such that it can maintain the same voltage for a long period of time before falling off suddenly.
The epicardial pacing system 5 and epicardial pacing catheter 10 may further comprise a wireless communication system, wherein the processor 164, power supply 166, voice control instrumentation 168, interface member 162 or desired components of the system 5 may be wirelessly connected to one another. In another embodiment, the battery and processor 164 are both located in the subxiphoid area.
It should be appreciated that any of the components or modules referred to with regards to any of the present technology embodiments discussed herein, may be integrally or separately formed with one another. Further, redundant functions or structures of the components or modules may be implemented. Moreover, the various components may be communicated locally and/or remotely with any user/clinician/patient or machine/system/computer/processor. Moreover, the various components may be in communication via wireless and/or hardwire or other desirable and available communication means, systems and hardwares.
Next, as will be illustrated in Figures that follow, the epicardial pacing catheter 10 in accordance with the present technology may comprise a proximal portion, a distal portion, and a longitudinal structure there between. It should be appreciated that the distal portion may be considered at the distal end tip of the epicardial pacing catheter 10; or a portion or segment at or in the vicinity of the distal end tip of the epicardial pacing catheter 10 or a portion or segment leading up to (or partially up to but not all the way up to) the distal end of the catheter 10 as desired or required. The length and location of the distal portion may vary as desired or required in order to practice the technology according to medical procedures and anatomical considerations.
It should also be appreciated that the proximal portion may be considered the tip of the beginning of the catheter 10; or a portion or segment at or in the vicinity of the proximal end of the catheter 10 or a portion or segment leading up to (or partially up to but not all the way up to) the proximal end of the catheter 10 as desired or required. The length and location of the proximal portion may vary as desired or required in order to practice the technology according to medical procedures and anatomical considerations.
The proximal portion, distal portion and longitudinal structure there between may be integrally formed from a biocompatible material having requisite strength and flexibility for deployment within a patient. The proximal portion, distal portion, and longitudinal structure there between may have a lubricious outer surface comprising a material having a low coefficient of friction, such as, but not limited to, silicone, polyurethane, or Teflon, or combination thereof. The proximal portion, distal portion, and longitudinal structure there between may further have an outer surface comprising a drug eluting surface and/or a surface impregnated with sirilimus to prevent the production of fibrosis within a patient. The longitudinal structure may be between about 15 cm and about 100 cm in length, and between about 2 mm and about 6 mm in diameter. It should be appreciated that the length of the longitudinal structure may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations. The cross section of the longitudinal structure comprises an oval, circle, ellipse, polygon, or semi-circular shape. The longitudinal structure may be any one of: lumen, conduit, channel, passage, pip, tunnel or bounded tubular surface.
The epicardial pacing catheter 10 further comprises at least one electrode 43 in communication with the distal portion, wherein the at least one electrode 43 is insulated on at least one side to allow pacing of the heart without damage to adjacent structures.
The at least one electrode 43 may be constructed of platinum, gold, silver, iridium, or any alloy thereof, or other conducting materials known in the art. The at least one electrode 43 may comprise a roughened, profiled, or otherwise prepared surface to increase the total surface area for energy transmission. The at least one electrode 43 may be semi-cylindrical or arc-like in shape, and may be contoured to be compatible with proximate anatomical structures. The at least one electrode 43 may be between about 0.3 mm and about 4 mm in length, and may be spaced between about 1 mm and about 25 mm from each other. Further, the at least one electrode 43 may be a pair of electrodes, commonly referred to as an anode and cathode in the art. Finally, the at least one electrode 43 may be deployable. It should be appreciated that the length of the electrodes may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
It should be appreciated that the various sheaths, catheters and guidewires, or any related components disclosed herein, may have a circular or oval-shaped cross-section or various combinations thereof. Further, it should be appreciated that various sheaths, catheters and guidewires, or any related components disclosed herein may have any variety of cross sections as desired or required for the medical procedure or anatomy.
Moreover, it should be appreciated that any of the components or modules referred to with regards to any of the present invention embodiments discussed herein, may be a variety of materials and/or composites as necessary or required. Still further, it should be appreciated that any of the components or modules (or combination thereof) may provide shape, size and volume contoured by adjusting its geometry and flexibility/rigidity according to the target location or anatomy (or region, including structure and morphology of any location) being treated.
Although not shown, an aspect of an embodiment of the present technology may be implemented with an access needle (introducer needle), conduit or the like. The access needle or conduit is adapted to be inserted into the epicardial region or other body part or body space so as to provide an access or guideway for the epicardial pacing catheter 10. An example of an access system is disclosed in PCT International Application No. Serial No. PCT/US2008/056643, filed Mar. 12, 2008, entitled, “Access Needle Pressure Sensor Device and Method of Use,” of which is hereby incorporated by reference herein in its entirety. See for example, but not limited thereto, FIGS. 2 and 5 of the '056643 PCT Application. The access needle sensor device or the like serves as a guideway for introducing other devices into the pericardium 22, for instance, sheath catheters that might subsequently be employed for procedures within the pericardium 22 or other applicable regions, space or anatomy. Other devices that the access device may accommodate with the practice of this invention include, but are not limited thereto, the following: ablation catheters, guide wires, other catheters, visualization and recording devices, drugs, and drug delivery devices, lumens, steering devices or systems, drug or cell delivery catheters, fiber endoscopes, suctioning devices, irrigation devices, electrode catheters, needles, optical fiber sensors, sources of illumination, vital signs sensors, and the like. These devices may be deployed for procedures in an integral body part or space.
It should be appreciated that any data, feedback, readings, or communication from the system (for example, catheters, access needles, sensors, systems, etc.) may be received by the user, clinician, physician, or technician or the like by visual graphics, audible signals (such as voice or tones, for example) or any combination thereof. Additionally, the data, feedback, or communication may be reduced to hard copy (e.g., paper) or computer storage medium. It should be appreciated that the pressure related readings and data may be transmitted not only locally, but remotely as well.
Moreover, an aspect of the invention may be in the field of voice control over medical systems and devices of use in specialized electrophysiology procedures that employ subxiphoid access for the purpose of navigating an interventional or surgical probe onto the epicardial surface of the heart, via pericardial transit. In its most particular form, the invention may be in the specialized category of voice control over instruments and systems that measure the intrathoracic and intrapericardial pressures during the process of navigating said intrathoracic or surgical probe within the patient following subxiphoid insertion.
An aspect of an embodiment or partial embodiment of the subject invention (or combinations of various embodiments in whole or in part of the present invention) is one of providing the working electrophysiologist with a means and method for controlling the operational parameters (e.g., the display functions) of diagnostic and therapeutic cardiological equipment by voice, thus eliminating either the need to temporarily take their hands off the patient or the need to have an additional EP Lab technician available to perform such tasks. (Such personnel are often needed to insure that the clinician need never touch anything outside the sterile field.). Generally, examples of voice control instrumentation that teach applications in medical applications but not in electrophysiological approaches to cardiological problems include U.S. Pat. Nos. 7,286,992; 7,259,906; 7,247,139; 6,968,223; 6,278,975; 5,970,457; 5,812,978; 5,544,654 and 5,335,313, all of which are hereby incorporated by reference in their entirety.
Additionally, present invention system and method may further comprise imaging said the access needle and the epicardial pacing system (and components thereof) with at least one of magnetic resonance imaging, computed tomography, fluoroscopy, or other radiological modalities. In some embodiments, readings are provided from said sensing of pressure for navigating said needle access and the epicardial pacing system (and components thereof).
Although not shown, as mentioned above, the deploying of the epicardial pacing catheter 10 into the pericardial sack 24 may be minimally invasive, non-surgical, and/or interventional. The deploying of the epicardial pacing catheter 10 may be performed by a non-surgeon and/or cardiologist through use of an access needle and subsequent passage of a guidewire. The access needle may first be inserted through the chest and into the pericardium 22, with the guidewire then put in place. The epicardial pacing catheter 10 may then be coaxially slid over the guidewire to access the pericardial sack 24.
Although not shown and involving another approach, the insertion of a sheath into the pericardial sack 24 may be aided by the use of an access needle and subsequent passage of a guidewire. The access needle may first be inserted into the epicardium, with the guidewire then put in place. The sheath may then be coaxially slid over the guidewire to access the pericardial sack 24. After positioning the sheath in the desired location, the epicardial pacing catheter 10 may then be inserted through the sheath to reach the epicardium 23.
For example, the guideway provides coaxial alignment for the at least one of guide wire, sheath or catheter, which can be inside or outside the needle. The at least one guide wire, sheath, or catheter can also be coaxially aligned with one another. Further, multiple lumens may be implement and configured between the plurality of distal apertures and plurality proximal apertures. It should be appreciated that coaxial alignment does not need to be exact, but rather one conduit, lumen, sheath, or guidewire slid outside or inside of another.
For example, with the present technology, an epicardial access needle-stick may be implemented in the subxiphoid area of the chest and the epicardial pacing catheter 10 only need be advanced a short distance to get to the heart 21. However, it may immediately be steered though an acute angle to avoid the heart itself. Because of this, aspects of the present invention devices and those used in conventional techniques can be contrasted. For instance, conventional endocardial catheters may typically be up to 100 cm in length or longer since they must go from the shoulder to the heart, while an embodiment of the present technology could be, for example, about 20 cm or less since it may only need to go from the chest to the heart. It should be appreciated that the length may be greater than about 20 cm as well. It should be appreciated that the length of the present invention catheter may be longer or shorter as may be desired or required according to medical procedures, device/system operations and anatomical considerations.
It should be appreciated that as discussed herein, a subject may be a human or any animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g. rat, dog, pig, monkey), etc. It should be appreciated that the subject may be any applicable human patient.
For instance, referring to FIGS. 4(A)-(C) of '056816 PCT International Application, there is provided the mechanism of action for obtaining bi-directional steering of the distal tip or portion that may be implemented for the present invention via tensioning or steering means whereby the tip or end is straight, towards the left, and towards the right, respectively.
Moreover, for instance and referring to FIGS. 7(A)-7(B) of '056816 PCT International Application there is provided some details of an exemplary mechanism of action for directional steering of the proximal segment of the device that may be implemented for the present technology.
Steering adjustments are made along the proximal point of curvature 42 and distal point of curvature 41 using the proximal steering means (as shown in
Specifically,
The devices, systems, compositions and methods of various embodiments of the invention disclosed herein may utilize aspects disclosed in the following references, applications, publications and patents. Similarly, the steering means, actuator means (as will be discussed below) and navigation means of the various embodiments of the invention disclosed herein may utilize aspects disclosed in the following references, applications, publications and patents, and which are hereby incorporated by reference herein in their entirety:
1. U.S. Patent Application Publication No. 20050251094, Nov. 10, 2005, “System and method for accessing the coronary sinus to facilitate insertion of pacing leads”, Peterson, Eric D.
2. U.S Patent Application Publication No. 20040147826, Jul. 29, 2004, “System and method for accessing the coronary sinus to facilitate insertion of pacing leads”, Peterson, Eric D.
3. U.S. Pat. No. 6,928,313, Aug. 9, 2005, “System and method for accessing the coronary sinus to facilitate insertion of pacing leads”, Peterson, Eric D.
4. U.S. Pat. No. 7,004,937, Feb. 28, 2006, “Wire reinforced articulation segment”, Lentz, David J., et al.
5. U.S. Patent Application Publication No. 20040024413, Feb. 5, 2004, “Wire reinforced articulation segment”, Lentz, David J., et al.
6. U.S. Patent Application Publication No. 20060064056, Mar. 23, 2006, “Guiding catheter assembly for embolic protection by proximal occlusion”, Coyle, James, et al.
7. U.S. Patent Application Publication No. 20030181855, Sep. 25, 2003, “Pre-shaped catheter with proximal articulation and pre-formed distal end”, Simpson, John A., et al.
8. U.S. Pat. No. 6,869,414, Mar. 22, 2005, “Pre-shaped catheter with proximal articulation and pre-formed distal end”, Simpson, John A., et al.
9. U.S. Patent Application Publication No. 20080262432, Oct. 23, 2008, “System and method for manipulating a guidewire through a catheter”, Miller, Sean.
10. U.S. Patent Application Publication No. 20070016068, Jan. 18, 2007, “Ultrasound methods of positioning guided vascular access devices in the venous system”, Grunwald, Sorin, et al.
11. U.S. Patent Application Publication No. 20070016070, Jan. 18, 2007, “Endovascular access and guidance system utilizing divergent beam ultrasound”, Grunwald, Sorin, et al.
12. U.S. Patent Application Publication No. 20070016072, Jan. 18, 2007, “Endovenous access and guidance system utilizing non-image based ultrasound”, Grunwald, Sorin, et al.
13. U.S. Pat. No. 5,916,194, Jun. 29, 1999, “Catheter/guide wire steering apparatus and method”, Jacobsen, Stephen C., et al. 14. U.S. Patent Application Publication No. 20070016069, Jan. 18, 2007, “Ultrasound sensor”, Grunwald, Sorin, et al.
15. U.S. Pat. No. 6,500,130, Dec. 31, 2002, “Steerable guidewire”, Kinsella, Bryan, et al.
16. U.S. Patent Application Publication No. 20020082523, Jun. 27, 2002, Steerable guidewire”, Kinsella, Bryan, et al. . . . .
17. U.S. Patent Application Publication No. 20060025705, Feb. 2, 2006, “Method for use of vascular guidewire”, Whittaker, David R., et al.
18. U.S. Patent Application Publication No. 20050020914, Jan. 27, 2005, “Coronary sinus access catheter with forward-imaging”, Amundson, David, et al.
19. U.S. Patent Application Publication No. 20040034365, Feb. 19, 2004, “Catheter having articulation system”, Lentz, David J., et al.
20. U.S. Patent Application Publication No. 20060064058, Mar. 23, 2006, “Guiding catheter with embolic protection by proximal occlusion”, Coyle, James.
21. U.S. Patent Application No. 20080097399, “Catheter with adjustable stiffness, Sachar, Ravish, et al.
22. U.S. Patent Application Publication No. 20080051671, Feb. 28, 2008, “Intravascular filter monitoring”, Broome, Thomas E., et al.
23. U.S. Pat. No. 6,616,676, Sep. 9, 2003, “Devices and methods for removing occlusions in vessels”, Bashiri, Mehran, et al.
24. U.S. Patent Application Publication No. 20020072737, Jun. 13, 2002, “System and method for placing a medical electrical lead”, Belden, Elisabeth L., et al.
25. U.S. Pat. No. 7,004,937, Feb. 28, 2006, “Wire reinforced articulation segment”, Lentz, David J., et al.
26. U.S. Patent Application Publication No. 20040024413, Feb. 5, 2004, “Wire reinforced articulation segment”, Lentz, David J, et al.
27. U.S. Patent Application Publication No. 20060064056, Mar. 23, 2006, “Guiding catheter assembly for embolic protection by proximal occlusion”, Coyle, James, et al.
27. U.S. Pat. No. 6,869,414, Mar. 22, 2005, “Pre-shaped catheter with proximal articulation and pre-formed distal end”, Simpson, John A., et al.
28. U.S. Patent Application Publication No. 20070016068, Jan. 18, 2007, “Ultrasound methods of positioning guided vascular access devices in the venous system”, Grunwald, Sorin, et al.
28. U.S. Patent Application Publication No. 20070016070, “Endovascular access and guidance system utilizing divergent beam ultrasound”, Grunwald, Sorin, et al.
29. U.S. Patent Application Publication No. 20070016072, “Endovenous access and guidance system utilizing non-image based ultrasound”, Grunwald, Sorin, et al
30. U.S. Patent Application Publication No. 20080262432, Oct. 23, 2008, “System and method for manipulating a guidewire through a catheter”, Miller, Sean.
31. U.S. Patent Application Publication No. 20070016069, Jan. 18, 2007, “Ultrasound sensor”, Grunwald, Sorin.
32. U.S. Patent Application Publication No. 20060025705, Feb. 2, 2006, “Method for use of vascular guidewire”, Whittaker, David R., et al.
33. U.S. Patent Application Publication No. 20030181855, Sep. 25, 2003, “Pre-shaped catheter with proximal articulation and pre-formed distal end”, Simpson, John A., et al.
34. U.S. Patent Application Publication No. 20050020914, Jan. 27, 2005, “Coronary sinus access catheter with forward-imaging”, Amundson, David, et al.
35. U.S. Pat. No. 5,916,194, Jun. 29, 1999, “Catheter/guide wire steering apparatus and method”, Jacobsen, Stephen C., et al.
36. U.S. Patent Application Publication No. 20060064058, Mar. 23, 2006, “Guiding catheter with embolic protection by proximal occlusion”, Coyle, James.
37. U.S. Patent Application Publication No. 20040186507, Sep. 23, 2004, “Stent delivery system and method of use”, Hall, Todd A., et al.
38. U.S. Patent Application Publication No. 20050027243, Feb. 3, 2005, “Steerable catheter”, Gibson, Charles A.
39. U.S. Pat. No. 7,232,422, Jun. 19, 2007, “Steerable catheter”, Gibson, Charles A., et al.
40. U.S. Patent Application Publication No. 20060247522, Nov. 2, 2006, “Magnetic navigation systems with dynamic mechanically manipulatable catheters”, McGee, David L.
41. U.S. Pat. No. 6,783,510, Aug. 31, 2004, “Steerable catheter”, Gibson, Charles A., et al.
42. U.S. Patent Application Publication No. 20080015625, Jan. 17, 2008, “Shapeable for steerable guide sheaths and methods for making and using them”, Ventura, Christine P., et al.
Outward facing bumper tabs 31 are deployable, and are used to stabilize the epicardial pacing catheter 10 by pushing against the pericardium. As shown, the outward facing bumper tabs 31 are in the non-deployed state as to allow the epicardial pacing catheter 10 to move within the pericardium. Although not shown, the epicardial pacing catheter may further comprise inward facing friction tabs 32 or other stabilization means.
The epicardial pacing catheter 10 further comprises a distal tip 51 in communication with the epicardial pacing catheter 10. The distal tip 51 extends from the body of the catheter 10 and may further insulate the electrodes 43 from proximate anatomical structures and/or be used to push through harder anatomical structures and adhesions as desired or required.
It should be appreciated that in
It should be appreciated that in
It should be appreciated that the inward facing friction tabs and outward facing bumper tabs may be alternated with one another, be staggered with one another, or grouped in numbers among each other as desired or required according to medical procedures, device/system operations and anatomical considerations.
The epicardial pacing catheter 10 may further comprise a stabilization means. The stabilization means may be deployable and may comprise an inward facing friction tab 32, an outward facing bumper tab 31, a non-deployable protrusion, a screw, a hook, or other means known in the art.
In an example embodiment, a tab deployment rod 64 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal inward facing friction tab 32 or outward facing bumper tab 31. The tab deployment rod 64 may be a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, or rope. The tab deployment rod 64 made be made of a non-conductive material having high tensile strength as is known in the art. The tab deployment rod 64 may further be controllably connected to a control means (as shown, for example, in
An outward facing bumper tab 31 is shown in communication with the epicardial pacing catheter 10. The outward facing bumper tab 31 may be deployed by a tab deployment arm 65 in communication with the tab deployment rod 64.
It should be appreciated that any number of electrodes 43, otherwise known as anodes 63 and cathodes 67, may be present as desired or required to pace a number of locations on the heart of a patient. A single anode wire 62 may be used to provide electrical energy to a multitude of anodes 63, or each anode wire 62 can provide electrical energy to a single anode 63. A single cathode wire 66 may be used to provide electrical energy to a multitude of cathodes 67, or each cathode wire 66 can provide electrical energy to a single cathode 67. Moreover, electrical energy can be transmitted to each electrode 43 separately in a unipolar or bipolar fashion, allowing for pacing of different chambers and different parts of the same chamber at different times.
Further, a first proximal steering pull-wire 70, first distal steering pull-wire 68, second proximal steering pull-wire 71, and second distal steering pull-wire 69 occupy internal cross-sectional area of the epicardial pacing catheter 10. Each first proximal steering pull-wire 70, first distal steering pull-wire 68, second proximal steering pull-wire 71, and second distal steering pull-wire 69 extends longitudinally through the epicardial pacing catheter 10 towards the distal portion. Each first proximal steering pull-wire 70, first distal steering pull-wire 68, second proximal steering pull-wire 71, and second distal steering pull-wire 69 may comprise guidewires, tensioning lines, pull strings, digitating distal tips, magnetic guidance means, wires, rods, chains, bands, chords, ropes, string tubes, filaments, threads, fibers, strands, other extended elements, or any other method known in the art.
Further, a first tab deployment rod 64 and second tab deployment rod 72 occupy internal cross-sectional area of the epicardial pacing catheter 10. Each first tab deployment rod 64 and second tab deployment rod 72 extends longitudinally from the most proximal portion 73 of the epicardial pacing lead 10 to the most distal inward facing friction tab 32 or outward facing bumper tab 31. The first tab deployment rod 64 and second tab deployment rod 72 may comprise a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, magnetic guidance means, chains, bands, chords, or rope. The first tab deployment rod 64 and second tab deployment rod 72 may comprise a non-conductive material having high tensile strength as is known in the art. The first tab deployment rod 64 and second tab deployment rod 72 may further be controllably connected to the distal end 74 of a control means 150 in communication with the proximal end 73 of the epicardial pacing catheter 10, said control means used to control the deployment of the tabs.
It should be noted that, while a first tab deployment rod 64 and second tab deployment rod 72 are shown, any number of tab deployment rods may be present as desired or required, up to an including the sum of inward facing friction tabs 32 and outward facing bumper tabs 31 (See
Although not shown, in an example embodiment, a biocompatible cover may be in communication with the most proximal end 73 of the epicardial pacing catheter 10. The biocompatible cover may prevent fibrosis from occurring around the exposed structures of the epicardial pacing catheter 10.
Although not shown, in an example embodiment, the proximal end 73 of the epicardial pacing catheter 10 may be located just under the skin of a patient. The proximal end 73 can be reached by a non-surgical, minimally-invasive incision of the skin, carried out by a clinician or cardiologist.
Although not shown, in an example embodiment, all structures beginning at the proximal end 73 may protrude from said proximal end 73 of the epicardial pacing catheter 10. In this way, the proximal end 73 could act as a male connector in a male-female connection. It should be appreciated that the corresponding male-female connection may be reversed as well.
Although not shown, in an example embodiment, all structures within the control handle 150 may end before the distal end 74. In this way, the distal end 74 can act as a female connector in a male-female connection.
It should be appreciated that the number of lumens, wires, rods or elements discussed with regards to
In an embodiment, a tab deployment rod 64 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal inward facing friction tab 32. The tab deployment rod 64 may be a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, pole, thread, filament, cord, strand or rope. The tab deployment rod 64 made be made of a non-conductive material having high tensile strength as is known in the art. The tab deployment rod may further be controllably connected to a control means or control handle (as shown, for example, in
The tab deployment rod 64 is in communication with a tab joint 84, the tab joint 84 in connection with a tab deployment arm 65 having its endpoint within the inward facing friction tab 32. The tab deployment arm is in further communication with a tab hinge 81.
When the inward facing friction tab 32 is in the non-deployed state, the epicardial pacing catheter 10 may be moved, navigated, or slid within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated or removed from the pericardial sack.
Although not shown, the outward facing bumper tabs 31 may be deployed using the same means and methods as described above.
Although not shown, the stabilization means may comprise one or more protrusions for engaging proximal anatomical structures such as the pericardium and/or the epicardium. The protrusions may be non-deployable. Further, the protrusions may comprise a non-conductive material, such as, but not limited to, silicone, polyurethane, Teflon, a radio-opaque material, or other materials known in the art.
It should be appreciated that the hinge devices and joint devices may be a number of elements such as, but not limited thereto, a fulcrum, swivel, gear, elbow, pivot, thrust or the like.
It should be appreciated that the tab devices may be a number of elements such as, but not limited thereto, finger, stud, post, tongue, spring, projection, pin, pedestal, extension, offset, knob, protuberance or the like.
It should be appreciated that in
The anode wire 62 and electrode pull-wire 112 extend longitudinally from the most proximal portion 73 of the epicardial pacing catheter 10 to the most distal anode 63. The cathode wire 66 and second electrode pull-wire 113 extend longitudinally from the most proximal portion 73 of the epicardial pacing catheter 10 to the most distal cathode 67.
It should be noted that, while a single anode wire 62, electrode pull-wire 112, cathode wire 66, and second electrode pull-wire 113 are shown, any number of anode wires 62, electrode pull-wires 112, cathode wires 66, and second electrode pull-wires 113 may be present as desired or required, up to and including, for example, the total number of electrodes 43 (or the sum of the anodes 63 and cathodes 67).
Although not shown, in an example embodiment, a biocompatible cover may be in communication with the most proximal end 73 of the epicardial pacing catheter 10. The biocompatible cover can prevent fibrosis from occurring around the exposed wires of the epicardial pacing catheter 10.
Although not shown, in an example embodiment, the proximal end 73 of the epicardial pacing catheter 10 is located just under the skin of a patient (or location(s) as desired or required). The proximal end 73 can be reached by a non-surgical, minimally-invasive incision of the skin, carried out by a clinician or cardiologist.
Although not shown, in an example embodiment, all structures beginning at the proximal end 73 may protrude from said proximal end 73 of the epicardial pacing catheter 10. In this way, the proximal end 73 could act as a male connector in a male-female connection. The male-female arrangement may be reversed if desired or required.
Although not shown, in an example embodiment, all structures within the control handle or control means may end before the distal end 74. In this way, the distal end 74 can act as a female connector in a male-female connection (or female-male connection).
The stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the anode 63 and cathode 67 in communication with the hooks 124. Though the stabilizer actuator is illustrated as an electrode pull-wire 112 in communication with a joint 121, and hinge 122, the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof. Further, the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, rope, pole, thread, filament, cord, strand or other means known in the art. The stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
It should be appreciated that the hook devices may be a number of elements such as, but not limited thereto, pin, claw, latch, finger, stud, spring, post, tongue, projection, pin, pedestal, extension, offset, knob, protuberance or the like.
In an embodiment, an electrode pull-wire 112 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal electrode 43, which may comprise an anode 63 or cathode 67. The electrode pull-wire 112 is in communication with a joint 121, the joint 121 in further communication with a hinge 122.
In an embodiment, the electrode pull-wire 112 may comprise a conductive material having high tensile strength as is known in the art. The electrode-pull wire 112 may further be controllably connected to a control means (for example, as shown in
In an embodiment, the epicardial pacing catheter 10 further comprises an insulating distal tip 51 in communication with the epicardial pacing catheter. The epicardial pacing catheter 10 further comprises a number of bumpers 120 in communication with the bottom of the epicardial pacing catheter 10. In an approach, the bumpers enable the epicardial pacing catheter 10 to sit on the surface of the heart in a non-deployed state without allowing the anode 63 or cathode 67 to be in communication with the epicardium.
When the deployable anode 63 and cathode 67 are in the non-deployed state, the epicardial pacing catheter 10 may be moved or navigated within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated or removed from the pericardial sack.
It should be appreciated that in
It should be appreciated that when the electrode pull-wire 112 is pulled toward the proximal end of the epicardial pacing catheter 10, the anode 63 and cathode 67 are drawn back into place within the catheter 10.
The stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the screws 130 in communication with the anode 63 and cathode 67. Though the stabilizer actuator is illustrated as an electrode pull-wire 112 in communication with a gear 131, the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof. Further, the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, rope, pole, thread, filament, cord, strand, or other means known in the art. The stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
It should be appreciated that the screw devices may comprise a number of elements such as, but not limited thereto, any translatable protrusion or extension for instance. Some non-limiting examples may include: toggle, press, slide, spring, stud, post, tongue, projection, pedestal, protuberance, contact, or the like.
In an embodiment, an electrode pull-wire 112 extends longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal electrode 43, which may be an anode 63 or cathode 67. The electrode pull-wire 112 may be a longitudinal structure, such as, but not limited to, a push-rod, pull-rod, wire, string, or rope. The electrode pull-wire 112 may be made of a conductive material having high tensile strength as is known in the art. The electrode-pull wire 112 may further be controllably connected to a control means (as shown, for example, in
The epicardial pacing catheter 10 further comprises an insulating distal tip 51 in communication with the epicardial pacing catheter.
When the screws 130 are in the non-deployed state, the epicardial pacing catheter 10 may be moved or navigated within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated, translated, rotated or removed from the pericardial sack.
It should be appreciated that in
The deployable stabilization means further comprises a stabilizer actuator, wherein said stabilizer actuator deploys the anode 63 and cathode 67 in communication with the hooks 124. Though the stabilizer actuator is illustrated as an electrode pull-wire 112 and second electrode pull-wire 113 in communication with a number of joints 121, and hinges 122, the stabilizer actuator may comprise any longitudinal member in communication with at least one of the following: gear, hinge, joint, rack and pinion, pulley, linear actuator, or linear-rotational actuator, or any combination thereof. Further, the longitudinal member may be, for example, a push-rod, pull-wire, wire, string, thread, filament, cord, strand, rope, pole, or other means known in the art. The stabilizer actuator may further comprise a micro electrical mechanical system (MEMS).
In an embodiment, an electrode pull-wire 112 and second electrode pull-wire 113 extend longitudinally from the most proximal portion of the epicardial pacing lead 10 to the most distal anode 63 and cathode 67 respectively. The electrode pull-wire and second electrode pull-wire 113 are in communication with a number of joints 121, the joints 121 in further communication with a number of hinges 122. The electrode pull-wire 112 and second electrode pull-wire 113 may comprise longitudinal structures, such as, but not limited to, push-rods, pull-rods, wires, thread, filament, cord, strand, strings, or ropes. The electrode pull-wire 112 and second electrode pull-wire 113 may be made of a conductive material having high tensile strength as is known in the art. The electrode-pull wire 112 and second electrode pull-wire 113 may further be controllably connected to a control means (for example, as shown in
The epicardial pacing catheter 10 further comprises an insulating distal tip 51 in communication with the epicardial pacing catheter. The epicardial pacing catheter 10 may further comprise a number of bumpers 120 in communication with the epicardial pacing catheter 10. The bumpers 120 enable the epicardial pacing catheter 10 to sit on the surface of the heart in a non-deployed state without allowing the anode 63 or cathode 67 to communicate with the heart.
When the deployable anode 63 and cathode 67 are in the non-deployed state, the epicardial pacing catheter 10 may be moved or navigated within the middle mediastinum. In this way, the epicardial pacing catheter 10 can be inserted, placed, navigated, translated, rotated or removed from the pericardial sack.
It should be appreciated that in
It should be appreciated that when the electrode pull-wire 112 and second electrode pull-wire are pushed toward the distal end of the epicardial pacing catheter 10, the anode 63 and cathode 67 are drawn back into place within the catheter 10.
It should be appreciated that regarding deployment discussed throughout, varying degrees of deployment may be achieved or implemented as desired or required.
The external control handle 150 is preferably sized to be grasped, held and operated by a user. It should be appreciated that other control and operating interface members, devices, or means may be utilized for the handle. Attached to the proximal end of the control handle 150 is the handle proximal port (not shown) from which anode wires 62 and cathode wires 67 extend in order to make electrical connections to diagnostic or electrical devices (not shown). Electrical wires (for example, shown in
For example, the control handle may have channels for the steering pull wires and thumb wheel knobs for tightening or loosening the pull wires.
One skilled in the art can see that many other embodiments of means and methods for using the epicardial pacing catheter 10 of the epicardial pacing system according to the technique of the technology, and other details of construction and use thereof, constitute non-inventive variations of the novel and insightful conceptual means, system and technique which underlie the present invention.
The devices, systems, compositions, computer program products, and methods of various embodiments of the invention disclosed herein may utilize aspects disclosed in the following references, applications, publications and patents and which are hereby incorporated by reference herein in their entirety:
1. U.S. Pat. No. 6,973,352 B1 to Tsutsui, D., et. al., entitled “Steerable Cardiac Pacing and Sensing Catheter and Guidewire for Implanting Leads”, Dec. 6, 2005.
2. U.S. Pat. No. 7,264,587 B2 to Chin, A., entitled “Endoscopic Subxiphoid Surgical Procedures”, Sep. 4, 2007.
3. U.S. Pat. No. 7,226,458 to Kaplan, et al., issued May 2007.
4. U.S. Pat. No. 7,226,448 to Bertolero, et. al., issued May 2007.
5. U.S. Pat. No. 7,142,919 to Hine, et al., issued May 2006.
6. U.S. Pat. No. 7,130,699 to Huff, et al., issued October 2006.
7. U.S. Pat. No. 7,120,504 to Osypka, issued October 2006.
8. U.S. Pat. No. 7,101,362 to Vinne, issued September 2006.
9. U.S. Pat. No. 7,090,637 to Danitz, et al., issued August 2006.
10. U.S. Pat. No. 7,089,063 to Lesh, et al., issued August 2006.
11. U.S. Pat. No. 7,059,878 to Hendrixson, issued August 2006.
12. U.S. Pat. No. 7,041,099 to Thomas, et al., issued May 2006.
13. U.S. Pat. No. 7,027,876 to Casavant, et al., issued April 2006.
14. U.S. Pat. No. 7,008,418 to Hall, et al., issued March 2006.
15. U.S. Pat. No. 6,973,352 to Tsutsui, et al., issued December 2005.
16. U.S. Pat. No. 6,936,040 to Kramm, et al., issued August 2005.
17. U.S. Pat. No. 6,921,295 to Sommer, et al., issued July 2005.
18. U.S. Pat. No. 6,918,908 to Bonner, et al., issued August 2005.
19. U.S. Pat. No. 6,899,710 to Hooven, issued May 2005.
20. U.S. Pat. No. 6,876,885 to Swoyer, et al., issued May 2005.
21. U.S. Pat. No. 6,868,291 to Bonner, et al., issued March 2005.
22. U.S. Pat. No. 6,837,886 to Collins, et al., issued January 2005.
23. U.S. Pat. No. 6,835,193 to Epstein, et al., issued December 2004.
24. U.S. Pat. No. 6,527,767 to Wang, et al., issued March 2003.
25. U.S. Pat. No. 6,314,963 to Vaska, et al., issued November 2001.
26. U.S. Pat. No. 6,270,476 to Santoianni, et al., issued August 2001.
27. U.S. Pat. No. 6,263,241 to Rosborough, et al., issued July 2001.
28. U.S. Pat. No. 6,237,605 to Vaska, et al., issued May 2001.
29. U.S. Pat. No. 6,123,084 to Jandak, et al., issued September 2000.
30. U.S. Pat. No. 6,036,685 to Mueller, et al., issued March 2000.
31. U.S. Pat. No. 5,733,280 to Avitall, issued March 1998.
32. U.S. Pat. No. 5,213,570 to Van Deripe, et al., issued May 1993.
33. U.S. Patent Application Publication No. 2007/0038052 to Swoyer, et al., issued February 2007.
34. U.S. Patent Application Publication No. 2006/0270900 to Chin, et al., issued November 2006.
35. U.S. Patent Application Publication No. 2006/0122591 to Keidar, issued June 2006.
36. U.S. Patent Application Publication No. 2006/0025762 to Mohan, et al., February 2006.
37. U.S. Patent Application Publication No. 20040267326 to Ocel, et al., issued December 2004.
38. U.S. Patent Application Publication No. 2004/0138526 to Guenst, issued July 2004.
39. U.S. Patent Application Publication No. 2004/0087831 to Michels, et al., issued May 2004.
40. U.S. Patent Application Publication No. 2003/0069572 to Wellman, et al., issued April 2003.
41. U.S. Patent Application Publication No. 2003/0065318 to Pendekanti, issued April 2003.
42. U.S. Patent Application Publication No. 2003/0028187 to Vaska, et al., issued February 2003.
43. International Patent Application Publication No. WO97/33526, issued September 1997.
44. International Patent Application Publication No. WO95/15115, issued June 1995.
45. International Patent Application Publication No. WO93/20878, issued October 1993.
46. International Patent Application Publication No. WO87/04081, issued July 1987. 47. M. Tomaske et al., “Do Daily Threshold Trend Fluctuations of Epicardial Leads Correlate with Pacing and Sensing Characteristics in Paediatric Patients,” Europace, doi: 10.1093/europace/eum100, (2007).
48. A. d'Avila et al., “Transthoracic Epicardial Catheter Ablation of Ventricular Tachycardia,” Heart Rhythmn, Vol. 3, pp. 1110-1111, (2006).
49 E. Sosa et al., “Epicardial Mapping and Ablation Techniques to Control Ventricular Tachycardia,” Journal of Cardiovascular Electrophysiology, Vol. 16, pp. 449-452, (2005).
50. S. Mahapatra et al., “Incidence and Predictors of Cardiac Perforation after permanent Pacemaker Placement,” Heart Rhythm, Vol. 2, pp. 907-911, (2005).
51. D. L. Packer et al., “Multimodality 3-D Ultrasound and Computed Tomographic Image Fusion: A Novel Basis for Catheter Navigation and Electroanatomic Mapping,” Circulation, Vol. 112, p. U684, (2005).
52. E. Sosa et al., “Nonsurgical Transthoracic Epicardial Approach in Patients with Ventricular Tachycardia and Previous Cardiac Surgery,” Journal of Interventional Cardiac Electrophysiology, Vol. 10, pp. 281-288, (2004).
53. J. Derose, Jr. et al., “Robotically Assisted Left Ventricular Epicardial Lead Implantation for Biventricular Pacing: the Posterior Approach,” Annals of Thoracic Surgery, Vol. 77, pp. 1472-1474, (2004).
54. B. Hansky et al., “Lead Selection and Implantation Technique for Biventricular Pacing,” European Heart Journal Supplements, Vol. 6, D112-D116, (2004).
55. H. Mair et al., “Epicardial Lead Implantation Techniques for Biventricular Pacing via Left Lateral Mini-Thoracotomy, Video-Assisted Thoracoscopy, and Robotic Approach, The Heart Surgery Forum, Vol. 6, #2003-4883, (2003).
56. A. V. Sarabanda, et al., “Efficacy and Safety of Circumferential Pulmonary Vein Isolation Using a Novel Cryothermal Balloon Ablation System” Journal of the American College of Cardiology, Vol. 46, pp. 1902-1912 (2005).
57. S. Mahapatra et al., G. T. Gillies, “Access Device and Manometric Monitoring System for Epicardial Electrophysiology: Improved Porototype and Use in Human Trials”, Technical Report UVA/640419/MAE08/102.
It should be appreciated that various sizes, dimensions, contours, rigidity, shapes, flexibility and materials of any of the embodiments discussed throughout may be varied and utilized as desired or required.
It should be appreciated that the catheter device and epicardial system and their related components discussed herein may can take on all shapes along the entire continual geometric spectrum of manipulation of x, y and z planes to provide and meet the anatomical and structural demands and requirements.
Practice of the invention will be still more fully understood from the following examples and experimental results, which are presented herein for illustration only and should not be construed as limiting the invention in any way.
Step 1—Access and place a guidewire in the pericardial space using our EpiNeedle Access system.
Step 2—Use a sheath, preferably our EpiSheath, or a general long 8 Fr sheath to place over the guidewire and maintain access.
Step 3—Place the lead of the subject invention with handle though the sheath.
Step 4—Guide the lead in the epicardial space using the two steering points and the sheath under fluoroscopic guidance (although this lead may be guided via one or more other imaging methods to include ICE, CT, MRI, Visual Endoscopy, or Echo Methods). The lead should be advanced along the border of the heart apically to base along the LV. Once it crosses the AV groove to the LA it should be deflected downward and advanced through the transverse sinus. Once across the transverse sinus it will need to be deflected up to the SVC and then down to the RA and finally the RV.
Step 5—Slide the sheath back to the inferior portion of the RV.
Step 6—At this point the handle should be hooked up to an EP analyzer. The lead should be clocked for a more anterior position or counter-clocked for a more posterior position until the largest LV signals are found. If multi-chamber pacing is sought one should pick a point when at least two poles of the LV, and of each other chamber, has an amplitude of at least 1 mV in the atrium and 5 mV in the ventricle. Note there is no need for all points to have high amplitudes. Next, the tabs should be deployed. This should push the lead more tightly against the heart and actually increase the voltage. Then, pacing should be attempted in the LV. If threshold is less than 2.5 V it is a good site on any pole. The same should then be done with the other points. If no point is good the tab should be let down and then the lead repositioned.
Step 7—Once a good position is found the handle should be removed and the sheath withdrawn completely outside of the patient.
Step 8—The lead should be plugged into either a custom ICD/BiV or attached to our wire interface for a standard ICD. The poles that are not used to pace should be plugged in this case. In the custom ICD, all poles would be active and the user (or an automated system) may decide when to pace.
Step 9—The lead extender to the ICD would then either be tunneled back to the ICD in the shoulder (or elsewhere), placed by the nearby abdominal ICD. Or a battery-powered wireless box will be used to communicate with the main ICD in the shoulder. At this point the patient should be recovered. No stitch is needed for the lead access.
In summary, while the present invention has been described with respect to specific embodiments, many modifications, variations, alterations, substitutions, and equivalents will be apparent to those skilled in the art. The present invention is not to be limited in scope by the specific embodiment described herein. Indeed, various modifications of the present invention, in addition to those described herein, will be apparent to those of skill in the art from the foregoing description and accompanying drawings. Accordingly, the invention is to be considered as limited only by the spirit and scope of the following claims, including all modifications and equivalents.
Still other embodiments will become readily apparent to those skilled in this art from reading the above-recited detailed description and drawings of certain exemplary embodiments. It should be understood that numerous variations, modifications, and additional embodiments are possible, and accordingly, all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of this application. For example, regardless of the content of any portion (e.g., title, field, background, summary, abstract, drawing figure, etc.) of this application, unless clearly specified to the contrary, there is no requirement for the inclusion in any claim herein or of any application claiming priority hereto of any particular described or illustrated activity or element, any particular sequence of such activities, or any particular interrelationship of such elements. Moreover, any activity can be repeated, any activity can be performed by multiple entities, and/or any element can be duplicated. Further, any activity or element can be excluded, the sequence of activities can vary, and/or the interrelationship of elements can vary.
Unless clearly specified to the contrary, there is no requirement for any particular described or illustrated activity or element, any particular sequence or such activities, any particular size, speed, material, dimension or frequency, or any particularly interrelationship of such elements. Accordingly, the descriptions and drawings are to be regarded as illustrative in nature, and not as restrictive. Moreover, when any number or range is described herein, unless clearly stated otherwise, that number or range is approximate. When any range is described herein, unless clearly stated otherwise, that range includes all values therein and all sub ranges therein. Any information in any material (e.g., a United States/foreign patent, United States/foreign patent application, book, article, etc.) that has been incorporated by reference herein, is only incorporated by reference to the extent that no conflict exists between such information and the other statements and drawings set forth herein. In the event of such conflict, including a conflict that would render invalid any claim herein or seeking priority hereto, then any such conflicting information in such incorporated by reference material is specifically not incorporated by reference herein.
The present application is a continuation of U.S. application Ser. No. 12/741,710, filed May 6, 2010 now abandoned, entitled “Steerable Epicardial Pacing Catheter System Placed via the Subxiphoid Process,” which is a National Stage Entry of PCT/US2008/082835, filed Nov. 7, 2008 and claims priority from U.S. Provisional Application Ser. No. 60/986,786, filed Nov. 9, 2007, entitled “Passive Fixation, Steerable Epicardial Lead to be Placed via the Subxiphoid Process for Pacing Left Ventricle, Right Ventricle, Right Atrium and Left Atrium and Cardiac Defibrillation,” and U.S. Provisional Application Ser. No. 61/023,727, filed Jan. 25, 2008, entitled “Steerable Epicardial Lead to be Placed via the Subxiphoid Process for Left Ventricular Pacing and Related Method.” the disclosures of which are hereby incorporated by reference herein in their entirety. This application is related to PCT International Application No. Serial No. PCT/US2008/056643, filed Mar. 12, 2008, entitled, “Access Needle Pressure Sensor Device and Method of Use,” the disclosure of which is hereby incorporated by reference herein in its entirety. This application is related to PCT International Application No. Serial No. PCT/US2008/056816, filed Mar. 13, 2008, entitled, “Epicardial Ablation Catheter and Method of Use,” the disclosure of which is hereby incorporated by reference herein in its entirety. This application is related to PCT International Application No. Serial No. PCT/US2008/057626, filed Mar. 20, 2008, entitled, “Electrode Catheter for Ablation Purposes and Related Method Thereof,” the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
579288 | Beyl | Mar 1897 | A |
3794026 | Jacobs | Feb 1974 | A |
3808706 | Mosley et al. | May 1974 | A |
3814104 | Irnich et al. | Jun 1974 | A |
4142530 | Wittkampf | Mar 1979 | A |
4167070 | Orden | Sep 1979 | A |
4263918 | Swearingen et al. | Apr 1981 | A |
4280510 | O'Neill | Jul 1981 | A |
4349023 | Gross | Sep 1982 | A |
4378023 | Trabucco | Mar 1983 | A |
4607644 | Pohndorf | Aug 1986 | A |
4817634 | Holleman | Apr 1989 | A |
4935008 | Lewis | Jun 1990 | A |
4971070 | Holleman | Nov 1990 | A |
4991603 | Cohen | Feb 1991 | A |
5033477 | Chin | Jul 1991 | A |
5071428 | Chin | Dec 1991 | A |
5125888 | Howard et al. | Jun 1992 | A |
5158097 | Christlieb | Oct 1992 | A |
5176153 | Eberhardt et al. | Jan 1993 | A |
5213570 | Van Deripe et al. | May 1993 | A |
5269326 | Verrier | Dec 1993 | A |
5300110 | Latterell | Apr 1994 | A |
5335313 | Douglas | Aug 1994 | A |
5336252 | Cohen | Aug 1994 | A |
5395349 | Quiachon | Mar 1995 | A |
5465711 | Moll | Nov 1995 | A |
5484423 | Waskonig | Jan 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5509924 | Paspa | Apr 1996 | A |
5544654 | Murphy | Aug 1996 | A |
5662647 | Crow et al. | Sep 1997 | A |
5669882 | Pyles | Sep 1997 | A |
5679005 | Einstein | Oct 1997 | A |
5702438 | Avitall | Dec 1997 | A |
5707335 | Howard et al. | Jan 1998 | A |
5725504 | Collins | Mar 1998 | A |
5733280 | Avitall | Mar 1998 | A |
5779694 | Howard et al. | Jul 1998 | A |
5779699 | Lipson | Jul 1998 | A |
5792217 | Camps et al. | Aug 1998 | A |
5797870 | March | Aug 1998 | A |
5800428 | Nelson | Sep 1998 | A |
5807249 | Qin et al. | Sep 1998 | A |
5812978 | Nolan | Sep 1998 | A |
5814012 | Fleenor et al. | Sep 1998 | A |
5827216 | Igo | Oct 1998 | A |
5843048 | Gross | Dec 1998 | A |
5846239 | Swanson | Dec 1998 | A |
5868741 | Chia et al. | Feb 1999 | A |
5885217 | Gisselberg | Mar 1999 | A |
5899937 | Goldstein et al. | May 1999 | A |
5916194 | Jacobsen et al. | Jun 1999 | A |
5928191 | Houser et al. | Jul 1999 | A |
5931810 | Grabek | Aug 1999 | A |
5970457 | Brant | Oct 1999 | A |
5972013 | Schmidt | Oct 1999 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6036685 | Mueller et al. | Mar 2000 | A |
6051008 | Saadat | Apr 2000 | A |
6062866 | Prom | May 2000 | A |
6120476 | Fung et al. | Sep 2000 | A |
6123084 | Jandak et al. | Sep 2000 | A |
6148825 | Anderson | Nov 2000 | A |
6156009 | Grabek | Dec 2000 | A |
6156018 | Hassett | Dec 2000 | A |
6162195 | Igo | Dec 2000 | A |
6200303 | Verrier | Mar 2001 | B1 |
6200315 | Gaiser et al. | Mar 2001 | B1 |
6206004 | Schmidt | Mar 2001 | B1 |
6206874 | Ubby et al. | Mar 2001 | B1 |
6216030 | Howard et al. | Apr 2001 | B1 |
6216704 | Ingle et al. | Apr 2001 | B1 |
6231518 | Grabek | May 2001 | B1 |
6234804 | Yong | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6245440 | Kuhlmann-Wilsdorf et al. | Jun 2001 | B1 |
6263241 | Rosborough et al. | Jul 2001 | B1 |
6266567 | Ishikawa | Jul 2001 | B1 |
6270476 | Santoianni et al. | Aug 2001 | B1 |
6270484 | Yoon | Aug 2001 | B1 |
6272370 | Gillies et al. | Aug 2001 | B1 |
6273877 | West | Aug 2001 | B1 |
6278975 | Brant | Aug 2001 | B1 |
6298259 | Kucharczyk et al. | Oct 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6322536 | Rosengart | Nov 2001 | B1 |
6325776 | Anderson | Dec 2001 | B1 |
6416505 | Fleischman | Jul 2002 | B1 |
6423051 | Kaplan | Jul 2002 | B1 |
6443735 | Eggert | Sep 2002 | B1 |
6500130 | Kinsella et al. | Dec 2002 | B2 |
6527767 | Wang et al. | Mar 2003 | B2 |
6551289 | Higuchi | Apr 2003 | B1 |
6554809 | Aves | Apr 2003 | B2 |
6558382 | Jahns | May 2003 | B2 |
6569082 | Chin | May 2003 | B1 |
6592552 | Schmidt | Jul 2003 | B1 |
6599274 | Kucharcyzk et al. | Jul 2003 | B1 |
6602242 | Fung et al. | Aug 2003 | B1 |
6613062 | Leckrone | Sep 2003 | B1 |
6616676 | Bashiri et al. | Sep 2003 | B2 |
6626902 | Kucharczyk et al. | Sep 2003 | B1 |
6666844 | Igo | Dec 2003 | B1 |
6666861 | Grabek | Dec 2003 | B1 |
6689128 | Sliwa | Feb 2004 | B2 |
6711436 | Duhaylongsod | Mar 2004 | B1 |
6723092 | Brown | Apr 2004 | B2 |
6752805 | Maguire | Jun 2004 | B2 |
6771996 | Bowe | Aug 2004 | B2 |
6783510 | Gibson et al. | Aug 2004 | B1 |
6786898 | Guenst | Sep 2004 | B2 |
6811544 | Schaer | Nov 2004 | B2 |
6827714 | Swanson | Dec 2004 | B2 |
6827715 | Francischelli | Dec 2004 | B2 |
6834201 | Gillies et al. | Dec 2004 | B2 |
6835193 | Epstein et al. | Dec 2004 | B2 |
6837848 | Bonner | Jan 2005 | B2 |
6837886 | Collins et al. | Jan 2005 | B2 |
6849075 | Bertolero | Feb 2005 | B2 |
6868291 | Bonner et al. | Mar 2005 | B1 |
6869414 | Simpson et al. | Mar 2005 | B2 |
6874501 | Estetter et al. | Apr 2005 | B1 |
6876885 | Swoyer et al. | Apr 2005 | B2 |
6899710 | Hooven | May 2005 | B2 |
6916318 | Francischelli | Jul 2005 | B2 |
6918890 | Schmidt | Jul 2005 | B2 |
6918908 | Bonner et al. | Jul 2005 | B2 |
6921295 | Sommer et al. | Jul 2005 | B2 |
6928313 | Peterson | Aug 2005 | B2 |
6936040 | Kramm et al. | Aug 2005 | B2 |
6960205 | Jahns | Nov 2005 | B2 |
6968223 | Hanover | Nov 2005 | B2 |
6973352 | Tsutsui et al. | Dec 2005 | B1 |
6974454 | Hooven | Dec 2005 | B2 |
7004937 | Lentz et al. | Feb 2006 | B2 |
7008418 | Hall et al. | Mar 2006 | B2 |
7027876 | Casavant et al. | Apr 2006 | B2 |
7037296 | Kadziauskas | May 2006 | B2 |
7041099 | Thomas et al. | May 2006 | B2 |
7048733 | Hartley et al. | May 2006 | B2 |
7059878 | Hendrixson | Jun 2006 | B1 |
7063693 | Guenst | Jun 2006 | B2 |
7085606 | Flach | Aug 2006 | B2 |
7089063 | Lesh et al. | Aug 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7101362 | Vanney | Sep 2006 | B2 |
7104986 | Hovda | Sep 2006 | B2 |
7120504 | Osypka | Oct 2006 | B2 |
7130699 | Huff et al. | Oct 2006 | B2 |
7142919 | Hine et al. | Nov 2006 | B2 |
7146225 | Guenst | Dec 2006 | B2 |
7147633 | Chee | Dec 2006 | B2 |
7207988 | Leckrone | Apr 2007 | B2 |
7214180 | Chin | May 2007 | B2 |
7226448 | Bertolero | Jun 2007 | B2 |
7226458 | Kaplan et al. | Jun 2007 | B2 |
7232422 | Gibson et al. | Jun 2007 | B2 |
7247139 | Yudkovitch | Jul 2007 | B2 |
7259906 | Islam | Aug 2007 | B1 |
7264587 | Chin | Sep 2007 | B2 |
7286992 | Sander | Oct 2007 | B2 |
7309328 | Kaplan | Dec 2007 | B2 |
7398781 | Chin | Jul 2008 | B1 |
7468029 | Robertson | Dec 2008 | B1 |
7473244 | Frazier | Jan 2009 | B2 |
7670327 | Kucharczyk et al. | Mar 2010 | B2 |
7727225 | Broaddus et al. | Jun 2010 | B2 |
8048072 | Verin et al. | Nov 2011 | B2 |
8096984 | Kucharczyk et al. | Jan 2012 | B2 |
8211083 | Broaddus et al. | Jul 2012 | B2 |
8226694 | Broaddus et al. | Jul 2012 | B2 |
8255193 | Humphrey et al. | Aug 2012 | B2 |
8271095 | O'Sullivan | Sep 2012 | B2 |
8282565 | Mahapatra et al. | Oct 2012 | B2 |
8655798 | Humphrey et al. | Feb 2014 | B2 |
8728053 | Broaddus et al. | May 2014 | B2 |
8906056 | Gillies et al. | Dec 2014 | B2 |
9211405 | Mahapatra | Dec 2015 | B2 |
9218752 | Gillies et al. | Dec 2015 | B2 |
9314265 | Mahapatra et al. | Apr 2016 | B2 |
9364660 | Howard et al. | Jun 2016 | B2 |
9468396 | Mahapatra et al. | Oct 2016 | B2 |
9636487 | Utz et al. | May 2017 | B2 |
9642534 | Mahapatra et al. | May 2017 | B2 |
10166066 | Mahapatra et al. | Jan 2019 | B2 |
10702335 | Mahapatra et al. | Jul 2020 | B2 |
11058354 | Mahapatra et al. | Jul 2021 | B2 |
11083381 | Mahapatra et al. | Aug 2021 | B2 |
20010001314 | Davison et al. | May 2001 | A1 |
20010020166 | Daly | Sep 2001 | A1 |
20010024735 | Kuhlmann-Wilsdorf et al. | Sep 2001 | A1 |
20010025178 | Mulier et al. | Sep 2001 | A1 |
20010039410 | Verrier | Nov 2001 | A1 |
20010056280 | Underwood et al. | Dec 2001 | A1 |
20020002372 | Jahns et al. | Jan 2002 | A1 |
20020019626 | Sharkey et al. | Feb 2002 | A1 |
20020045895 | Sliwa | Apr 2002 | A1 |
20020055714 | Rothschild | May 2002 | A1 |
20020058925 | Kaplan | May 2002 | A1 |
20020072737 | Belden et al. | Jun 2002 | A1 |
20020077600 | Sirimanne | Jun 2002 | A1 |
20020082523 | Kinsella et al. | Jun 2002 | A1 |
20020103430 | Hastings et al. | Aug 2002 | A1 |
20020161361 | Sherman | Oct 2002 | A1 |
20030028187 | Vaska et al. | Feb 2003 | A1 |
20030050681 | Pianca | Mar 2003 | A1 |
20030065318 | Pendekanti | Apr 2003 | A1 |
20030069572 | Wellman et al. | Apr 2003 | A1 |
20030114796 | Schmidt | Jun 2003 | A1 |
20030181855 | Simpson et al. | Sep 2003 | A1 |
20030204171 | Kucharczyk et al. | Oct 2003 | A1 |
20040024397 | Griffin | Feb 2004 | A1 |
20040024413 | Lentz et al. | Feb 2004 | A1 |
20040024435 | Leckrone | Feb 2004 | A1 |
20040033477 | Ramphal et al. | Feb 2004 | A1 |
20040034365 | Lentz et al. | Feb 2004 | A1 |
20040064138 | Grabek | Apr 2004 | A1 |
20040068312 | Sigg et al. | Apr 2004 | A1 |
20040087831 | Michels et al. | May 2004 | A1 |
20040087938 | Leckrone | May 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040126746 | Toly | Jul 2004 | A1 |
20040138526 | Guenst | Jul 2004 | A1 |
20040138527 | Bonner | Jul 2004 | A1 |
20040138531 | Bonner | Jul 2004 | A1 |
20040147826 | Peterson | Jul 2004 | A1 |
20040176679 | Murphy et al. | Sep 2004 | A1 |
20040186507 | Hall et al. | Sep 2004 | A1 |
20040215168 | Verrier | Oct 2004 | A1 |
20040216748 | Chin | Nov 2004 | A1 |
20040267303 | Guenst | Dec 2004 | A1 |
20040267326 | Ocel et al. | Dec 2004 | A1 |
20050004514 | Hochman | Jan 2005 | A1 |
20050010205 | Hovda | Jan 2005 | A1 |
20050020914 | Amundson et al. | Jan 2005 | A1 |
20050027243 | Gibson | Feb 2005 | A1 |
20050085769 | MacMahon | Apr 2005 | A1 |
20050096522 | Reddy et al. | May 2005 | A1 |
20050107678 | Bowe | May 2005 | A1 |
20050119556 | Gillies et al. | Jun 2005 | A1 |
20050149152 | Bertolero | Jul 2005 | A1 |
20050154376 | Riviere | Jul 2005 | A1 |
20050215945 | Harris et al. | Sep 2005 | A1 |
20050234507 | Geske | Oct 2005 | A1 |
20050251094 | Peterson | Nov 2005 | A1 |
20050256368 | Klenk | Nov 2005 | A1 |
20050261673 | Bonner | Nov 2005 | A1 |
20050273006 | Stewart | Dec 2005 | A1 |
20050273144 | Lennox | Dec 2005 | A1 |
20060025705 | Whittaker et al. | Feb 2006 | A1 |
20060025762 | Mohan et al. | Feb 2006 | A1 |
20060036307 | Zarembo | Feb 2006 | A1 |
20060041243 | Nayak | Feb 2006 | A1 |
20060052660 | Chin | Mar 2006 | A1 |
20060064056 | Coyle et al. | Mar 2006 | A1 |
20060064058 | Coyle | Mar 2006 | A1 |
20060074397 | Shimada | Apr 2006 | A1 |
20061016442 | Richardson | May 2006 | |
20060122591 | Keidar et al. | Jun 2006 | A1 |
20060189840 | Walsh | Aug 2006 | A1 |
20060200002 | Guenst | Sep 2006 | A1 |
20060229490 | Chin | Oct 2006 | A1 |
20060247522 | McGee | Nov 2006 | A1 |
20060247672 | Vidlund | Nov 2006 | A1 |
20060259017 | Heil | Nov 2006 | A1 |
20060270900 | Chin et al. | Nov 2006 | A1 |
20060271032 | Chin | Nov 2006 | A1 |
20070016068 | Grunwald et al. | Jan 2007 | A1 |
20070016069 | Grunwald | Jan 2007 | A1 |
20070016070 | Grunwald et al. | Jan 2007 | A1 |
20070016072 | Grunwald et al. | Jan 2007 | A1 |
20070032796 | Chin-Chen | Feb 2007 | A1 |
20070038052 | Swoyer et al. | Feb 2007 | A1 |
20070043397 | Ocel | Feb 2007 | A1 |
20070055142 | Webler | Mar 2007 | A1 |
20070198041 | Rupp | Aug 2007 | A1 |
20070270882 | Hjelle | Nov 2007 | A1 |
20070270928 | Erlebacher | Nov 2007 | A1 |
20080015625 | Ventura et al. | Jan 2008 | A1 |
20080051671 | Broome | Feb 2008 | A1 |
20080051864 | Callas | Feb 2008 | A1 |
20080091109 | Abraham | Apr 2008 | A1 |
20080097399 | Sachar | Apr 2008 | A1 |
20080108945 | Kaplan | May 2008 | A1 |
20080183080 | Abraham | Jul 2008 | A1 |
20080208184 | Davies | Aug 2008 | A1 |
20080262432 | Miller | Oct 2008 | A1 |
20080262467 | Humphrey et al. | Oct 2008 | A1 |
20080294174 | Bardsley | Nov 2008 | A1 |
20080300618 | Gertner | Dec 2008 | A1 |
20090030469 | Meiry | Jan 2009 | A1 |
20090048577 | Gillies et al. | Feb 2009 | A1 |
20090068627 | Toly | Mar 2009 | A1 |
20090069697 | Frazier | Mar 2009 | A1 |
20090192487 | Broaddus et al. | Jul 2009 | A1 |
20090246747 | Buckman | Oct 2009 | A1 |
20090253102 | Porikli et al. | Oct 2009 | A1 |
20090311656 | Lundback et al. | Dec 2009 | A1 |
20100042158 | Broaddus et al. | Feb 2010 | A1 |
20100069849 | Kassab | Mar 2010 | A1 |
20100094143 | Mahapatra | Apr 2010 | A1 |
20100114093 | Mahapatra | May 2010 | A1 |
20100167251 | Boutchko et al. | Jul 2010 | A1 |
20100210927 | Gillies et al. | Aug 2010 | A1 |
20100211064 | Mahapatra | Aug 2010 | A1 |
20100241185 | Mahapatra | Sep 2010 | A1 |
20120249890 | Chardon et al. | Oct 2012 | A1 |
20120274863 | Chardon et al. | Nov 2012 | A1 |
20120278348 | Chardon et al. | Nov 2012 | A1 |
20120283582 | Mahapatra et al. | Nov 2012 | A1 |
20120310052 | Mahapatra | Dec 2012 | A1 |
20120330184 | Mahapatra | Dec 2012 | A1 |
20130085386 | Humphrey et al. | Apr 2013 | A1 |
20130090556 | Broaddus et al. | Apr 2013 | A1 |
20130096428 | Gillies et al. | Apr 2013 | A1 |
20130108999 | Gillies | May 2013 | A1 |
20130225904 | Gillies et al. | Aug 2013 | A1 |
20130303967 | Utz et al. | Nov 2013 | A1 |
20140128955 | Howard et al. | May 2014 | A1 |
20150297073 | Nguyen et al. | Oct 2015 | A1 |
20160100797 | Mahapatra et al. | Apr 2016 | A1 |
20160331445 | Mahapatra et al. | Nov 2016 | A1 |
20170086707 | Mahapatra et al. | Mar 2017 | A1 |
20170238823 | Mahapatra et al. | Aug 2017 | A1 |
20190274757 | Mahapatra et al. | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
7052296 | Jan 1997 | AU |
PI0809127-7 | Oct 2019 | BR |
2236958 | May 1998 | CA |
2236958 | Nov 1998 | CA |
4313903 | Sep 1994 | DE |
0134367 | Mar 1985 | EP |
0417171 | Mar 1991 | EP |
0450608 | Oct 1991 | EP |
1129681 | Sep 2001 | EP |
1181896 | Feb 2002 | EP |
2279773 | Feb 2011 | EP |
2134253 | Jan 2022 | EP |
WO 8704081 | Jul 1987 | WO |
WO 9320878 | Oct 1993 | WO |
WO 9320886 | Oct 1993 | WO |
WO 9510319 | Apr 1995 | WO |
WO 9515115 | Jun 1995 | WO |
WO 9733526 | Sep 1997 | WO |
WO1997037847 | Oct 1997 | WO |
WO199800060 | Jan 1998 | WO |
WO 9918869 | Apr 1999 | WO |
WO00007652 | Feb 2000 | WO |
WO0023000 | Apr 2000 | WO |
WO 0105306 | Jan 2001 | WO |
WO 0158373 | Aug 2001 | WO |
WO 0168173 | Sep 2001 | WO |
WO 0180724 | Nov 2001 | WO |
WO 0180757 | Nov 2001 | WO |
WO 0193930 | Dec 2001 | WO |
WO2002074358 | Sep 2002 | WO |
WO 03092792 | Nov 2003 | WO |
WO0615091 | Feb 2006 | WO |
WO06089243 | Aug 2006 | WO |
WO 2006113267 | Oct 2006 | WO |
WO 2007081842 | Jul 2007 | WO |
WO 200802595 | Jan 2008 | WO |
WO 2008013709 | Jan 2008 | WO |
WO 2008057370 | May 2008 | WO |
WO 2008112870 | Sep 2008 | WO |
WO 2008115745 | Sep 2008 | WO |
WO 2008118737 | Oct 2008 | WO |
WO 2009062061 | May 2009 | WO |
WO 2010127259 | Nov 2010 | WO |
WO 2011103456 | Aug 2011 | WO |
WO 2011102874 | Aug 2011 | WO |
WO2011160080 | Dec 2011 | WO |
WO2012065125 | May 2012 | WO |
Entry |
---|
Tomaske et al., “Do Daily Threshold Trend Fluctuations of Epicardial Leads Correlate with Pacing and Sensing Characteristics in Paediatric Patients,” Eurospace, pp. 662-668 (2007). |
D'Avila et al., “Transthoracic Epicardial Catheter Ablation of Ventricular Tachycardia,” Heart Rhythymn, vol. 3, pp. 1110-1111, (2006). |
Sosa et al., “Epicardial Mapping and Ablation Techniques to Control Ventricular Tachycardia,”Journal of Cardiovascular Electrophysiology, vol. 16, pp. 449-452 (2005). |
Mahapatra et al., “Incidence and Predictors of Cardiac Perforation after permanent Pacemaker Placement,” Heart Rhythmn, vol. 2, pp. 907-911, (2005). |
Packer et al., “Multimodality 3-D Ultrasound and Computed Tomographic Image Fusion: A Novel Basis for Catheter Navigation and Electroanatomic Mapping,” Circulation, vol. 112, p. U684, (2005). |
Sosa et al., “Nonsurgical Transthoracic Epicardial Approach in Patients with Ventricular Tachycardia and Previous Cardiac Surgery,” Journal of Interventional Cardiac Electrophysiology, vol. 10, pp. 281-288, (2004). |
Sosa, “Percutaneous Pericardia! Access for Mapping and Ablation of Epicardial Ventricular Tachycardias,” Circulation, Journal of the American Heart Association, p. e542-e544, vol. 115 (2007). |
Derose et al., “Robotically Assisted Left Ventricular Epicardial Lead Implantation for Biventricular Pacing: the Posterior Approach,” Annals of Thoracic Surgery, vol. 77, pp. 1472-1474, (2004). |
Hansky et al., “Lead Selection and Implantation Technique for Biventricular Pacing,” European Heart Journal Supplements, vol. 6, pp. D112-D116, (2004). |
Mair et al., “Epicardial Lead Implantation Techniques for Biventricular Pacing via Left Lateral Mini-Thoracotomy, Video-Assisted Thoracoscopy, and Robotic Approach,” The Heart Surgery Forum, vol. 6, pp. 2003-4883 (2003). |
Sarabanda et al., “Efficacy and Safety of Circumferential Pulmonary Vein Isolation Using a Novel Cryothermal Balloon Ablation System,” Journal of the American College of Cardiology, vol. 46, pp. 1902-1912 (2005). |
Mahapatra et al., “Access Device and Manometric Monitoring System for Epicardial Electrophysiology: Improved Porototype and Use in Human Trials,” Jan. 2008 Technical Report UVA/640419/MAE08/102 (2008). |
Mahapatra et al., “Access Device and Manometric Monitoring System for Epicardial Electrophysiology: Improved Porototype and Use in Human Trials,” Jul. 2007 Technical Report UVA/640419/MAE08/101 (2007). |
Thomas, “Analysis of Human Epidural Pressures,” Regional Anesthesia, vol. 17, No. 4 pp. 212-215 (1992). |
Moses, “Sirolimus-Eluting Stents Versus Standard Stents in Patients with Stenosis in a Native Coronary Artery”, New England Journal of Medicine, vol. 349, No. 14 pp. 1315-1323 (2003). |
Lin, “Catheter Microwave Ablation Therapy for Cardiac Arrhythmias,” Bioelectromagnetics, vol. 20, pp. 120-132 (1999). |
Klein, “Radiofrequency Ablation of Cardiac Arrhythmias,” Scientific American Science & Medicine, p. 48-57 (1994). |
Frolich, “Pioneers in Epidural Needle Design,” Anesthesia & Analgesia, vol. 93 pp. 215-220 (2001). |
Beukema, “Radiofrequency Ablation of Atrial Fibrillation in Patients Undergoing Concommitant CardiacSurgery: First Experience,” PACE, vol. 20, p. 1100 (1997). |
Arrow International Corporation, AN-05505 Epidural Needle, www.arrowintl.com/products/boms/AN05505.asp? |
PX26 Series Pressure Transducers: Instruction Sheet, OMEGA Engineering, Inc., 2004 (accessed Dec. 5, 2007), Stamford, CT. Online at http://www.omega.com/Manuals/manualpdf/M1608.pdf. |
PX26 Series Pressure Transducers: Instruction Sheet, OMEGA Engineering, Inc., 2004 (accessed Jul. 9, 2007), Stamford, CT. Online at http//www.omega.com/Pressure/pdf/PX26.pdf. |
DPI 603 Portable Pressure Calibrator User Guide, OMEGA Engineering, Inc., 1996 (accessed Dec. 5, 2007), Stamford, CT. Online at http://www.omega.com/Manuals/manual.pdf/M2913.pdf. |
DP41B Universal Input Meter: User's Guide, OMEGA Engineering, Inc., 2005 (accessed Dec. 5, 2007), Stamford, CT. Online at http://www.omega.com/Manuals/manualpdf.M2544.pdf. |
DP25B-S Strain Gage Pagel Meter: User's Guide, OMEGA Engineering, Inc., 2002 (accessed Jul. 9, 2007), Stamford, CT. Online at http://www.omega.com/Manuals/manualpdf/M3598.pdf. |
Stokes, U.S. Statutory Invention Registration H356, Nov. 3, 1987. |
Advisory Action corresponding to U.S. Appl. No. 13/464,752 dated Dec. 31, 2015. |
Advisory Action Notice of Allowance corresponding to U.S. Appl. No. 12/530,938 dated May 12, 2016. |
Aliot et al., “EHRA/HRS expert consensus on catheter albation of ventricular arrhythmias,” Europace, vol. 11, No. 6, pp. 771-817, 2009. |
Aupperle et al., “Ablation of Atrial Fibrillation and Esophageal Injury: Effects of Energy Source and Ablation Technique,” Journal of Thoracic and Cardiovascular Surgery, vol. 130, No. 6, pp. 1549-1554, (2005). |
Intent to Grant corresponding to European Patent Application No. 08743794.3 dated Feb. 18, 2021. |
International Preliminary Report on Patentability, Written Opinion, and International Search Report corresponding to International Patent Application No. PCT/US2008/057626 dated Sep. 22, 2009. |
International Search Report corresponding to International Application No. PCT/US2011025470 dated Nov. 3, 2011. |
Muller et al., “Application of CVD-diamond for catheter ablation in the heart,” Diamond and Related Materials, vol. 13, pp. 1080-1083 (2004). |
Notice of Allowance corresponding to corresponding to Brazilian Patent Application No. PI0809127-7 dated May 27, 2019. |
Notice of Allowance corresponding to U.S. Appl. No. 12/532,233 dated Apr. 2, 2015. |
Notice of Allowance corresponding to U.S. Appl. No. 12/530,830 dated Jun. 11, 2012. |
Notice of Allowance corresponding to U.S. Appl. No. 12/530,860 dated Apr. 22, 2013. |
Notice of Allowance corresponding to U.S. Appl. No. 12/530,938 dated Oct. 30, 2018. |
Notice of Allowance corresponding to U.S. Appl. No. 13/464,752 dated Jan. 6, 2017. |
Notice of Allowance corresponding to U.S. Appl. No. 13/464,762 dated Aug. 3, 2016. |
Notice of Allowance corresponding to U.S. Appl. No. 13/607,993 dated Dec. 8, 2015. |
Notice of Allowance corresponding to U.S. Appl. No. 14,879,849 dated Sep. 16, 2019. |
Notice of Allowance corresponding to U.S. Appl. No. 14,879,849 dated Mar. 10, 2021. |
Notice of Allowance corresponding to U.S. Appl. No. 14/967,923 dated Feb. 24, 2020. |
Notice of Allowance corresponding to U.S. Appl. No. 15/295,102 dated Jan. 25, 2021. |
Notice of Allowance corresponding to U.S. Appl. No. 15/295,102 dated Jul. 21, 2021. |
Notice of Allowance corresponding to U.S. Appl. No. 15/589,522 dated Dec. 16, 2020. |
Notice of Allowance corresponding to U.S. Appl. No. 15/589,522 dated Mar. 24, 2021. |
Notification of Transmittal of International Preliminary Report on Patentability corresponding to PCT/US2008/056643 dated Aug. 19, 2009. |
Office Action corresponding to Brazilian Patent Application No. PI0809127-7 dated Nov. 27, 2018. |
Office Action (Advisory Action) corresponding to U.S. Appl. No. 13/464,762 dated Dec. 17, 2015. |
Office Action (Restriction Requirement) corresponding to corresponding to U.S. Appl. No. 13/464,762 dated May 23, 2013. |
Office Action (Restriction Requirement) corresponding to U.S. Appl. No. 12/530,938 dated Mar. 21, 2012. |
Office Action (Restriction Requirement) corresponding to U.S. Appl. No. 12/741,710 dated Aug. 22, 2012. |
Office Action (Restriction Requirement) corresponding to U.S. Appl. No. 14,879,849 dated Apr. 25, 2018. |
Office Action (Restriction Requirement) corresponding to U.S. Appl. No. 13/464,762 dated May 23, 2013. |
Office Action corresponding to European Patent Application No. 10846297.9 dated Jul. 1, 2014. |
Office Action corresponding to U.S. Appl. No. 13/464,752 dated Dec. 4, 2014. |
Office Action corresponding to U.S. Appl. No. 14/967,923 dated May 14, 2018. |
Office Action corresponding to U.S. Appl. No. 14/967,923 dated Nov. 19, 2018. |
Office Action corresponding to U.S. Appl. No. 12/530,860 dated Oct. 5, 2012. |
Office Action corresponding to U.S. Appl. No. 12/530,938 dated Jun. 25, 2012. |
Office Action corresponding to U.S. Appl. No. 12/530,938 dated Feb. 26. 2013. |
Office Action corresponding to U.S. Appl. No. 12/530,938 dated Nov. 21, 2013. |
Office Action corresponding to U.S. Appl. No. 12/530,938 dated Dec. 4, 2014. |
Office Action corresponding to U.S. Appl. No. 12/530,938 dated Sep. 30, 2015. |
Office Action corresponding to U.S. Appl. No. 12/532,233 dated Mar. 7, 2012. |
Office Action corresponding to U.S. Appl. No. 12/532,233 dated Oct. 26, 2012. |
Office Action corresponding to U.S. Appl. No. 12/532,233 dated May 15, 2013. |
Office Action corresponding to U.S. Appl. No. 12/532,233 dated Aug. 7, 2014. |
Office Action corresponding to U.S. Appl. No. 12/532,233 dated Aug. 14, 2015. |
Office Action corresponding to U.S. Appl. No. 12/741,710 dated Jul. 3, 2013. |
Office Action corresponding to U.S. Appl. No. 12/741,710 dated Apr. 22, 2014. |
Office Action corresponding to U.S. Appl. No. 12/741,710 dated Jun. 15, 2015. |
Office Action corresponding to U.S. Appl. No. 12/741,710 dated Nov. 8, 2012. |
Office Action corresponding to U.S. Appl. No. 13/464,752 dated Mar. 7, 2014. |
Office Action corresponding to U.S. Appl. No. 13/464,752 dated Jul. 10, 2015. |
Office Action corresponding to U.S. Appl. No. 13/464,752 dated Aug. 2, 2016. |
Office Action corresponding to U.S. Appl. No. 13/607,993 dated Jan. 12, 2015. |
Office Action corresponding to U.S. Appl. No. 13/607,993 dated Aug. 14, 2014. |
Office Action corresponding to U.S. Appl. No. 15/295,102 dated Jun. 13, 2019. |
Office Action corresponding to U.S. Appl. No. 15/589,522 dated Jul. 8, 2019. |
Office Action corresponding to U.S. Appl. No. 15/589,522 dated Feb. 21, 2020. |
Office Action corresponding to U.S. Appl. No. 14/879,849 dated Sep. 10, 2018. |
Office Action corresponding to U.S. Appl. No. 14/879,849 dated May 1, 2019. |
Office Action corresponding to U.S. Appl. No. 14/879,849 dated Aug. 5, 2020. |
Office Action corresponding to U.S. Appl. No. 13/464,762 dated Jul. 16, 2013. |
Office Action corresponding to U.S. Appl. No. 13/464,762 dated Mar. 6, 2014. |
Office Action corresponding to U.S. Appl. No. 13/464,762 dated Nov. 12, 2014. |
Office Action corresponding to U.S. Appl. No. 13/464,762 dated Aug. 25, 2015. |
Office Action corresponding to U.S. Appl. No. 13/464,762 dated Mar. 2, 2016. |
Office Action corresponding to U.S. Appl. No. 13/579,882 dated Jan. 13, 2015. |
Office Action corresponding to U.S. Appl. No. 15/295,102 dated Sep. 28, 2018. |
Office Action corresponding to U.S. Appl. No. 15/295,102 dated Jul. 9, 2020. |
Office Action corresponding to U.S. Appl. No. 16/236,664 dated Dec. 17, 2020. |
Office Action corresponding to U.S. Appl. No. 16/236,664 dated May 24, 2021. |
Patent Board Decision corresponding to U.S. Appl. No. 12/530,938 dated Sep. 25, 2018. |
Patent Board Decision corresponding to U.S. Appl. No. 12/741,710 dated Feb. 22, 2018. |
Petersen et al., “Mechanisms for Enlarging Lesion Size During Irrigated Tip Radiofrequency Ablation: Is There a Virtual Electrode Effect?” Journal of Interventional Cardiology, vol. 17, No. 3, pp. 171-177 (2004). |
S. Mahapatra, J. Tucker-Schwartz, “Pressure frequency characteristics of the pericardial space and thorax during subxiphoid access for epicardial ventricular tachycardia ablation,” Heart Rhythm, vol. 7, No. 5, pp. 604-609, 2010. |
Scanavacca et al., “Catheter Ablation of Atrial Fibrillation. Techniques and Results,” Arquivos Brasileiros de Cardiologia, vol. 85, No. 4, 7 pps., (2005). |
Schwartzman et al., “Catheter Ablation of Ventricular Tachycardia Associated with Remote Myocardial Infarction: Utility of the Atrial Transseptal Approach,” Journal of Interventional Cardiac Electrophysiology, vol. 1, pp. 67-71 (1997). |
Sosa et al., “Nonsurgical transthoracic epicardial catheter ablation to treat recurrent ventricular tachycardia occuring late after myocardial infarction,” J. Am. Coll. Cardiol., vol. 35, No. 6, pp. 1442-1449, 2000. |
Sosa, “Epicardial Mapping and Ablation Techniques to Control Ventricular Tachycardia,” Journal of Cardiovascular Electrophysiology, 2005, p. 449-452, vol. 16, No. 4. |
Tucker-Schwartz et al., “Pressure-Frequency Sensing Subxiphoid Access System for Use in Percutaneous Cardiac Electrophysiology: Prototype Design and Pilot Study Results,” IEEE Transactions on Biomedical Engineering, vol. 56, pp. 1160-1168 (May 2009). |
Tungjitkusolmun et al., “Finite Element Analyses of Uniform Current Density Electrodes for Radio-Frequency Cardiac Ablation,” IEEE Transactions on Biomedical Engineering, vol. 47, No. 1, pp. 32-40, (2000). |
Written Opinion of the International Searching Authority corresponding to PCT/US2008/056643 dated Aug. 22, 2008. |
Decision to Grant corresponding to European Patent Application No. 08743794.3 dated Jan. 7, 2022. |
Grimard et al. (2010) “Percutaneous epicardial radiofrequency ablation of ventricular arrhythmias after failure of endocardial approach: a 9-year experience,” J. Cardiovasc. Electrophysiol., vol. 21, No. 1, pp. 56-61. |
Intent to Grant corresponding to European Patent Application No. 08743794.3 dated Aug. 27, 2021. |
Notice of Allowance corresponding to U.S. Appl. No. 15/295,102 dated Jun. 2, 2022. |
Notice of Allowance corresponding to U.S. Appl. No. 15/295,102 dated Sep. 15, 2022. |
Notice of Allowance corresponding to U.S. Appl. No. 15/295,102 dated Mar. 2, 2023. |
Notice of Allowance corresponding to U.S. Appl. No. 16/236,664 dated Dec. 8, 2022. |
Office Action corresponding to U.S. Appl. No. 15/295,102 dated Nov. 18, 2021. |
Office Action corresponding to U.S. Appl. No. 16/236,664 dated Feb. 15, 2022. |
Sacher et al. (2009) “Prevalence of epicardial scar in patients referred for ventricular tachycardia ablation,” Heart Rhythm, vol. 6, pp. S175-S176. |
Sosa et al. (1998) “Endocardial and epicardial ablation guided by nonsurgical transthoracic epicardial mapping to treat recurrent ventricular tachycardia,” J. Cardiovasc. Electrophysiol., vol. 9, No. 3, pp. 229-239. |
Tedrow et al. (2009) “Strategies for epicardial mapping and ablation of ventricular tachycardia,” J. Cardiovasc. Electrophysiol., vol. 20, No. 6, pp. 710-713. |
Zei et al. (2006) “Epicardial Catheter Mapping and Ablation of Ventricular Tachycardia,” Heart Rhythm, vol. 3, pp. 360-363. |
Number | Date | Country | |
---|---|---|---|
20180361145 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
61023727 | Jan 2008 | US | |
60986786 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12741710 | US | |
Child | 15960137 | US |