The present invention relates generally to medical puncture instruments used for penetration of tissues in human or animal beings, and more specifically to a steerable needle, also referred to as a mandrel or stylet, used for the guiding of a penetrating medical instrument.
A problem with minimally invasive, percutaneous procedures is the limited control the operator has over the penetrating instrument once the instrument in question has been introduced beneath the skin of a patient; that is, the operator has only direct control over the insertion depth.
To achieve a higher degree of control, steerable devices, like needles and stylets, have been suggested. The U.S. Patent Application No. 2004/0133168 discloses a needle guidance system comprising a stylet with a curved tip portion. The radius of curvature is, however, fixed, such that a specific curvature and a specific length of the curved portion have to be selected for the specific application at hand.
U.S. Pat. No. 6,652,491 is related to a stylet made from a shape-memory material. To introduce a curvature in the stylet, the stylet has to be heated.
A general object of the present invention is to provide an improved design for a steerable penetrating medical instrument, which enhances the manoeuvrability and thereby the control of the penetrating instrument.
The above-mentioned object is achieved by the present invention according to the independent claims.
Preferred embodiments are set forth in the dependent claims.
Embodiments of the present invention are directed to a steerable mandrel, also referred to as a needle or stylet, which comprises a stationary part and a movable part. The movable part is attached to a distal portion of the stationary part in such a way that longitudinal movement of the movable part induces a bending of the stationary part and thereby a bending of the mandrel, at a distal portion thereof. By this arrangement, a steerable mandrel is provided, which is easy and safe to manoeuvre and whose bendable distal portion exhibits a radius of curvature that continuously can assume any curvature from no bending to a maximum curvature.
a-c illustrate schematically the functioning of the steerable mandrel shown in
a-b show how the mandrel of
a-c illustrate another medical instrument comprising the mandrel of
a-e show cross-sections of a second embodiment of a steerable mandrel according to the present invention.
The movable part 3 comprises basically a piston-like elongated member 3, which is slidable within the hollow stationary part 2. More specifically, the movable part 3 comprises a distal end 7, which is attached to the distal portion of the stationary part; and more specifically, the distal end 7 of the movable part 3 extends beneath the notch 6 and is attached to the mantle wall of the stationary part in close proximity to the distal side of the notch 6. Preferably, the distal end 7 of the movable part 3 is attached to the distal portion of the stationary part 2 at the same circumferential position as the notch 6 is provided in the mantle wall thereof (as is indicated in
In
The mandrel 1 alone can be used as a medical tool. If the mandrel 1 is provided with a sharp distal end, the mandrel 1 can be regarded as a steerable needle 1. It is, however, within the scope of the present invention that the mandrel 1 is part of a medical tool, which, besides the mandrel 1, also comprises a sleeve 10. The sleeve 10 and the mandrel 1 are separately depicted in
In use, the sleeve 10, with the mandrel or needle 1 inserted therein, is pushed through the skin of a patient, and is steered through tissue located beneath the skin to the target site of interest. By moving the movable part 3 relative to the stationary part 2, a bending of the mandrel or needle 1 is effectuated and thereby a corresponding bending of the sleeve 10. In this way the sleeve 10 can be steered in a desired way through the patient's body. A steering capability is, for example, desired when a target site is not located in a straight line from a desired entry point at the skin of patient. When the target site has been reached, the mandrel 1 can be removed, leaving only the sleeve 10 in place. Access to a desired location within a patient's body has thereby been obtained; presumably while sensitive or impenetrable areas located between the target site and the skin have been circumvented.
A somewhat more elaborated tool according to the present invention is illustrated in
It should be appreciated that the slits 4 and notch 6 can have a wide variety of geometries and also need not pass completely through the mantle wall (they can comprise a weakened area of the mantle wall). As another example, other ways of exerting force, offset from the centreline of the stationary part, on the distal end of the stationary part may be used.
In the embodiments described hitherto, the stationary part has also been the tissue penetrating part, i.e. a stationary part constitutes the most distal portion of a mandrel according to the present invention. In another embodiment, which is illustrated in
The functioning of the mandrel 30 is illustrated in
Further, the mandrel 30 can—like mandrel 1 described above—be used together with another, separate sleeve, to thereby form a steerable medical penetration instrument.
This application is based on U.S. Provisional Applications 61,147,844, filed Jan. 28, 2009, and 61/187,057, filed Jun. 15, 2009, both of whose entire contents are incorporated herein by reference.
In some embodiments, the mandrel is 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, or 10 mm in diameter and 10 cm, 20 cm, 30 cm, or 40 cm long. The invention also includes methods of using the described devices.
Although the present invention has been described with reference to specific embodiments, also shown in the appended drawings, it will be apparent to those skilled in the art that many variations and modifications can be done within the scope of the invention as described in the specification and defined with reference to the claims below. It is, for example, within the scope of the present invention that an opening in a stationary part instead is a weakened section of a mantle wall of stationary part, i.e. that the weakened section has an elasticity which is high in comparison with the circumferentially opposite side of the weakened section, or that an opening in the mantle wall of a stationary part is covered with an elastic material, such as plastic, rubber or silicone. Preferably, the mandrel can thereby be provided with a smooth outer surface.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/64549 | 11/16/2009 | WO | 00 | 2/16/2012 |
Number | Date | Country | |
---|---|---|---|
61187057 | Jun 2009 | US | |
61147844 | Jan 2009 | US |