Claims
- 1. A method of operating a steerable rotary drilling system having a bottom hole assembly which includes a drill bit, a modulated bias unit and a control unit, the bias unit comprising a number of hydraulic actuators at the periphery of the unit for engagement with the formation of the borehole being drilled, each hydraulic actuator including a movable thrust member which is hydraulically displaceable, and each movable thrust member having an inlet passage for connection to a source of pressurised fluid, the pressure of fluid supplied to the movable thrust members from said source being controlled by valve means and the operation of the valve means being controlled by the control unit so as to modulate the fluid pressure supplied to the actuators as the bias unit rotates, the method including the step of deriving data signals from sensors in the bottom hole assembly, causing the control unit to control the bias unit in a manner dependent on said data signals from the sensors, detecting pulses transmitted through the fluid as a result of the consequent operation of the bias unit, and interpreting said pulses to derive therefrom data corresponding to said data signals from said sensors.
- 2. A method according to claim 1, wherein said valve means includes at least one shut-off valve in series with said movable thrust members, the method including causing the control unit to operate said shut-off valve, in a manner dependent on said data signals from the sensors, to transmit said pulses through the fluid.
- 3. A method according to claim 2, including encoding the data signals as a sequential pattern of successive operations of said shut-off valve.
- 4. A method according to claim 2, wherein the bottom hole assembly is mounted on a rotatable drill string and the control unit comprises an instrument carrier which can be roll stabilised so as to remain substantially non-rotating in space relative to the drill string when the drill string is rotating, the direction of bias of the bias unit being determined by the rotational orientation of the instrument carrier in space, the method including operating said shut-off valve by reversal of the direction of relative rotation between the instrument carrier and the drill string, and encoding said data signals as a sequential pattern of successive reversals of said relative rotation.
- 5. A method according to claim 4, wherein the instrument carrier includes a sensor to determine the angular position of the instrument carrier relative to said drill string, and/or the rate of change of said angular position of the instrument carrier relative to the drill string, the method including using output from said sensor as an input parameter in the control of the rotation of the instrument carrier.
- 6. A method according to claim 4, including effecting rotational control of the instrument carrier by the provision of two contra-rotating controllable torque impellers on the instrument carrier.
- 7. A method according to claim 1, wherein the bottom hole assembly is mounted on a rotatable drill string and the control unit comprises an instrument carrier which can be roll stabilised so as to remain substantially non-rotating in space relative to the drill string when the drill string is rotating, the direction of bias of the bias unit being determined by the rotational orientation of the instrument carrier in space, the method including encoding the data signals as a rotation, or sequential pattern of rotations, of the instrument carrier relative to the drill string.
- 8. A method according to claim 1, wherein the sensors in the bottom hole assembly are of a kind to provide data signals concerning at least one of: the azimuth of part of the bottom hole assembly, the inclination of part of the bottom hole assembly, and the roll angle of the control unit.
- 9. A method according to claim 1, wherein the sensors are geological sensors responsive to characteristics of an earth formation through which the bottom hole assembly is passing.
- 10. A method according to claim 1, including holding the drill bit off the bottom of the borehole while detecting said pulses.
- 11. A method according to claim 1, including reducing the biasing effect of the bias unit while detecting said pulses.
- 12. A method of operating a steerable rotary drilling system having a bottom hole assembly which includes a drill bit, a modulated bias unit and a control unit, the bias unit comprising a number of hydraulic actuators at the periphery of the unit for engagement with the formation of the borehole being drilled, each hydraulic actuator including a movable thrust member which is hydraulically displaceable, and each movable thrust member having an inlet passage for connection to a source of pressurised fluid, the pressure of fluid supplied to the movable thrust members from said source being controlled by valve means and the operation of the valve means being controlled by the control unit so as to modulate the fluid pressure supplied to the actuators as the bias unit rotates, the method comprising the steps of detecting pulses transmitted through the fluid as a result of operation of the bias unit, and interpreting said pulses to obtain information regarding the operation of the bottom hole assembly including the bias unit.
- 13. A method according to claim 12, including generating pulses by the operation of the valve means controlling the hydraulic actuators, and detecting and interpreting said pulses.
- 14. A method according to claim 12, including detecting and interpreting said pulses at a location on the earth's surface, and using the information derived therefrom as an input parameter for control of the bottom hole assembly.
- 15. A method according to claim 12, including detecting and interpreting said pulses at a downhole location, and using the information derived therefrom as an input parameter for a further data transmission device to transmit data corresponding to said pulses to a location on the earth's surface.
- 16. A method according to claim 12, including the step, when the bias unit is first being introduced into an existing borehole, of temporarily holding the bias unit just below the surface and carrying out various tests of its operation, the characteristic pulses resulting from such test indicating whether or not everything is in order.
Priority Claims (1)
Number |
Date |
Country |
Kind |
9503827 |
Feb 1995 |
GBX |
|
Parent Case Info
This Application is a Continuation Application of U.S. patent application Ser. No. 08/604,318, filed Feb. 21, 1996, now U.S. Pat. No. 5,803,185.
Foreign Referenced Citations (2)
Number |
Date |
Country |
2257182 |
Jan 1993 |
GBX |
2259316 |
Mar 1993 |
GBX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
604318 |
Feb 1996 |
|