Refuse vehicles collect a wide variety of waste, trash, and other material from residences and businesses. Operators of the refuse vehicles transport the material from various waste receptacles within a municipality to a storage or processing facility (e.g., a landfill, an incineration facility, a recycling facility, etc.).
One embodiment relates to a front axle assembly for a vehicle. The front axle assembly includes an axle and a steering assembly. The steering assembly includes a pair of wheel hubs coupled to opposing ends of the axle, a steering gear mechanism, and a linkage assembly coupling the steering gear mechanism to the pair of wheel hubs to facilitate steering the pair of wheel hubs through actuation of the steering gear mechanism. The steering gear mechanism is configured to be positioned between (i) a first vertical plane defined by a first frame rail of the vehicle and (ii) a second vertical plane defined by a second frame rail of the vehicle. The steering gear mechanism includes a first gear box and a second gear box. The first gear box is configured to be positioned between the first vertical plane and a central vertical plane centrally positioned between the first vertical plane and the second vertical plane. The second gear box is configured to be positioned between the second vertical plane and the central vertical plane. The linkage assembly includes (i) a pair of pitman arms coupled to the steering gear mechanism, (ii) a pair of steering links coupled to the pair of pitman arms such that the pair of pitman arms couple the first gear box and the second gear box to the pair of steering links, and (iii) a pair of tie rod arms coupling the pair of steering links to the pair of wheel hubs.
Another embodiment relates to a vehicle. The vehicle includes a chassis and a front axle assembly. The chassis includes a single left frame rail defining a first vertical plane and a single right frame rail spaced from the single left frame rail. The single right frame rail defines a second vertical plane. The front axle assembly is coupled to a front end of the single right frame rail and the single left frame rail. The front axle assembly includes an axle and a steering assembly. The steering assembly includes a pair of wheel hubs coupled to opposing ends of the axle, a steering gear mechanism positioned between the first vertical plane and the second vertical plane, and a linkage assembly coupling the steering gear mechanism to the pair of wheel hubs to facilitate steering the pair of wheel hubs through actuation of the steering gear mechanism.
Still another embodiment relates to a vehicle. The vehicle includes a chassis and a front axle assembly. The chassis includes a first frame rail defining a first vertical plane and a second frame rail defining a second vertical plane. The front axle assembly includes an axle and a steering assembly. The axle is coupled to a front end of the first frame rail and the second frame rail. The steering assembly includes a pair of wheel hubs coupled to opposing ends of the axle, a steering gear mechanism including a first gear box and a second gear box, and a linkage assembly coupling the steering gear mechanism to the pair of wheel hubs to facilitate steering the pair of wheel hubs through actuation of the steering gear mechanism. The first gear box and the second gear box are positioned between the first vertical plane and the second vertical plane.
This summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the devices or processes described herein will become apparent in the detailed description set forth herein, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements.
Before turning to the figures, which illustrate certain exemplary embodiments in detail, it should be understood that the present disclosure is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology used herein is for the purpose of description only and should not be regarded as limiting.
According to an exemplary embodiment, a vehicle (e.g., a refuse vehicle, etc.) of the present disclosure includes an axle assembly having an axle (e.g., a front axle, a solid axle, etc.), wheels coupled to opposing ends of the axle, and a steering assembly coupled to the axle that is configured to facilitate steering the wheels. Traditionally, vehicles have included an internal combustion engine that has an oil pan positioned along the bottom of the engine. When the engine is coupled to the frame, the oil pan extends down through the frame rails and occupies the space between and beneath the frame rails. This requires that various steering components be positioned outside of the frame rails. The vehicle of the present disclosure advantageously has the engine in a different position or the engine is replaced with an electric motor, which frees up the space between the frame rails that was previously occupied by the engine and engine oil pan. According to an exemplary embodiment, various steering components of the vehicle including the steering gear box can, therefore, be positioned between/beneath the frame rails, as well as facilitate removing/eliminating various steering components used in traditional steering systems (e.g., a traditional steer arm, a cross link on the axle, etc.). In addition, such positioning further frees up space outside the frame rails, which can be leveraged for the packaging of other components. In some instances, the positioning of the various steering components between the frame rails facilitates narrowing the cab of the vehicle and/or enlarging the step well used for assistance when entering the cab.
Overall Vehicle
As shown in
As shown in
According to an exemplary embodiment, the energy storage and/or generation system 20 is configured to (a) receive, generate, and/or store power and (b) provide electric power to (i) the electric motor 18 to drive the wheels 22 (e.g., the front wheels only, the rear wheels only, both the front wheels and the rear wheels, etc.), (ii) electric actuators of the vehicle 10 to facilitate operation thereof (e.g., lift actuators, tailgate actuators, packer actuators, grabber actuators, etc.), and/or (iii) other electrically operated accessories of the vehicle 10 (e.g., displays, lights, etc.). The energy storage and/or generation system 20 may include one or more rechargeable batteries (e.g., lithium-ion batteries, nickel-metal hydride batteries, lithium-ion polymer batteries, lead-acid batteries, nickel-cadmium batteries, etc.), capacitors, solar cells, generators, power buses, etc. In one embodiment, the vehicle 10 is a completely electric vehicle. In other embodiments, the vehicle 10 includes an internal combustion generator that utilizes one or more fuels (e.g., gasoline, diesel, propane, natural gas, hydrogen, etc.) to generate electricity to charge the energy storage and/or generation system 20, power the electric motor 18, power the electric actuators, and/or power the other electrically operated accessories (e.g., a hybrid vehicle, etc.). For example, the vehicle 10 may have an internal combustion engine augmented by the electric motor 18 to cooperatively provide power to the wheels 22. The energy storage and/or generation system 20 may thereby be charged via an on-board generator (e.g., an internal combustion generator, a solar panel system, etc.), from an external power source (e.g., overhead power lines, mains power source through a charging input, etc.), and/or via a power regenerative braking system, and provide power to the electrically operated systems of the vehicle 10. In some embodiments, the energy storage and/or generation system 20 includes a heat management system (e.g., liquid cooling, heat exchanger, air cooling, etc.).
According to an exemplary embodiment, the vehicle 10 is configured to transport refuse from various waste receptacles within a municipality to a storage and/or processing facility (e.g., a landfill, an incineration facility, a recycling facility, etc.). As shown in
As shown in
Axle Assembly
According to an exemplary embodiment, the axle assemblies 100 include at least one steerable axle assembly (e.g., a front steerable axle assembly, front and rear steerable axle assemblies, etc.). According to the exemplary embodiment shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the disclosure as recited in the appended claims.
It should be noted that the term “exemplary” and variations thereof, as used herein to describe various embodiments, are intended to indicate that such embodiments are possible examples, representations, or illustrations of possible embodiments (and such terms are not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The term “coupled” and variations thereof, as used herein, means the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent or fixed) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members coupled directly to each other, with the two members coupled to each other using a separate intervening member and any additional intermediate members coupled with one another, or with the two members coupled to each other using an intervening member that is integrally formed as a single unitary body with one of the two members. If “coupled” or variations thereof are modified by an additional term (e.g., directly coupled), the generic definition of “coupled” provided above is modified by the plain language meaning of the additional term (e.g., “directly coupled” means the joining of two members without any separate intervening member), resulting in a narrower definition than the generic definition of “coupled” provided above. Such coupling may be mechanical, electrical, or fluidic.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below”) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
It is important to note that the construction and arrangement of the vehicle 10, the axle assembly 100, and the steering system 200 thereof as shown in the various exemplary embodiments is illustrative only. Additionally, any element disclosed in one embodiment may be incorporated or utilized with any other embodiment disclosed herein.
This application is a continuation of U.S. patent application Ser. No. 17/689,336, filed Mar. 8, 2022, which claims the benefit of and priority to U.S. Provisional Patent Application No. 63/161,236, filed Mar. 15, 2021, both of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2225966 | Beemer | Dec 1940 | A |
3768825 | Magnusson | Oct 1973 | A |
6561715 | Wasylewski et al. | May 2003 | B2 |
6719311 | Davis et al. | Apr 2004 | B2 |
10836425 | Yamazaki et al. | Nov 2020 | B2 |
11214305 | Maltais-Larouche et al. | Jan 2022 | B2 |
11358634 | Mainville | Jun 2022 | B2 |
11560198 | Doerksen | Jan 2023 | B2 |
12017699 | Krone | Jun 2024 | B2 |
20010054525 | Honzek | Dec 2001 | A1 |
20150151651 | Stingle et al. | Jun 2015 | A1 |
20190161115 | Yamazaki et al. | May 2019 | A1 |
20190276102 | Zuleger et al. | Sep 2019 | A1 |
20200290236 | Bjornstad et al. | Sep 2020 | A1 |
20200290237 | Steffens et al. | Sep 2020 | A1 |
20200290238 | Andringa et al. | Sep 2020 | A1 |
20200291846 | Steffens et al. | Sep 2020 | A1 |
20210171137 | Zuleger et al. | Jun 2021 | A1 |
20210354329 | Hou et al. | Nov 2021 | A1 |
20220072736 | Steffens et al. | Mar 2022 | A1 |
20220118854 | Davis et al. | Apr 2022 | A1 |
20220134372 | Andringa | May 2022 | A1 |
20220134856 | Andringa et al. | May 2022 | A1 |
20220144058 | Ben-Ari | May 2022 | A1 |
20220266905 | Krone | Aug 2022 | A1 |
20220324285 | Wilcox | Oct 2022 | A1 |
20230052313 | Cai | Feb 2023 | A1 |
20240124058 | Jeon | Apr 2024 | A1 |
Number | Date | Country |
---|---|---|
108556909 | Sep 2018 | CN |
208602555 | Mar 2019 | CN |
10 2020 125 258 | Mar 2022 | DE |
1 213 206 | Jun 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20230373561 A1 | Nov 2023 | US |
Number | Date | Country | |
---|---|---|---|
63161236 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17689336 | Mar 2022 | US |
Child | 18229250 | US |