This application claims priority to Japanese Patent Application No. 2011-134331 filed on Jun. 16, 2011 the disclosure of which, including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
1. Field of the Invention
The invention relates to a steering apparatus that is configured such that a steering column is detached from a vehicle body when a load higher than or equal to a predetermined load, which is directed toward the front of a vehicle, is applied to the steering apparatus in the event of, for example, a secondary collision.
2. Discussion of Background
For example, Japanese Patent Application Publication No. 2011-025856 (JP 2011-025856A) describes a steering apparatus that is configured such that when a vehicle frontal collision occurs and a driver collides with a steering wheel due to an inertial action (secondary collision occurs), a steering column is detached from a vehicle body for the purpose of impact relaxation.
In the steering apparatus described in JP 2011-025856A, first rearward extending portions (support rails) are provided to prevent excessive downward displacement of the steering apparatus that is detached from the vehicle body in the event of a secondary collision. The first rearward extending portions extend from an upper attachment bracket (upper bracket) of the steering apparatus, which is used to attach the steering column to the vehicle body, toward the rear of a vehicle body (toward a driver seat). The steering column is supported so as to be pivotable about its lower end portion (end portion closer to the front of the vehicle body than the other end portion), and is fixed at its upper-side portion (a portion closer to the rear of the vehicle body than the other portion) to the vehicle body via the upper attachment bracket. The upper attachment bracket is coupled to the vehicle body via capsules (detachable members). The capsules are fixed to the upper attachment bracket such that the upper attachment bracket is detached from the capsules when a load higher than or equal to the predetermined load, which is directed toward the front of the vehicle, is applied to the steering apparatus. The capsules are fixed to the vehicle body with bolts, whereby the upper attachment bracket is fixed to the vehicle body via the capsules. When the driver collides with the steering wheel, that is, when a secondary collision occurs, and a load higher than or equal to the predetermined load, which is directed toward the front of the vehicle, is applied to the steering apparatus, the steering column together with the upper attachment bracket is detached from the capsules fixed to the vehicle body.
After the detachment, an outer tube that constitutes the steering column makes collapsing movement toward the front of the vehicle body along an inner tube to contract the steering column, thus absorbing impact energy at the time of the collision. At this time, in a section in which the outer tube makes collapsing movement toward the front of the vehicle body along the inner tube, the first rearward extending portions that move toward the front of the vehicle together with the outer tube slide relative to the capsules and are kept engaged with the capsules. Therefore, it is possible to avoid the situation where the steering column detached from the vehicle body pivots downward about the lower end portion and the steering apparatus is displaced downward excessively.
In the steering apparatus described in JP 2011-025856A, the first rearward extending portions, which prevent excessive downward displacement of the steering apparatus that is detached from the vehicle body in the event of a secondary collision, extend from the upper attachment bracket (upper bracket) of the steering apparatus toward the rear of the vehicle (toward the driver seat). However, an area (driver seat-side area) behind an upper-side (driver seat-side) attachment site at which the steering apparatus is attached to the vehicle body is often used as an area in which various components attached to the vehicle body are arranged. Therefore, a component arrangement space behind the attachment site, at which the steering apparatus is attached to the vehicle body, is reduced due to provision of the first rearward extending portions that extend toward the rear of the vehicle. This causes some problems that, for example, the types or the number of the components that may be arranged are limited and the layout of component arrangement is limited.
The invention provides a steering apparatus that is able to prevent excessive downward displacement of a steering apparatus that is detached from a vehicle body in the event of a secondary collision, and that is able to ensure a relatively wide arrangement space on the driver seat side with respect to the steering apparatus.
According to a feature of an example of the invention, when a load higher than or equal to a predetermined load, which is directed toward the front of a vehicle, is applied to a steering apparatus in the event of a secondary collision, a mounting member is detached from a detachable member fixed to a body of the vehicle. That is, a steering column is detached from the body of the vehicle together with the mounting member. After the detachment, the steering column makes collapsing movement while absorbing impact energy using an impact absorbing mechanism. At this time, the mounting member moves toward the front of the vehicle while sliding over the guide member. Therefore, the steering column is not excessively displaced downward in the process of collapsing movement. During normal times before a secondary collision occurs, the guide member extends from a portion, at which the guide member is fixed together with the detachable member, toward the front of the vehicle. Therefore, a relatively wide arrangement space is ensured on the rear side with respect to the detachable member. Thus, it is possible to prevent excessive downward displacement of the steering apparatus that is detached from the body of the vehicle in the event of a secondary collision, and it is possible to ensure a relatively wide space on the driver seat side with respect to the steering apparatus before detachment.
The foregoing and further objects, features and advantages of the invention will become apparent from the following description of example embodiments with reference to the accompanying drawings, wherein like numerals are used to represent like elements and wherein:
Hereafter, embodiments of the invention will be described with reference to the accompanying drawings.
First, a first embodiment of the invention will be described with reference to
In addition, the steering apparatus 1 has a tilt function of adjusting the position of the steering wheel 2 in the vertical direction and a telescopic function of adjusting the position of the steering wheel 2 in the axial direction of the steering shaft 3.
The steering shaft 3 includes a hollow upper shaft 11 and a lower shaft 12. The steering wheel 2 is fixed to the upper shaft 11. The lower shaft 12 is accommodated in the upper shaft 11. A spline fitting portion 11 a is formed on the inner periphery of the upper shaft 11, and a spline fitting portion 12a is formed on the outer periphery of the lower shaft 12. The spline fitting portion 11a of the upper shaft 11 and the spline fitting portion 12a of the lower shaft 12 are spline-fitted to each other. As a result, the upper shaft 11 and the lower shaft 12 are slidable relative to each other in the axial direction, and rotatable together with each other.
The steering column 6 includes an outer tube 13 and an inner tube 14. The outer tube 13 accommodates and supports the upper shaft 11 via the bearing 5. The inner tube 14 accommodates the lower shaft 12. The inner tube 14 is inserted in the inner periphery of the outer tube 13. Thus, the outer tube 13 is slidable relative to the inner tube 14 in the axial direction.
A housing 17 is provided at a front-side end of the inner tube 14. The housing 17 accommodates an output shaft 16 of an actuator (not shown) for an electric power steering system (EPS) that applies assist force for assisting a driver in performing a steering operation to a steering system. A rear-side end of the output shaft 16 is press-fitted into a recess formed at a front-side end of the lower shaft 12. Thus, the output shaft 16 is coupled to the front-side end of the lower shaft 12, and is rotatably supported via bearings 19 to 21 in the housing. The output shaft 16 constitutes the steering shaft 3 together with the upper shaft 11 and the lower shaft 12. A worm wheel 22 is fixed to the output shaft 16. A reduction mechanism is formed of the worm wheel 22 and a worm gear (not shown). As the rotation of a motor (not shown) is transmitted to the output shaft 16 via the reduction mechanism, assist force is applied to the steering system.
The steering column 6 is supported by a lower bracket 25 so as to be tiltable about a tilt center shaft O provided on the housing 17. The lower bracket 25 is fixed to a front-side portion of a mounting stay 24 that constitutes part of a body of the vehicle (the front-side portion is closer to the front of the vehicle than the other portion of the mounting stay 24). In addition, the steering column 6 is supported by an upper bracket 26 such that the outer tube 13 is tiltable about the tilt center shaft O and is movable in the axial direction. The upper bracket 26 is fixed to a rear-side portion of the mounting stay 24 (the rear-side portion is closer to the rear of the vehicle than the front-side portion).
As shown in
The vehicle body-side bracket 31 is formed of a clamp portion 35 and a planar plate portion 36. The clamp portion 35 has a C-shape as viewed from the axial direction of the steering shaft 3. The plate portion 36 is fixed to an upper end of the clamp portion 35. The clamp portion 35 has a pair of side plates 37. The side plates 37 respectively have arc-shaped tilt elongated holes 38 that extend along the direction in which the steering column 6 is tilted. The column-side bracket 32 has a C-shape as viewed from the axial direction of the steering shaft 3. The column-side bracket 32 has a pair of side plates 41. The side plates 41 respectively have telescopic elongated holes 42 that extend along the axial direction. The vehicle body-side bracket 31 has reinforcement portions 43 in order to ensure the stiffness of the vehicle body-side bracket 31. The reinforcement portions 43 that extend perpendicularly to the axial direction of the steering shaft 3 are disposed on the right and left sides (right and left sides in
The support shaft 33 has a disc-shaped head portion 45 at its base end (left end in
The steering apparatus 1 includes a lock mechanism 51 for retaining the steering wheel position in the vertical direction and in the axial direction. The lock mechanism 51 includes an operating lever 52 and a cam mechanism 53. The operating lever 52 is provided so as to be pivotable about the support shaft 33 together with the support shaft 33. The cam mechanism 53 is provided between the head portion 45 of the support shaft 33 and one of the side plates 37 of the clamp portion 35. The cam mechanism 53 pushes the side plate 37 toward the axially distal end side (right side in
In addition, the lock mechanism 51 includes a cylindrical pushing member 56. The pushing member 56 pushes the inner tube 14 in the axial direction of the steering shaft 3 and upward in an up-down direction of the steering shaft 3 on the basis of the pivoted position of the operating lever 52. A spline fitting portion 33a is formed on the outer periphery of the support shaft 33. A spline fitting portion 56a is formed on the inner periphery of the pushing member 56. The pushing member 56 is spline-fitted to the support shaft 33 to thereby rotate together with the support shaft 33. The pushing member 56 has a cam portion 57 having an arc-shaped cross section. The cam portion 57 is formed at a position eccentric relative to the axis of the support shaft 33. The cam portion 57 is in contact with the inner tube 14 via an opening 13a formed in the lower portion of the outer tube 13. Then, the cam portion 57 pushes the inner tube 14 depending on the pivoted position of the support shaft 33.
When the operating lever 52 is pivoted in one direction, the side plates 37 of the vehicle body-side bracket 31 are frictionally engaged with the side plates 41 of the column-side bracket 32 by the cam mechanism 53, and the outer peripheral surface of the inner tube 14 are frictionally engaged with the inner peripheral surface of the outer tube 13 by the pushing member 56. Thus, the column-side bracket 32 is immovable relative to the vehicle body-side bracket 31, and the steering wheel position is placed in a locked state. On the other hand, when the operating lever 52 is pivoted in the other direction, the pushing force of the cam mechanism 53 no longer acts and the frictional engagement between the side plates 37 of the vehicle body-side bracket 31 and the side plates 41 of the column-side bracket 32 is cancelled, and the pushing force of the pushing member 56 no longer acts and the frictional engagement between the inner tube 14 and the outer tube 13 is cancelled. Thus, the column-side bracket 32 is movable relative to the vehicle body-side bracket 31, and the steering wheel position is placed in an unlocked state.
In the thus configured steering apparatus 1, the lock mechanism 51 is placed in the unlocked state and then the column-side bracket 32 and the steering column 6 are tilted with respect to the vehicle body-side bracket 31. Thus, the steering wheel position is adjustable in the vertical direction within the range of the tilt elongated holes 38. In addition, the outer tube 13 is moved relative to the inner tube 14, the upper shaft 11 is moved relative to the lower shaft 12 and the column-side bracket 32 is moved in the axial direction relative to the vehicle body-side bracket 31. Thus, the steering wheel position is adjustable in the axial direction within the range of the telescopic elongated holes 42. Note that, in the present embodiment, the support shaft 33, the tilt elongated holes 38, the column-side bracket 32 and the outer tube 13 constitute a tilt mechanism, and the support shaft 33, the telescopic elongated holes 42, the column-side bracket 32 and the outer tube 13 constitute a telescopic mechanism.
The upper bracket 26 is configured as a so-called breakaway bracket that is detached from the mounting stay 24 when a load (collapsing load) higher than or equal to a predetermined load, which is directed toward the front of the vehicle, is applied to the upper bracket 26, so that the steering column 6 is detached from the mounting stay 24 that constitutes part of the body of the vehicle, for example, in the event of a secondary collision.
The plate portion 36 of the vehicle body-side bracket 31 has extended portions 61 that extend on respective sides of the clamp portion 35 in the vehicle-width direction. Each of the extended portions 61 has a cutout recessed portion 62 that extends in the axial direction of the steering shaft 3 and that is open toward the rear of the vehicle. The cutout recessed portion 62 is a recess at which a capsule 63 is fitted to the plate portion 36. Each of the cutout recessed portions 62 has an arc-shaped portion 62a and an opening portion 62b. The arc-shaped portion 62a corresponds to a position at which a bolt 64 is inserted. The opening portion 62b extends toward the rear of the vehicle. The opening portion 62b has such a width that extended portion 61 is able to be slidingly inserted in a cutout groove 63b of the capsule 63. The capsules 63 are detachably fixed to the extended portions 61 of the plate portion 36 that constitutes the upper bracket 26 (vehicle body-side bracket 31) in a state where the extended portions 61 have been slidingly inserted at the cutout recessed portions 62 in the cutout grooves 63b of the capsules 63. In a state where the capsules 63 are held between the mounting stay 24 and guide members 65, nuts 66 are respectively fastened to the shanks of the bolts 64 that are inserted through bolt insertion holes 24a, 63a and 65a from above the mounting stay 24 and that protrude downward from the guide members 65. Thus, the upper bracket 26 is fixed to the vehicle body-side mounting stay 24.
Here, the configuration of each capsule 63 will be described in detail. As shown in
Each capsule 63 is made of resin, and is integrally molded with the plate portion 36 of the vehicle body-side bracket 31. Each capsule 63 is molded from resin at a predetermined region including the cutout recessed portion 62 of the plate portion 36, and is, for example, insert-molded into a shape having the cutout groove 63b into which the inner peripheral portion, which defines the cutout recessed portion 62, is fitted. The plate portion 36 has a single small hole or recess or a plurality of small holes or recesses in a region near each of the cutout recessed portions 62. Molten resin injected into a die of a molding apparatus to mold the capsules 63 is filled into the holes or recesses to thereby form shear pins 68.
In addition, as shown in
When the upper bracket 26 is fitted to the body of the vehicle, the capsules 63, fixed to the extended portions 61 of the upper bracket 26, and the guide members 65 are arranged below the mounting stay 24 in this order from the upper side, and the positions of the bolt insertion holes 24a, 63a and 65a are aligned with each other, as shown in
In the state shown in
The length of a portion of each guide member 65, which extends from the bolt fastening position toward the front of the vehicle, is set to such a value that the plate portion 36 of the upper bracket 26 is kept supported on the upper faces of the guide members 65 even when the outer tube 13 moves over the collapsing movement distance L1 and then the lower end portion 13b contacts the stopper 70 (the state shown in
Next, the operation of the thus-configured steering apparatus 1 will be described. In the event of a secondary collision, that is, when the driver collides with the steering wheel 2, if a load higher than or equal to the predetermined load, which is directed toward the front of the vehicle, is applied to the steering apparatus 1, the shear pins 68 break, and the plate portion 36 of the upper bracket 26 is detached from the capsules 63. As a result, the steering column 6 makes collapsing movement toward the front of the vehicle (left side in
After the shear pins 68 break, the plate portion 36 moves along the cutout grooves 63b of the capsules 63, is ultimately detached from the capsules 63, and slightly drops by an amount corresponding to the thickness of the second holding portion 63d of the capsule 63 onto the upper faces of the guide members 65. At this time, a gap having a length corresponding to the sum of the thicknesses of the first holding portion 63c and second holding portion 63d of each capsule 63 is ensured between the upper face of the plate portion 36 placed on the upper faces of the guide members 65 and the lower of the mounting stay 24. As shown in
The amount of energy absorbed at the time when the steering column 6 contracts is set in advance so as to be a desired value. When variations in sliding resistance at the time when the plate portion 36 slides over the upper faces of the guide members 65 are great, absorption energy deviates from a desired value. For example, in the technique described in JP 2011-025856 A, the first rearward extending portions (which correspond to the guide members) that extend from the upper attachment bracket (upper bracket) toward the rear of the vehicle is configured to make collapsing movement toward the front of the vehicle together with the outer tube. Therefore, the first rearward extending portions slide along the grooves of the capsules while being kept inserted in these grooves over the entire range of collapsing movement.
Therefore, both upper and lower faces and side faces of portions of the first rearward extending portions, which are inserted in the grooves of the capsules, slide over the inner wall surfaces of the capsules, which define the grooves. In this case, because the first vehicle rearward extending portions are inserted in the grooves of the capsules via a slight gap, the first rearward extending portions slide in the mode that varies from moment to moment during collapsing movement. For example, both upper and lower faces of each first rearward extending portion slide over the inner wall surfaces, only the lower face of each first rearward extending portion slides over the inner wall surface, or two faces that are the lower face and the side face of each first rearward extending portion slide over the inner wall surfaces. Therefore, sliding resistance tends to vary. Due to the variations in sliding resistance, the amount of energy absorbed at the time of collapsing movement of the steering column tends to vary.
In contrast to this, in the first embodiment of the invention, a gap is ensured between the mounting stay 24 and the plate portion 36 placed on the upper faces of the guide members 65, and is sufficiently wider than the gap formed when the plate portion 36 is inserted in the cutout grooves 63b of the capsules 63. Thus, almost only the lower face (single face) of the plate portion 36 slides over the guide members 65. Therefore, variations in sliding resistance between the upper bracket 26 and the guide members 65 reduces, and it is possible to reduce a deviation of absorption energy from an ideal value in the event of a secondary collision.
In addition, even when the outer tube 13 finishes collapsing movement over the collapsing movement distance L1 shown in
Furthermore, because the guide members 65 extend toward the front of the vehicle, a relatively wide component arrangement space is ensured in an area closer to the driver seat than the upper bracket 26 of the steering apparatus 1. In the steering apparatus described in JP 2011-025856A, the first rearward extending portions that extend from the upper attachment bracket (upper bracket) toward the rear of the vehicle reduces a component arrangement space on the driver seat side of the steering apparatus 1. In contrast to this, in the steering apparatus 1 according to the present embodiment, the guide members 65 are fixed to the vehicle body (mounting stay 24), so the guide members 65 extend toward the front of the vehicle. Therefore, a relatively wide component arrangement space is ensured on the rear side with respect to the upper bracket 26.
In addition, when the steering apparatus 1 is fitted to the vehicle body, the tilt center shaft O on the lower side, or the like, is first fixed to the vehicle body, and then the upper bracket 26 is fitted to the vehicle body-side mounting stay 24. At this time, the steering column 6 is supported by one hand, and the nuts 66 are fastened to the shanks of the bolts 64 that are inserted through the bolt insertion holes 24a, 63a and 65a formed in the mounting stay 24, the capsules 63 and the guide members 65, respectively. Prior to this fastening, the restricting walls 65b of the guide members 65 arranged so as to extend toward the front of the vehicle are brought into contact with the rear end faces of the capsules 63. Thus, the rotation of the guide members 65 about the shanks of the bolts 64 is restricted. Therefore, friction between the nuts 66 and the guide members 65 becomes high at the last stage of fastening of the nuts 66, and even if force (friction force) in such a direction that the guide members 65 rotate together with the nuts 66 acts on the guide members 65, the rotation of the guide members 65 is restricted due to the contact of the restricting walls 65b with the rear end faces of the capsules 63. Thus, the guide members 65 are fixed while being kept extending toward the front of the vehicle without being rotated. In addition, after the guide members 65 are fitted, the rear end faces of the capsules 63 contact the restricting walls 65b. Therefore, the guide members 65 are kept extending toward the front of the vehicle without being rotated even when the guide members 65 receive vibrations, or the like, during travel of the vehicle. Therefore, in the event of a secondary collision, the steering column 6 is kept supported by the guide members 65 until the end of collapsing movement.
As described above, according to the first embodiment of the invention, the following advantageous effects are obtained.
(2) A relatively wide gap is ensured above the plate portion 36 that slides over the upper faces of the guide members 65 during collapsing movement. Therefore, it is possible to reduce variations in sliding friction between the plate portion 36 and the guide members 65. In the technique described in JP 2011-025856A, there are a plurality of sliding sites, that is, both the upper and lower faces and the side faces of the first rearward extending portions that keep sliding over the inner wall surfaces of the capsules, which define the grooves, until the end of collapsing movement, and variations in sliding resistance become relatively large due to variations of the sliding portions. This causes variations in the amount of energy absorbed. In contrast to this, in the first embodiment of the invention, only the lower face of the plate portion 36 slides over the guide members 65. Therefore, variations in sliding resistance are unlikely to occur. Thus, it is possible to reduce variations in the amount of energy that is absorbed by the impact absorbing mechanism of the steering apparatus 1 in the event of a secondary collision.
(3) The length of a portion of each guide member 65, which extends from the fastening position of the bolt 64 toward the front of the vehicle, is set to such a value that the upper bracket 26 is kept supported even if the outer tube 13 moves over the collapsing movement distance L1 toward the front of the vehicle and contacts the stopper 70. Therefore, it is possible to further reliably prevent excessive downward displacement of the steering column 6 in the event of a secondary collision.
(4) Because each guide member 65 has the restricting wall 65b, it is possible to fasten the nut 66 to the shank of the bolt 64 with the restricting wall 65b in contact with the rear end face of the capsule 63 to restrict rotation of the guide member 65. Therefore, it is possible to reliably fix the guide members 65 such that the guide members 65 extend toward the front of the vehicle, and it is possible to avoid an inconvenient situation where a worker needs to fasten the nut 66 while holding the guide member 65 to prevent the guide member 65 from rotating together with the nut 66. In addition, even after the steering apparatus 1 is fitted, it is possible to avoid a change in the orientation of each guide member 65 due to vibrations, or the like, during travel of the vehicle. Therefore, the guide members 65 are kept extending toward the front of the vehicle over a long period of time.
(5) Because each guide member 65 has the ribs 65c, the stiffness and strength of each guide member 65 is made high relative to its thickness. Therefore, it is possible to reliably support the steering apparatus 1 that is detached from the body of the vehicle to make collapsing movement. For example, it is possible to also avoid a change of the position of the steering apparatus 1 due to warpage or deformation of the guide members 65.
(6) Only addition of the guide members 65 separately formed from the steering apparatus 1 is required. Therefore, when the upper bracket 26 of the conventional steering apparatus 1 is fitted to the vehicle body-side mounting stay 24, the guide members 65 just need to be fitted to the lower sides of the capsules 63. Therefore, a major design change to the existing steering apparatus 1 is not required, and the steering apparatus 1 that has the steering apparatus downward displacement prevention structure, including the guide members 65, according to the first embodiment of the invention is relatively easily obtained. For example, in JP 2011-025856A, the first rearward extending portions need to be formed on the upper attachment bracket so as to extend therefrom. Therefore, a relatively major design change of the steering apparatus is required. In contrast to this, in the steering apparatus 1 according to the first embodiment of the invention, the guide members 65, which are separate components, are just added. Therefore, almost no design change of the steering apparatus 1 is required.
(7) The guide members 65 are fixed to the vehicle body side member instead of being fixed to the steering column 6. Therefore, the steering apparatus 1 is made relatively light despite the provision of the steering apparatus downward displacement prevention mechanism. That is, in comparison with the steering apparatus described in JP 2011-025856A in which the first rearward extending portions are formed on the upper attachment bracket so as to extend therefrom, the steering apparatus 1 is made relatively light because the first rearward extending portions are no longer required.
(8) The guide members 65 are separate components. Therefore, in comparison with the case where the guide members are integrally formed with the vehicle body as in the case where, for example, L-shaped guide members extend from the mounting stay 24, the efficiency of a work for fitting the steering apparatus 1 to the vehicle body-side mounting stay 24 improves. That is, when the guide members are integrally formed with the vehicle body, the guide members become obstacles when the upper bracket 26 is arranged above the guide members and, as a result, a fitting work is cumbersome. However, when the guide members are separate components as in the case of the first embodiment of the invention, such an inconvenience does not occur.
Note that the above-described embodiment may be modified into the following alternative embodiments.
The restricting portion of each guide member is not limited to the restricting wall 65b that is brought into contact with the rear end face of the capsule 63. For example, as shown in
In addition, as shown in
Each guide member need not be a separate component, and may be a component fixed to the steering apparatus 1 in advance. For example, the guide member may be a guide member integrated with the capsule. In this case, the capsule-integrated guide member may be made of resin or metal, and may be a composite material component in which the capsule portion is made of resin and the guide portion is made of metal. Note that, in the capsule-integrated guide member, a bolt insertion hole extends through both the capsule portion and the guide portion, and the capsule portion and the guide portion both are fixed to the vehicle body-side mounting stay 24 by fastening the nut 66 to the bolt 64.
Each guide member may be integrally formed with the body of the vehicle so as to extend therefrom. For example, a substantially L-shaped guide member may be extended from the mounting stay 24 toward the front of the vehicle.
The restricting portion of each guide member may be brought into contact with a member other than the capsule 63 to restrict rotation of the guide member. For example, the restricting wall may be brought into contact with a predetermined portion (for example, the extended portion 61) of the vehicle body-side bracket 31 to restrict rotation of the guide member.
Each capsule (detachable member) may be bonded to the upper bracket 26 using an adhesive at a bonding strength at which the capsule is detachable from the upper bracket 26 under a load higher than or equal to the predetermined load. Furthermore, each capsule 63 may be fixed to the vehicle body-side bracket 31 by welding, such as thermal welding or vibration welding. In the case of welding, a pin is formed on each capsule in advance, the capsule is fitted to the cutout recessed portion 62 of the plate portion 36 with the pin inserted in the hole, and then the capsule is subjected to welding to fix the capsule with a shear pin. Of course, a capsule having no shear pin may also be fixed by welding.
Each capsule may be configured to be detached from the upper bracket 26 when a load that exceeds a static friction force (set load) between the frictionally engaged two members (the capsule and the upper bracket) is applied in the event of a secondary collision. For example, a capsule mechanism has a flat plate capsule member and an annular diaphragm spring interposed between the plate portion 36 of the upper bracket 26 and the mounting stay 24. The guide member 65 arranged below the capsule mechanism is fixed to the mounting stay 24 with the diaphragm spring elastically compressed by the fastening of the nut 66 to the bolt 64. When the force caused by a load in the event of a secondary collision exceeds a static friction force that is exerted between the capsule member and both the plate portion 36 and the mounting stay 24 due to an urging force of the diaphragm spring, the upper bracket is detached from the capsule mechanism.
In the above embodiment, the steering apparatus may have only the telescopic adjustment function or only the tilt adjustment function.
The impact absorbing mechanism need not be a column contraction type, and may be a bending type. The bending-type impact absorbing mechanism is configured such that a predetermined portion, such as a lower portion, of the steering column plastically deforms to bend to thereby absorb impact energy. In addition, the impact absorbing mechanism may be of a type that is configured to rip an impact absorbing member, such as a ripping plate, to thereby absorb impact energy.
In the above embodiment, the steering apparatus has the tilt adjustment function and the telescopic adjustment function. However, the invention is not limited to this configuration. The steering apparatus may have only the telescopic adjustment function or only the tilt adjustment function. Furthermore, the steering apparatus may have neither the tilt adjustment function nor the telescopic adjustment function.
In the above embodiment, the steering apparatus 1 is configured as a so-called column assist-type electric power steering system (EPS) that applies assist force to the output shaft 16 that constitutes the column shaft 4. However, the invention is not limited to this configuration. For example, the invention may be applied to an EPS, other than a column assist-type EPS, such as a so-called rack assist-type EPS, a hydraulic power steering apparatus or a steering apparatus with no power assist.
Number | Date | Country | Kind |
---|---|---|---|
2011-134331 | Jun 2011 | JP | national |