Steering column switch for motor vehicles

Information

  • Patent Application
  • 20040173444
  • Publication Number
    20040173444
  • Date Filed
    December 09, 2003
    20 years ago
  • Date Published
    September 09, 2004
    19 years ago
Abstract
The invention relates to a steering column switch for vehicles, especially a switch for front and back windscreen wiping/washing switches comprising two rotating switches (6, 17) arranged at a distance from each other and integrated into a switch lever (1). Said rotating switches comprise contact bridges provided with a plurality of contact arms which are respectively secured onto a rotating switch element (8), and impinge upon the switch contact bridges (14, 21) with associated connecting contacts (16, 23) which are connected to the contacts on the edge of the network. Said connecting contacts (16, 23) are connected to the contacts of the vehicle wiring system by a flexible printed circuit board (29). Starting form the connection (30) with the vehicle wiring system, said printed circuit board (29) comprises a line (31) which branches off into two other lines (35, 36) with a respective connection (37, 38), whereby one of said branches leads into another line (41) with a connection (42). The connection (37) on the second line (35) is associated with one of the rotating switches (17), and the connections (39, 42) of the third (36) and fourth lines (41) are associated with the other rotating switch (6).
Description


TECHNICAL FIELD

[0001] The invention generally relates to electrical switches and more particularly relates to a steering column switch for motor vehicles.



BACKGROUND OF THE INVENTION

[0002] DE 199 12 087 A1 discloses a steering column switch, which includes a rotary switch for the front wiper functions arranged rotationally symmetrically on a longitudinal axis of a switch lever of the steering column switch. A push-button switch for a front washer function is arranged at the free end of the switch lever. In addition, another rotary switch for the rear wiper/washer functions is arranged on the rotary switch for the front wiper functions. Both the front wiper functions and the rotary switch for the rear wiper/washer functions have a number of contact bridges that corresponds to the number of switch positions, wherein these contact bridges act on corresponding switch contact tracks. The contact bridges and the associated switch contact tracks are shaped like circular segments at the periphery of a rotary switch element of each rotary switch at one end of the rotary switch element. To activate the front washer function, the associated push-button switch is pushed in, wherein the push button also acts on associated switch contact tracks by way of a corresponding activation plunger that interacts with a contact bridge. The connection of the switch contact tracks to contacts of the vehicle power supply is performed by means of connection lines, which are attached to connection contacts and which are led through the longitudinal axis of the steering column switch. Here, the number of connection lines corresponds to the number of switch contact tracks. For a predetermined number of switch positions, the outer diameter of the switch lever is essentially dependent on the space requirements of the connection lines, particularly in the region of cable bushings between the first and the second rotary switch, wherein the connection lines must feature a certain cross section and insulation.


[0003] Furthermore, a flexible circuit board is known from DE 198 19 088 A1, which includes a carrier film for conductive tracks and is used as a cable tree for electrical contact of a certain arrangement of electrical and/or electronic components. Such flexible circuit boards are increasingly used as replacements for conventional cable trees consisting of round conductors. The individual conductive tracks are electrically insulated from each other and typically have a rectangular cross section. The top sides of the conductive tracks are electrically insulated by means of a coating or a film.


[0004] The solved problem of the invention is creating a steering column switch of the initially mentioned type, whose rotary switches are connected to the vehicle power supply with minimal space requirements.


[0005] According to the invention, the problem is solved such that


[0006] the connection contacts are connected to the contacts of the vehicle power supply by means of a flexible circuit board,


[0007] the circuit board has one branch from the connection to the vehicle power supply, wherein this branch divides into two branches, each with a connection, wherein of these two branches, one transitions into another branch with a connection, and


[0008] the connection of the second branch is associated with one rotary switch and the connections of the third and fourth branches are associated with the other rotary switch.


[0009] Due to these measures, the space requirements for the electrical connection of the two rotary switches to the vehicle power supply are relatively small, since, on the one hand, the flexible circuit board has a thin structure and, on the other hand, the circuit board is divided into several branches for coupling the rotary switch to the vehicle power supply. Furthermore, the flexibility of the circuit board guarantees high functional reliability of the steering column switch. The circuit board deforms in accordance with the movements of the switch lever as well as the movements caused by the individual rotary switches. In addition, the flexible circuit board is relatively easy to mount by means of simple threads through individual components of the switch lever. The individual branches of the circuit board are manufactured through stamped cut-outs of the circuit board film.


[0010] The first branch of the circuit board in the flat plane starting from the connection to the vehicle power supply features a first rectilinear region, which transitions by way of an angled section into a second rectilinear region, which is aligned parallel and spatially separated from the first region. The region of the angled section is arranged in the outlet region of the flexible circuit board from the switch lever and, according to corresponding deformation, enables the connection of the connector to the contacts of the vehicle power supply and provides the flexibility required for the pivoting motion of the switch lever.


[0011] Advantageously, the second rectilinear region of the first branch splits in a plane above the connection to the vehicle power supply into the second and third branches, which are aligned parallel to each other, wherein the second branch carries the connection at the end and the third branch extends in a straight line outwards over a plane of the connection. Furthermore, the third branch transitions into an angled section running in the direction of the connection of the second branch, in which the connection is arranged. Finally, the third branch transitions in the region of its angled section into the fourth branch, which carries the connection on the end. The course of the individual branches of the circuit board corresponds to a cable tree-like structure and can be realized for the production of the circuit board with minimal material consumption.


[0012] In order to be able to implement the connection of the connectors to the associated connection contacts of the switch contact tracks or the contacts of the vehicle power supply relatively easily, the connection for the vehicle power supply, the connection of the second branch, and the connection of the third branch point in the same direction, and the connection of the fourth branch points in the opposite direction.


[0013] According to an advantageous refinement of the invention, the connection contacts of the first rotary switch, which is allocated to the free end of the switch lever, are divided into two groups arranged diametrically opposite each other and spatially separated, wherein the first group is connected to the connection of the third branch and the second group is connected to the connection of the fourth branch of the circuit board. Because the connection contacts are provided in two groups, the space requirements for the plurality of connection contacts is extremely small and simultaneously, the functionality of the first rotary switch is guaranteed.


[0014] So that the connection between the connection contacts and the contacts of the vehicle power supply by means of the flexible circuit board do not have a disruptive effect on the mechanics of the first rotary switch, the fourth branch of the circuit board in the assembled state of the first rotary switch preferably passes to the side of the hinge pin formed on an intermediate ring.


[0015] In a further configuration of the invention, the fourth branch of the circuit board is deformed essentially in the form of a W due to a crosspiece of the intermediate ring supported to the side of the locking sleeves. This deformation is realized automatically during assembly and must be taken into account only for the length dimensioning of the fourth branch.


[0016] In order to create a long-lasting electrical connection between the connections and the associated contacts, the connections have contact points that are soldered to the associated connection contacts or to the contacts of the vehicle power supply.


[0017] The rotary switch element of the first rotary switch preferably features a contact arm to be activated by a push button inserted in the first rotary switch for acting on associated switch contact tracks. Thus, another switch is integrated in the steering column switch. The electrical connection of this switch to the contacts of the vehicle power supply is realized by means of the flexible circuit board without additional space requirements.


[0018] Advantageously, the switch contact tracks of the first and second rotary switch are structured as an extrusion-coated stamped grid, wherein the switch contact tracks of the first rotary switch are arranged on the hinge pin of the intermediate ring and the switch contact tracks of the second rotary switch are arranged on an axial end of an activation element of the rotary switch. The extrusion-coated stamped grids can be handled easily during the soldering of the connections of the circuit board and during the assembly in the switch lever.


[0019] It is understood that the features mentioned above and the features still to be explained in the following can be used not only in the indicated combination, but also in other combinations without leaving the scope of the present invention.







BRIEF DESCRIPTION OF THE INVENTION

[0020]
FIG. 1, an exploded view of a switch lever of a steering column switch according to the invention, and


[0021]
FIG. 2, a flexible circuit board of the steering column switch in a flat plane.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0022] A spring-loaded push button 2 for a front washer function is inserted in a switch lever 1 of the steering column switch at the end. This push button is inserted by means of two opposing clip arms 3 so that it can move in corresponding grooves 4 of an activation element 5 of a first rotary switch 6 configured as a front wiper/washer switch. On the side associated with the activation element 5 on the outer periphery of the push button 2, there is an activation plunger 7, which projects through a rotary switch element 8 of the first rotary switch 6.


[0023] The first rotary switch 6 essentially includes the rotating activation element 5, in which the rotary switch element 8 is supported locked in rotation. On the peripheral side in the activation element 5, a lock (not shown) is configured, which interacts with spring-loaded locking sleeves 9, wherein the locking sleeves 9 are arranged in a crosspiece 10 of an intermediate ring 11 of the switch lever 1. The interaction of the lock with the locking sleeves 9 creates a secure fixing of the first rotary switch 6 in the desired switch position. The rotary switch element 8 has a contact bridge for the front wiper/washer functions on its end side facing the intermediate ring 11, wherein only one spring-loaded contact 12 to be activated by the activation plunger 7 of the push button 2 can be seen for the front washer function. The free ends of the contact arms (not shown) point in the direction of the intermediate ring 11 and the free end of the contact arm 12 points in the direction of the activation plunger 7 of the push button 2. The free ends of the contact arms are arranged such that they interact with switch contact tracks 14 configured as a stamped grid 13 for transmitting the front wiper functions. In order to achieve sufficient stability of the stamped grid 13, the grid is extrusion coated and supported locked in rotation on a hinge pin 14 of the intermediate ring 11. For connecting the stamped grid 13 to contacts (not shown) of a vehicle power supply, each of the switch contact tracks 14 is provided with a connection contact 15 pointing in the direction of a foot 15 of the switch lever 16.


[0024] On the side of the intermediate ring 11 facing away from the stamped grid 13, a second rotary switch 17 configured as a rear wiper/washer switch is located with a rotary switch element (not shown), which is arranged in an activation element 18 supported on an axial end of the intermediate ring 11. On the peripheral side, the activation element 18 supports two locking sleeves 19, which interact with a lock of the intermediate ring 11. The switch contact tracks 21 of the second rotary switch 17 configured as an extrusion-coated stamped grid 20 are supported locked in rotation in a housing 22 of the switch lever 1 and have connection contacts 23, which extend into the housing 22. A position centering of the stamped grid 20 is realized, on the one hand, by means of a shaft of the activation element 18, where this shaft extends through a corresponding hole 24 of the stamped grid 20, and on the other hand, by means of tabs 25, which are formed on the stamped grid 20 and which engage in corresponding housing-side grooves 26.


[0025] For attaching the first rotary switch 6 and the second rotary switch 17 to the housing 22 of the switch lever 1, where this housing has a cover 27, the intermediate ring 11 has clip arms 45 which project through corresponding cut-outs of the activation element 18 of the second rotary switch 17 and interact with locking tabs of the housing 22.


[0026] Furthermore, at the foot 15 of the switch lever 1, carrier axial ends 28 for pivoting support of the switch lever 1 are provided in a steering column switch housing (not shown).


[0027] For connecting the connection contacts 16 of the switch contact tracks 14 associated with the first rotary switch 6 and the connection contacts 23 of the switch contact tracks 21 associated with the second rotary switch 17 to the contacts of the vehicle power supply, a flexible circuit board 29 is provided, which is illustrated in FIG. 2 in a flat plane. Starting from a connection 30 for the contacts of the vehicle power supply, a first branch 31 of the circuit board 29 has a first rectilinear region 32, which transitions via an angled section 33 into a second rectilinear region 34. The first rectilinear region 32 and the second rectilinear region 34 of the first branch 31 are aligned parallel and spatially separated from each other. In a plane above the connection 30, the second rectilinear region 34 of the first branch 31 splits into a second branch 35 and a third branch 36, which are aligned parallel to each other. The second branch 35 carries at its end a connection 37 for connecting to the connection contacts 23 of the switch contact tracks 21 associated with the second rotary switch 17. The third branch 36 extends outwardly in a straight line over a plane of the connection 37 of the second branch 35 and transitions into an angled section 38 running in the direction of the connection 37 of the second branch 35. In the angled section 38, there is a connection 39 for a first group 40 of connection contacts 16 of the switch contact tracks 14 associated with the first rotary switch 6. Furthermore, the third branch 36 transitions in its angled section 38 into a fourth branch 41, which carries at its end a connection 42 for a second group of connection contacts 16 of the switch contact tracks 14 associated with the first rotary switch 6. The connection 30 for the vehicle power supply, the connection 37 of the second branch 35, and the connection 39 of the third branch 36 point in the same direction, and the connection 42 of the fourth branch 41 points in the opposite direction. Each of the connections 30, 37, 39, 42 have contact points 43, which are each soldered to the associated connection contacts 16, 23 or to the contacts of the vehicle power supply.


[0028] For the assembly of the switch lever 1, the third branch 36 and the fourth branch 42 are guided both through cut-outs of the activation element 18 of the second rotary switch 17 and through cut-outs of the intermediate ring 11, and the contact points 43 of the connections 39, 42 are soldered to the associated connection contacts 16 of the switch contact tracks 14 associated with the first rotary switch 6. For the assembly of the first rotary switch 6, the stamped grid 13 is set on a hinge pin 44 of the intermediate ring 11 and held by clips of the activation element 5 on the hinge pin 44. In this way, the fourth branch 41 grips the crosspiece 10 of the intermediate ring 11 such that it deforms into the form of a W. The push button 2 is clipped into the free end of the activation element 5. Furthermore, the contact points of the connection 37 of the second branch 35 are soldered to the connection contacts 23 of the switch contact tracks 21 associated with the second rotary switch 17, and the stamped grid 20 is set on the axial end of the activation element 18. Thus, the first 31, the second 35, and the third branch 36 are led through the housing 22 of the switch lever 1 and the housing 22 is closed with the cover 27. Then the intermediate ring 11 is fixed in the housing 22 by means of its clip arms 45 and the activation element 18 of the second rotary switch 17 is supported between the intermediate ring 11 and the housing 22. The first branch 31 of the circuit board 29 is led out of the switch lever in the region of the foot 15 of the switch lever 1 from an opening 46 formed between the cover 27 and the housing 22 and connected to the contacts of the vehicle power supply.
1List of reference numbers1Switch lever2Push button3Clip arm4Grooves5Activation element6First rotary switch7Activation plunger8Rotary switch element9Locking sleeve10Crosspiece11Intermediate ring12Contact arm13Stamped grid14Switch contact track15Foot16Connection contact17Second rotary switch18Activation element19Locking sleeve20Stamped grid21Switch contact track22Housing23Connection contact24Hole25Tab26Groove27Cover28Carrier axial end29Circuit board30Connection31First branch32First rectilinear region33Angled section34Second rectilinear region35Second branch36Third branch37Connection of 3538Angled section of 3639Connection of 3640Group41Fourth branch42Connection of 4143Contact position44Hinge pin45Clip arm46Opening


Claims
  • 1. Steering column switch for motor vehicles, particularly in the form of rear and front wiper/washer switches, with two rotary switches (6, 17), which are spatially separated from each other and which are integrated in a switch lever (1), whose contact bridges are each fixed to a rotary switch element (8) and with several contact arms act on switch contact tracks (14, 21) with corresponding connection contacts (16, 23), which are connected to contacts of a vehicle power supply, characterized in that the connection contacts (16, 23) are connected to the contacts of the vehicle power supply by means of a flexible circuit board (29), the circuit board (29), starting from the connection (30) to the vehicle power supply, has a branch (31), which splits into two branches (35, 36) each with a connection (37, 38), wherein of these two branches, one transitions into another branch (41) with a connection (42), and the connection (37) of the second branch (35) is associated with one rotary switch (17) and the connections (39, 42) of the third (36) and fourth branches (41) are associated with the other rotary switch (6).
  • 2. Steering column switch according to claim 1, characterized in that the first branch (31) of the circuit board (29) has a first rectilinear region (32) in a flat plane starting from the connection (30) to the vehicle power supply, wherein this rectilinear region transitions via an angled section (33) into a second rectilinear region (34), which is aligned parallel and spatially separated from the first region (32).
  • 3. Steering column switch according to claim 2, characterized in that the second rectilinear region (34) of the first branch (31) splits into the second (35) and the third branch (36) in a plane above the connection (30) to the vehicle power supply, wherein these branches are aligned parallel to each other, wherein the second branch (35) carries the connection (37) on its end and the third branch (36) extends outwards in a straight line over a plane of the connection (37).
  • 4. Steering column switch according to claim 1 or 3, characterized in that the third branch (36) transitions into an angled section (38) extending in the direction of the connection (37) of the second branch (35), in which the connection (38) is arranged.
  • 5. Steering column switch according to claim 4, characterized in that the third branch (36) transitions in the region of its angled section (38) into the fourth branch (41), which carries on its end the connection (42).
  • 6. Steering column switch according to one of claims 1-5, characterized in that the connection (30) for the vehicle power supply, the connection (37) of the second branch (35), and the connection (38) of the third branch (36) point in the same direction and the connection (42) of the fourth branch (41) points in the opposite direction.
  • 7. Steering column switch according to one of claims 1-6, characterized in that the connection contacts (16) of the first rotary switch (6), which is associated with the free end of the switch lever (1), are divided into two groups arranged diametrically opposite each other and spatially separated, wherein the first group (40) is connected to the connection (38) of the third branch (36) and the second group is connected to the connection (42) of the fourth branch (41) of the circuit board (29).
  • 8. Steering column switch according to one of claims 1-7, characterized in that the fourth branch (41) of the circuit board (29) runs past to the side of a hinge pin (44) formed on an intermediate ring (11) in the assembled state of the first rotary switch (6).
  • 9. Steering column switch according to claim 8, characterized in that the fourth branch (41) of the circuit board (29) is deformed essentially into the form of a W due to a crosspiece (10) of the intermediate ring (11) supported on one side of the locking sleeves (9).
  • 10. Steering column switch according to claim 8, characterized in that the connections (30, 37, 38, 42) have contact points (43), which are each soldered to the associated connection contacts (16, 23) or to the contacts of the vehicle power supply.
  • 11. Steering column switch according to one of claims 1-10, characterized in that the rotary switch element (8) of the first rotary switch (6) has a contact arm (12) to be activated by a push button (2) inserted in the first rotary switch (6) for acting on corresponding switch contact tracks (14).
  • 12. Steering column switch according to one of claims 1-11, characterized in that the switch contact tracks (14) of the first (6) and the second rotary switch (17) are each configured as extrusion-coated stamped grids (13, 20), wherein the switch contact tracks (14) of the first rotary switch (6) are arranged on the hinge pin (44) of the intermediate ring (11) and the switch contact tracks (21) of the second rotary switch (17) are arranged on an axial end of an activation element (18) of the rotary switch (17).
Priority Claims (2)
Number Date Country Kind
101 28 069.6 Jun 2001 DE
101 41 578.8 Aug 2001 DE
PCT Information
Filing Document Filing Date Country Kind
PCT/DE02/02022 6/1/2002 WO