The present invention relates to a steering apparatus. More particularly, it relates to a steering apparatus having an integrated steering actuator.
It is known to use a steering motor for steering an outboard motor through a swivel shaft. For example, United States Patent Application Publication No. 2005/0095931 A1 to Takada et al. shows a steering motor connected through a gear box to a swivel shaft for swivelling an outboard motor
However, Takada suffers from a number of disadvantages. Takada teaches the use of a gear box that requires many parts, including many gears and shafts. The gears are large in order to achieve the proper gear reduction ratios and this necessitates an excess use of space. Takada requires these gears and shafts to be manufactured within tight tolerances. Also, the gears and shafts need to be properly aligned and installed to within tight tolerances.
Moreover, while the gearbox and steering motor are within the outboard motor, the steering motor and gears may be prone to accelerated failure due to exposure to dust, grit, and water including trapped moisture, and the like.
All of these above factors may lead to higher costs and higher rates of failure for such steering systems.
There is therefore a need for an improved steering apparatus for marine crafts.
The present invention provides a steering apparatus that overcomes the above disadvantages. It is an object of the present invention to provide an improved steering apparatus.
According to one aspect of the invention, there is provided a steering apparatus for a marine craft. The marine craft has a stern and a propulsion unit. The apparatus includes a stern bracket connectable to the stern of the marine craft. A swivel case is connected to the stern bracket. The swivel case defines a steering axis. The apparatus includes an electric motor coaxially disposed within the swivel case for swivelling the propulsion unit about the steering axis. The apparatus includes a gear reducing unit having an input operatively engageable with the electric motor and an output. A first member operatively extends from the output and is connectable to the propulsion unit.
According to another aspect of the invention, there is provided a steering apparatus for a marine craft having a stern and a propulsion unit. The apparatus includes a stern bracket connectable to the stern of the marine craft. The apparatus includes a swivel case pivotally connected to the stern bracket. The swivel case has a top end and a bottom end spaced apart from the top end. The swivel case defines a steering axis. The apparatus includes an electric motor substantially coaxially disposed within the swivel case for swivelling the propulsion unit about the steering axis. The electric motor has a lower shaft extending towards the bottom end, and an upper shaft opposite the lower shaft extending towards the top end. The apparatus includes a plurality of lower planetary gears having an input operatively engageable with the lower shaft of the electric motor and an output. The apparatus includes a plurality of upper planetary gears having an input operatively engageable with the upper shaft of the electric motor and an output. A first member operatively extends from the output of the lower planetary gears and is connectable to the propulsion unit. A second member operatively extends from the output of the upper planetary gears and is connectable to the propulsion unit.
According a further aspect of the invention, there is provided, in combination, a propulsion unit and a steering apparatus for mounting on a stern of a marine craft. The apparatus includes a stern bracket connectable to the stern of the marine craft. A swivel case is pivotally connected to the stern bracket. The swivel case defines a steering axis. The apparatus includes an electric motor coaxially disposed within the swivel case for swivelling the propulsion unit about the steering axis. The apparatus includes a gear reducing unit having an input operatively engageable with the electric motor and an output. A first member operatively extends from the output and is connectable to the propulsion unit.
Referring to the drawings:
Referring to the drawings and first to
Shift and throttle controllers 39 and 39.1 are also connected to the vessel controller 22 via wire 40. Wire 23 and wire 40 are parts of two independent communication buses that provide redundancy. In another embodiment, wire 23 can connect to all steering controllers 24 and 24.1, shift and throttle controllers 39 and 39.1, and the vessel controller. Similarly, wire 40 can connect to all devices. A dual reduant communication architecture can be used.
The steering apparatus 34 includes a steering actuator which in this example is in the form of an electric motor 36 which is best shown in
Referring back to
The steering apparatus includes a swivel case 46 having a top end 54 with an upper extension 48 radially extending outwards therefrom and a bottom end 56 spaced-apart from the top end 54. The swivel case 46 pivotally connects via the upper extension 48 to the upper end 44 of the stern bracket 42 at pivotal connection 50 so as to permit tilting of the outboard motor 32 about tilt axis 52. The swivel case 46 includes an outer wall 65 and in this example the steering controller 24 is mounted thereon, instead of being near the stern of the boat as shown in
The electric motor 36 is disposed within the swivel case 46 and in this example abuts the inner wall 60. The electric motor 36 has a motor axis 35, which in this example is substantially co-axial with the steering axis 59. The electric motor 36 has a drive shaft 37. A gear reducing unit which in this example is in the form of a plurality of planetary gears 61 is disposed within the swivel case 46, though in alternative embodiments other configurations of gears could be mounted exterior to the case. The plurality of planetary gears 61 engage via an input end of the gears, herein after referred to as input 62, with the drive shaft 37 of the electric motor. Input 62 can take the form of any means of connecting shafts to gears, as is known in the art. Standard planetary gears can be used in this regard and, in one example, the gears can be made of powder metal, providing the advantages being economic and modular. The plurality of planetary gears 61 in this example are coaxial with the steering axis 59 and comprise a number of stages 64a, 64b, and 64c, which, in this example, are mounted in series. Each stage is substantially the same in this example with one of the stages 64a being the same as the other stages 64b and 64c, with the exception that the gears of stage 64a near the motor have a smaller teeth width than the gears of the output stage 64c. Only one of the stages 64a is described in detail herein with the understanding that the other stages 64b, 64c have a similar structure and function. For the stages 64b and 64c like parts have been given like reference numerals as stage 64a with the additional alphabetic designation “b” and “c”, respectively.
Referring to
The gears have an involute gear profile of module 2 mm accordingly to one embodiment. However, modules of 1.5 to 3.0 mm are used in other examples although this is not critical. In the metric gear standard, module is defined as the pitch diameter divided by the number of teeth. It defines the tooth size. The bigger the module, the stronger is the gear. On the other hand, increasing the tooth thickness near the output stage increases the strength of the gear. Therefore, this example uses a smaller gear module (tooth size) on all gears apart from the output stage and uses a thicker tooth near the output stage. The sun gear has a pitch diameter of 75 mm, according to one embodiment of the invention, though diameters of between 60 mm to 90 mm are used on other examples depending on the torque requirement.
The operation of planetary gears in obtaining high gear reduction ratios is known and therefore will not be described in great detail. If the sun gear has S number of teeth, the ring gear has R number of teeth, and if the ring gear is held stationary, the gear ratios can be calculated by the following equation: 1+R/S=Gear Ratio.
The number of teeth shown in
Referring back to
A second member, in this example an upper mount 86, extends from the top end 58 of the swivel case 46. The upper mount 86 has a portion 87 coaxial with the steering axis 59 and in this example is freely rotatably mounted within the swivel case through bearings 88 and 90. The upper mount 86 has a portion 89 extending away from the top end 58 and then extending radially outwards for connection with the outboard motor 32 at connection 92.
A rotation sensor 38 is shown connected to the upper mount 86 for illustrative purposes. The rotation sensor 38 provides a feedback position signal to the steering controller 24 of
In operation, and referring to
The joystick 16 primarily allows the user to provide input to the vessel controller 22 for maneuvering the boat while docking. In one example, the vessel controller 22 can simultaneously control six actuations: the electric motors 36 and 36.1, the outboard motors 32 and 32.1, and the two shifting actuators.
One of the significant advantages of installing the electric motor 36 within the swivel case 46 is that it provides for heat dissipation. The casting of the swivel case provides a large thermal mass to absorb the heat generated by the motor 36 or the power electronics such as the steering controller 24 and rotation sensor 38. In operation, the swivel case is immersed in water and the water provides effective convection cooling.
A further advantage provided by the structure of the present steering apparatus is that it eliminates the need of a tiller arm 94. This results in fewer parts by doing away with the need for a hydraulic steering cylinder.
A further advantage of the embodiment of
Also, the steering apparatus 34 when used with a steer-by-wire system allows for independent steering of the electric motors 36 and 36.1.
With the high gear ratio provided by the plurality of planetary gears 61, the electric motor 36 is not backdrivable. Accordingly, a further advantage of the present invention is that it acts to lock the outboard motor 32 when the motor is stopped without requiring a traditional lock valve or sprag clutch found in traditional steering mechanism.
Another embodiment of the present invention is shown in
A further embodiment of the present invention is shown in
Another embodiment of the present invention is shown in
A further embodiment is shown in
This embodiment also provides the advantage of being more compact. The steering apparatus 34.4 is also more rugged as more parts are protected from the wear and failures associated with repetitive rotation and the weather, by being disposed with the swivel case 46.
Those skilled in the art will appreciate that these various illustrated embodiments can be combined and overlaid in a great variety of manners. For example, the embodiment shown in
Also, those skilled in the art will appreciate that many variations are possible within the scope of the present invention. For example, the gear reducing unit need not be disposed within the swivel case, but rather may be disposed elsewhere on the steering apparatus. In this regard, those skilled in the art will appreciate that the planetary gears need not be mounted in series. Also, the gear reducing unit can be mounted outside of, but parallel with the swivel case. Instead of configuring the ring gear to be stationary, those skilled in the art will appreciate that other gears within each planetary gear stage could alternatively be held stationary to thereby give different gear ratios. The plurality of planet gears need not be restricted to four planet gears, as fewer or more planet gears can be used, as would be appreciated by one skilled in the art. Moreover, the gear reducing unit need not be in the form of planetary gears. For example, the gear reducing unit can comprise spur gears or helical gears, for example, for a steer-by-wire system.
The steering apparatus could have only a lower mount or only an upper mount. Moreover, neither of the mounts 78 and 86 need be mounted within the swivel case 46 nor do they require bearings. For example, the mounts 78 and 86 could simply extend from the output 63 of the plurality of planetary gears 61.
The steering controller 24 can alternatively be installed at the front of the boat 10, for example, in the center console, near the stern of the boat as shown in
The electric motor 36 can be used for a single outboard motor, or for three or more engine applications. Instead having the outboard motor 32, the steering apparatus 34 can be used for a stern drive system. Also, other types of electric motors 36 can be used, such as one with a larger or smaller diameter with different torque and speed characteristics. For example, the present invention can use a DC brushless motor, a stepper motor or a rotary voice coil. In one embodiment, an electric motor 36 at 3000 rpm can be used with a gear reducing unit of 600:1 for reducing swivelling of the outboard motor to about 5 rpm when the motor 36 is operated.
An electric activated solenoid clutch can be used to decouple the electric motor 36 and the plurality of planetary gears 61 if the user wants to use manual rotation of the outboard motor through tiller arm 94 in case of electric failure.
There are many variations for the rotation sensors 38 and 38.1 which can be absolute or incremental in nature. The absolute sensors can be analog hall effect sensors, magnetoresistive sensors, capacitive sensors, or resistor potentiometers. Sensors from Austriamicrosystems™ or Melexsis™ also work well. If incremental sensors are used, they can be secondary sensors to provide higher accuracy or provide redundancy. For example, an encoder, such as an optical encoder, or a digital hall effect sensor can be mounted inside the electric motor 36, as an example for the sensor 108. Such a sensor can measure the motor shaft position. With the high gear ratio provided by the present invention, a high resolution at the output shaft is thereby obtained. An absolute reference can be used to provide an absolute position reference to the system, as an example for the sensor 38. This can be a reel switch, a digital hall effect device, or a low resolution absolute sensor.
It will be understood by someone skilled in the art that many of the details provided above are by way of example only and are not intended to limit the scope of the invention which is to be determined with reference to the following claims.
This application claims the benefit of provisional application 61/043,277 filed in the United States Patent and Trademark Office on Apr. 8, 2008, the disclosure of which is incorporated herein by reference and priority to which is claimed pursuant to 35 U.S.C. section 120.
Number | Name | Date | Kind |
---|---|---|---|
6843195 | Watabe et al. | Jan 2005 | B2 |
6868317 | Okuyama | Mar 2005 | B2 |
7128627 | Ferguson | Oct 2006 | B2 |
7134924 | Takada et al. | Nov 2006 | B2 |
7137347 | Wong et al. | Nov 2006 | B2 |
7220157 | Pettersson | May 2007 | B2 |
7226326 | Mizuguchi et al. | Jun 2007 | B2 |
7258072 | Wong et al. | Aug 2007 | B2 |
20050095931 | Takada et al. | May 2005 | A1 |
20050241556 | Takada et al. | Nov 2005 | A1 |
20050263058 | Suemori et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
2430548 | Nov 2003 | CA |
Number | Date | Country | |
---|---|---|---|
20090253317 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
61043277 | Apr 2008 | US |