The invention relates to seismic arrays and an apparatus and method for maintaining required spacing between sub-arrays and streamer cables, as the case may be that are towed behind a vessel.
Seismic arrays consisting of source arrays and receiver arrays are used to study the strata of the rock structure below the ocean surface. To survey a specific area of the ocean floor, an exploration vessel is used to tow source and/or receiver arrays along a specified path covering the desired surface area of the ocean floor. The source and receiver arrays are used to obtain relevant geological data. Typically a single surface vessel will simultaneously tow both the source and receiver arrays, but sometimes an exploration vessel will only tow either the source array or receiver array. Other times, only a source array is towed while the receiver array is deployed on the ocean floor and remains stationary.
A prior art seismic receiver array is shown in
During operation, the acoustic shock wave generated by the source array penetrates the ocean floor and is reflected back. The reflected acoustic signatures are recorded by the hydrophone groupings in the streamer cables for subsequent analysis.
A seismic exploration vessel is generally capable of simultaneously towing both a source array and a receiver array. Importantly, lateral spreading forces must be applied to maintain the required spacing between the sub-arrays and streamer cables as they are towed behind the vessel. The required spacing depends, inter alia, on the number of streamer cables deployed and the interstitial spacing required between adjacent cables.
Typically, the air gun sub-arrays may be spread out laterally over a distance of approximately 12.5 to 100 meters, and the streamer cables over a distance of approximately 100 to 1500 meters.
A common method of achieving the required lateral spacing between sub-arrays and streamer cables is to deploy a divertor or paravane on a dedicated towing rope from the exploration vessel. A string of separation ropes are used to daisy-chain one streamer cable to the next to achieve the desired spacing between the streamer cables.
A number of approaches are employed to reduce the towing drag forces generated. Examples of such methods are the use of small diameter cables, high efficiency paravanes and the use of conventional cable fairings on separation ropes and lead-in cables. The prior art cable fairings utilize a single rope threaded through the nose of the fairing to allow the fairing to self-align with the direction of flow by way of free-swiveling.
Various methods of controlling the position of the towed equipment have been proposed to increase the quality of the seismic data being generated. One such method, for example, is the use of controllable foils or birds secured at approximately 300 meter intervals along the length of each streamer cable. The controllable foils are used to maintain the equipment at both a desired depth profile and a desired lateral offset throughout the length of the streamers.
One object of the present invention is to provide an apparatus and method for steering of the equipment towed behind an exploration vessel to achieve improved positional control of source and receiver arrays thereby increasing data quality.
Another object of the present invention is to reduce the overall towing burden or associated drag resulting from equipment towed behind an exploration vessel.
An object of the present invention in the field of marine seismic arrays is to eliminate the requirement for paravanes, dedicated paravanes tow ropes, and separation ropes used to maintain the required lateral spacing between sub-arrays and streamer cables. In addition, the need for associated deck equipment including, for example, paravane winches and davits, and separation rope storage reels is eliminated.
According to one object of the present invention a foil having a leading edge, trailing edge, chord.
According to another object of the present invention the foil is used to replace a forward suspension rope in a source array and a float tagline in a receiver array.
According to yet another object of the present invention the foil is asymmetrical in cross section and is in the shape of an air foil.
According to yet another aspect of the present invention the first and second conduits may be offset to either side of the chord.
According to yet another object of the present invention depressors are attached at the top and bottom ends of the foil.
According to yet another object of the present invention the foil is divided into a plurality of discreet segments either abutting one another or attached to one another.
Further features of the invention will be described or will become apparent in the course of the following detailed description.
In order that the invention may be more clearly understood, embodiments thereof will now be described in detail by way of example, with reference to the accompanying drawings, in which:
A prior art seismic dual source array 3 towing configuration is schematically shown by way of example in
As shown in
A prior art seismic receiver array 20 is shown in
During operation, the acoustic shock wave generated by the source array 3 penetrates the ocean floor and is reflected back. The reflected acoustic signatures are recorded by the hydrophone groupings in the streamer cables 21 for subsequent analysis.
A seismic exploration vessel 2 is generally capable of simultaneously towing both a source array 3 and a receiver array 20. Importantly, lateral spreading forces must be applied to maintain the required spacing between the sub-arrays 5 and streamer cables 21 as they are towed behind the vessel. The required spacing depends, inter alia, on the number of streamer cables 21 deployed and the interstitial spacing required between adjacent cables.
Typically, the air gun sub-arrays 5 may be spread out laterally over a distance of approximately 12.5 to 100 meters, and the streamer cables 21 over a distance of approximately 100 to 1500 meters.
According to the present invention a steerable fairing string or foil is provided as part of the rigging for marine seismic arrays. In general a fairing string comprises as an immersed foil shaped flexible string which generates hydrodynamic steering forces, port or starboard as may be required, to thereby control the desired spacing between elements of the seismic array.
A fairing string (hereinafter used interchangeably as wing section or foil) 1 according to one embodiment of the present invention is shown in cross section in
A forward conduit 10 is located in the leading edge section of the fairing centered on the chord 17 and receives a forward suspension rope 13. An aft conduit 12 is located in the trailing edge centered on the chord section of the fairing and receives an aft suspension rope 14. Preferably the distance between the conduits is maximized such that the conduits are located as forward or aft as possible. The free rotation of the fairing string 1 about the forward suspension rope 13 is thus restricted according to the present invention by the aft suspension rope 14. Together the ropes are used to effect steering of the fairing string 1 as will be described hereafter.
According to one embodiment of the present invention, one continuous span of fairing is threaded from end to end with the forward and aft suspension ropes 14. The fairing, forward suspension rope 13, and aft suspension rope 14 collectively form a fairing string 1. Alternatively, a plurality of discrete fairing segments each having shortened span may be threaded onto the suspension ropes with zero or nominal spacing between each segment. The adjacent fairing segments may be connected to each other chain-like by way of linkages known in the art at various locations such as the leading edge, trailing edge and mid-chord. Alternatively, adjacent fairing segments can simply abut each other with no interconnecting linkages used.
The fairing string is flexible along its length and will assume a curved profile for generating hydrodynamic lift forces. The suspension ropes offers no bending resistance. Thus, a preferred material for the foil is, for example, a plastic polyurethane that offers low cost and light weight. Rigid materials can be also be used for a chain-like segmented foil which will equally curve.
According to the present invention, the fairing string 1 is used to replace the forward suspension rope 13 of the air gun sub-array 5 as shown in
A suitably installed control device may be located either at the top end of the fairing string or at the bottom end of the fairing string to vary and control the angle of attack 23 between the central axis or chord 17 of the fairing string 1 and the direction of flow 25 shown in
Examples of adjustment mechanisms that can be used include a standard turnbuckle 27 pulley arrangement 29 installed between the top end of the aft suspension rope 14 and an anchor point on the aft section of the head float 19 as schematically illustrated in
Increasing the length of the forward suspension rope 13 relative to the length of the aft suspension rope 14 will permit the leading edge of the fairing string 1 to rotate with reference to the trailing edge of the fairing string 1 to thereby take on an angle of attack 23 in response to hydrodynamic lifting force F exerted on the fairing string 1 by the flow as shown in
As lift force is generated, the flexible fairing string will take on a half-wave sinusoidal profile along its span hereinafter called the “billow” effect. Since the forward suspension rope 13 is slightly longer than the aft suspension rope 14 in order to generate lift F, the amplitude of the sine wave of the forward suspension rope 13 is slightly greater than the amplitude of the aft suspension rope 14. The net effect of this difference in amplitude is that a slight twist develops along the length of the fairing string, such, the angle of attack exhibited near the ends of the fairing string 1 is relatively small, increasing to a maximum angle of attack at the midpoint of the fairing string 1. Resultantly, the center portion of the fairing string 1 generates more lift than end portions of the fairing string 1.
To improve steering control a preferred fairing string with an asymmetrical cross section may be used that generates lift forces at a 0° angle of attack. Thus, the fairing string 1 will always rotate in one direction only. An example of an asymmetrical foil cross section is a NACA 2318 although other reasonably selected NACA, Gottingen or Eppler cross sections may be used. Alternatively, the conduits for the forward and aft suspension ropes may be offset from each other in relation to the chord 17 to achieve the same purpose.
In the application of the present invention to a float tagline 18 descending from a head float 19, as shown in
The billow effect results in a force being generated at the top end of the fairing string 1 that acts in a downward direction and a force being generated at the bottom end of the fairing string 1 that acts in an upward direction. To counteract the effect of these vertical forces and their tendency to move the ends of the fairing string 1 upward or downward, depressors may be used.
As shown in
The forces generated by the two depressors 26 are proportional to the tow speed of the exploration vessel 2 in the same manner as the lift forces F generated by the fairing string 1 are proportional to the tow speed of the exploration vessel 2. Resultantly, the opposing depressors 26 act to maintain a constant amount of billow in the fairing string 1 profile regardless of towing speed of the exploration vessel 2. Thus, the use of depressors 26 is one optional means of counteracting the vertical forces induced by the billow effect if required.
Other techniques may be optionally used in order to improve the control of the amount of lift generated by the fairing string 1. These include varying the chord length of the foil, specifying the length of suspension ropes and the length of fairing string 1 to be installed overtop of the suspension ropes, varying the degree of camber or asymmetry to the fairing foil shapes to be used at time of deployment and specifying the number of fairing strings 1 to be deployed per lead-in cable, or per source sub-array.
To facilitate an automated or remotely controllable fairing string 1 communication with the individual steerable fairing strings 1 can be achieved via a direct radio link between the exploration vessel 2 and a control device located in the head float of the sub-array or lead-in cable. Alternatively, communication can be achieved via direct electrical or optical connections through the umbilical or lead-in cables, or via underwater acoustic modems. Monitoring of the position of the fairing string 1 may be accomplished through conventional means such as, for example, GPS beacons on the surface floats or acoustic bracing using underwater pingers.
The preferred application of the present invention is to marine seismic arrays. Other applications include electromagnetic surveys, ocean bottom node surveys, or any other oceanographic application which requires towed equipment to be positioned behind the tow vessel.
Other advantages which are inherent to the invention are obvious to one skilled in the art. The embodiments are described herein illustratively and are not meant to limit the scope of the invention as claimed. Variations of the foregoing embodiments will be evident to a person of ordinary skill and are intended by the inventor to be encompassed by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2012/000996 | 10/26/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/059926 | 5/2/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3943483 | Strange | Mar 1976 | A |
4010706 | Pretet | Mar 1977 | A |
4365574 | Norminton | Dec 1982 | A |
4404664 | Zachariadis | Sep 1983 | A |
4484534 | Thillaye du Boullay | Nov 1984 | A |
4567841 | Hale | Feb 1986 | A |
4829929 | Kerfoot | May 1989 | A |
6144342 | Bertheas et al. | Nov 2000 | A |
6189475 | Coakley | Feb 2001 | B1 |
6532189 | Barker | Mar 2003 | B2 |
6671223 | Bittleston | Dec 2003 | B2 |
7380513 | Lie | Jun 2008 | B2 |
7404370 | Stokkeland | Jul 2008 | B2 |
7499373 | Toennessen | Mar 2009 | B2 |
7738317 | Toennessen | Jun 2010 | B2 |
7755970 | Welker et al. | Jul 2010 | B2 |
7793606 | Olivier et al. | Sep 2010 | B2 |
9075165 | Vageskar et al. | Jul 2015 | B2 |
20060176775 | Toennessen | Aug 2006 | A1 |
20080029012 | Stokkeland | Feb 2008 | A1 |
20100149910 | Martin | Jun 2010 | A1 |
20110203509 | Austad et al. | Aug 2011 | A1 |
20120067265 | Valo et al. | Mar 2012 | A1 |
20130182531 | Gagliardi et al. | Jul 2013 | A1 |
20140104985 | Gagliardi et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
3933398 | Apr 1991 | DE |
0 884 607 | Dec 1998 | EP |
108791 | Aug 1917 | GB |
2342081 | Apr 2000 | GB |
2400662 | Aug 2006 | GB |
2010111377 | Sep 2010 | WO |
Entry |
---|
May 2, 2013 International Search Report and Written Opinion in corresponding International Patent Application No. PCT/CA2012/000996 (6 pages). |
Apr. 29, 2014 International Preliminary Report on Patentability in corresponding International Patent Application No. PCT/CA2012/000996 (4 pages). |
Jun. 24, 2014 Patent Examination Report No. 1 in corresponding Australian Patent Application No. 2012327836 (2 pages). |
Sep. 16, 2015 Extended European Search Report in corresponding European Patent Application No. 12844247.2 (5 pages). |
First Office Action dated Aug. 10, 2015 in connection with Danish Patent Application No. PA 2014 00278, 7 pages. |
Second Office Action dated Mar. 1, 2016 in connection with Danish Patent Application No. PA 2014 00278, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20140247691 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61552652 | Oct 2011 | US |