The invention relates generally to computer networking, and more specifically, to steering network devices to connect with preferred access points using probability functions.
Wireless computing technologies provide untethered access to the Internet and other networks. One of the most critical technologies for wireless networking (or Wi-Fi) is the IEEE 802.11 family of protocols promulgated by the Institute of Electrical and Electronics Engineers. Currently, the protocols are widely adopted in wireless devices such as laptop computers, tablet computers, smart phones, and network appliances.
Wireless devices complying with standards such as IEEE 802.11 have control over how a connection to a wireless network is made. Namely, a wireless device selects an access point among a number of access points within range that have sent out beacons advertising a presence. The beacon includes a BSSID (Basic Service Set IDentifier) as an identifier of the access point. In turn, the wireless device sends data packets which include the BSSID of the intended access point. Access points receiving a transmission intended for a different access point, as determined by the BSSID, merely ignore the data packets.
Problematically, wireless devices act in self-interest and without consideration for burdens or capabilities of an access point or other components in a wireless network, or other conditions affecting the wireless network. In fact, wireless devices, being unaware of network conditions, can also make a connection against their own best interest when a more capable access point is within range and available. Ultimately, the lack of information given to a decision-making device is an inherent weakness of IEEE 802.11 and other network protocols.
A client running on a wireless device is not always a desirable solution. For instance, guests connecting to a public hot spot for only one time would be burdened with the process of downloading and installing a client. Furthermore, many computer users are weary about malicious applications downloaded from the Internet. Finally, the client is another background process consuming processing and memory availability of wireless devices.
What is needed is a technique to steer network devices to connect with preferred access points. Further, the technique should be adaptable to make independently-behaving access points make connection decisions that benefit the network as a whole.
To meet the above-described needs, methods, computer program products, and systems are described herein to steer network devices to preferred access points using a connection-accept probability function.
A probe request for connection is received from a network device. The probe request can be from a network device attempting to use a wireless network (e.g., a IEEE 802.11-type network or other suitable type of network). A probability function that defines a likelihood of granting the network device a connection is used to determine whether to respond to the request or not. If the probability function grants a connection, the probe response is then sent to the network device. The higher the grant probability is, the more likely the connection-requesting client gets connected.
The probability function is based on at least one of local conditions and network device conditions. In some embodiments, system-wide conditions are also taken into account. Moreover, a probability function can be bypassed, or progressively adjusted, as the same network device continues to make connection attempts.
Advantageously, a wireless network can improve performance by spreading the burdens across components based on availability. Moreover, no configuration is needed on a network device (e.g., downloading a client).
In the following figures, like reference numbers are used to refer to like elements. Although the following figures depict various examples of the invention, the invention is not limited to the examples depicted in the figures.
The present invention provides methods, computer program products, and systems to steer network devices to preferred access points using a probability function of each of the access points without system-wide central coordination. In other words, each access point makes its own decision on whether it grants a new station's connection or not. Generally, a probability function (or grant profile, or probability profile) defines the likelihood that a connection-requesting client gets connected. For example, grant probability can decrease as network conditions become harsher. In another example, grant probability can increase for authorized devices relative to guest devices. Asserting control over network devices is particularly valuable for wireless networks such as IEEE 802.11-type networks (e.g., 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, or other IEEE, non-IEEE or custom protocols) which inherently grant connectively selection (i.e., selection of an access point) to network devices.
Systems to Steer Network Device Connections (
The access points 120A-N include one or more individual access points that interact with network devices 110A-N to control medium access. An individual access point can be any of the computing devices described herein (also see generally,
For example, a number of current connections can be one factor that affects probability functions. In system 100, the access point 120A has one connection, the access point 120B has two connections, and the access point 120N has no connections. As a result, a new network device connection may have the best chance of connecting to the access point 120N, the access point 120A, and then the access point 120B in that order, assuming that all other conditions are equal. From another perspective, out of 100 connection requests, the access point 120N may be likely to accept 95%, the access point 120A may accept 80%, and the access point 120B may accept 43%.
In a sample connection sequence, a new network device attempts connection with the access point 120N and is denied, even though the probability is small. It re-attempts after being denied by the access point 120B, which has a relatively larger probability of denial due to the multiple existing connections. The new network device then returns to the access point 120N for a second request. Besides having an initial low probability of being denied, some embodiments lower the threshold even further upon subsequent requests from the same network device. Therefore, the second request is highly likely to be granted. Of course, numerous other examples and connection sequences are possible.
In
The network devices 110A-N can be, for example, a personal computer, a laptop computer, a tablet computer, a smart phone, a mobile computing device, an Internet appliance, a non-wireless device modified to have wireless capabilities, or any other computing device (see generally,
In an optional embodiment, a controller 110 (e.g., an MC1500 or MC6000 device by Meru Networks of Sunnyvale, Calif. as described in U.S. application Ser. No. 13/426,703 filed Mar. 22, 2012 and commonly-assigned) provides centralized management for access points. As a result, the controller can assist by, for example, providing default probability functions to new access points that join the wireless network, generating updated probability functions, or feeding information to the access points 120A-N to aid local generation of probability functions. Additionally, due to system-wide communication with components, system-wide conditions can be observed and factored into probability functions. The controller can provide many other services to the network 199 such as virtual cell and virtual port functionalities (also described in U.S. application Ser. No. 13/426,703).
The probability function engine 122 receives, adjusts, and or generates probability functions, depending on the implementation as discussed above in connection with
The connections manager 124 maintains a table of connected network devices, along with related states of those network devices, and the like. In one embodiment, the connections manager 124 can also track statistics used for determining probability functions, such as number of connections, loads, throughput, and packet loss.
The network connection module 126 can be similar to the network module 114 of the network device 110 of
The radio array 128 can be similar to the radio array 116 of the network device 110 of
The network application 112 can be any application executing on the network device 110 that makes use of network access in operation. Examples of the network application 112 include a network browser, a VOIP telephone service, a streaming video player, a database viewer, a VPN client, and the like.
The network connection module 114 is responsible for connecting to a communication channel for data exchange. To do so, the network communication module 114 listens for beacons broadcast by access points, and generates a probe request to connect to a selected access point. After connecting, the network connection module 114 exchanges data packets and unpacks data packets in accordance with, e.g., a TCP/IP stack. More particularly, IEEE 802.11-type packets can be generated and received.
The radio array 116 includes one or more transmit (Tx) and receive (Rx) antennas for communication with the physical layer. Some network devices 110 include separate antennae for IEEE 802.11a, IEEE 802.11b and IEEE 802.11n. Other network devices 110 includes several antenna dedicated for separate transmit and receive paths using the MIMO functionality of IEEE 802.11n.
Methods for Steering Network Device Connections (
At step 210, a probe request for connection is received from a network device. The probe request can include information, such as a BSSID and other information gathered from a beacon previously sent by an access point. The probe request also identifies a network device so that the access point would be able to identify subsequent communications.
At step 220, a response is determined from a probability function. At a high-level, one or more conditions are taken into account. Conditions can be dynamic (e.g., current amount of network bandwidth, RSSI or non Wi-Fi interference noise level) or static (access point hardware or OS version, band preference such as IEEE 802.11a over IEEE 802.11 b or g). In one aspect, system-wide conditions, such as total number of connections, router or switch loads, time of day, day of week, and spectrum usage or capacity, allows a controller or cooperating access points to react to broad conditions. In another aspect, access point conditions, such as number of connections, processing load, memory or cache availability, and current packet loss, allow an access point to act more selfishly in protecting itself from overloading. In still another aspect, network device conditions, such as RSSI, flight time of packets, number of connection requests, device user, and connection history, are rebuttals that distinguish the needs of one network device in comparison to others. An example of step 220 is discussed below with respect to
In step 230, a probe response is sent to the network device. Based on results of applying conditions probability functions, a response is generated. A decision to deny can result in ignoring the request, or a packet being sent back with the denial. A connected device can begin wireless communication. Meanwhile, rejected device can attempt to connect with another access point or make additional requests to the same access point until successful.
At step 310, if a threshold for a number of requests has not yet been reached, conditions are received from one or more of a controller, associated access points, and network devices at step 320. The conditions can vary widely and be weighted in accordance with individual network implementations. For system-wide conditions, sensors around a network, diagnostic applications, operating systems, system logs, and other components can provide relevant information. For access point and network device conditions, a client can send information to a controller over the network intermittently, or responsive to status checks. Additionally, an operating system can provide internal information relating to current processing, memory and cache loads.
At step 330, a probability function is generated based on the conditions. The probability function can be a single probability curve or a set of curves. Generally, a probability curve (or probability mass, probability density, or probability density) is a function describing the probability of a random variable taking certain values. The conditions are random variables. The probability curve can be continuous, discrete, or both. Generation can occur once until manually changed, over predetermined intervals, or on-the-fly upon each connection request. Additional embodiments for function generations are detailed below in association with
At step 340, the conditions are applied to the probability function to determine a response. The conditions supply one or more variables plugged into a formula that represents the probability function. Also, the conditions can filter a set of curves down to a single probability function. The probability function yields a single value from 0 to 1.0 representing a percentage. A set of 100 requests applied to a value of 0.50 converges upon 50 acceptances and 50 denials (i.e., 50% acceptance rate). Likewise, 100 requests applied to a value of 0.75 converges upon 75 acceptances and 25 denials (i.e., 75% acceptance rate).
At step 420, the probability function is adjusted based on network-wide conditions. Examples of network-wide conditions included total number of connections, router or switch loads, spectrum usage or capacity, time of day and day of the week. As illustrated by graph 520 a network-wide conditions probability curve can be combined with the initial curve such that the x-access includes more than one variable (i.e., default values and network-wide conditions. The graph 520 includes a probability curve that decrease linearly with an increase in burden. In one embodiment, the network-wide conditions curve (or other condition curve) can be the initial curve.
At step 430, the probability function is adjusted based on access point conditions. Examples of access point conditions include number of connections, processing load, memory or cache availability, current packet loss, time of day and day of the week. Graph 530 shows a probability curve with exponential decay in which an access point burden has an increasing effect on probability value.
At step 440, the probability function is adjusted based on network device conditions. Examples of access point conditions include RSSI, flight time of packets, number of connection requests, device user, and connection history. The connection history can be positive in that if a network device is identified as a priority device, a favorable probability function can be generated, or even bypassed. On the other hand, a negative connection history can result from, for example, a network device associated with malicious activity.
Graph 540 illustrates a probability curve with an inverse exponential decay. Further, the boundaries of guaranteed service are set high. Consequentially, conditions of a network device has a relatively smaller effect on probability value.
At step 450, the probability function is adjusted based on a number of connection attempts. Graph 550 illustrates how probability value increases along with the number attempts. The affect increases with the number of attempts to give priority for more persistent or longer waiting network devices. In some embodiments, connection attempts of a single networked device are tracked relative to connection probabilities. However, the access point may be the only available access point covering a particular area, or may be the only access point available to accept connections, making the probabilistic approach less valuable. Therefore, in other embodiments, connection attempts of several networked devices are tracked with the possibility of continually lowering a bypass threshold for automatically allowing a connection.
At step 460, the final probability function is output. The output can consist of one or more curves expressed as a formula or probability value.
One of ordinary skill in the art will recognize the myriad of probability curves, boundaries, types of conditions, combinations of conditions (and corresponding weighting of conditions) that are possible, given the disclosure herein.
Generic Computing Device (
The computing device 600, of the present embodiment, includes a memory 610, a processor 620, a storage device 630, and an I/O port 640. Each of the components is coupled for electronic communication via a bus 699. Communication can be digital and/or analog, and use any suitable protocol.
The memory 610 further comprises network applications 612 and an operating system 614. The network applications 620 can include the modules of network applications or access points as illustrated in
The operating system 614 can be one of the Microsoft Windows® family of operating systems (e.g., Windows 95, 98, Me, Windows NT, Windows 2000, Windows XP, Windows XP x64 Edition, Windows Vista, Windows CE, Windows Mobile, Windows 7 or Windows 8), Linux, HP-UX, UNIX, Sun OS, Solaris, Mac OS X, Alpha OS, AIX, IRIX32, or IRIX64. Other operating systems may be used. Microsoft Windows is a trademark of Microsoft Corporation.
The processor 620 can be a network processor (e.g., optimized for IEEE 802.11), a general purpose processor, an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), a reduced instruction set controller (RISC) processor, an integrated circuit, or the like. Qualcomm Atheros, Broadcom Corporation, and Marvell Semiconductors manufacture processors that are optimized for IEEE 802.11 devices. The processor 620 can be single core, multiple core, or include more than one processing elements. The processor 620 can be disposed on silicon or any other suitable material. The processor 620 can receive and execute instructions and data stored in the memory 610 or the storage device 630.
The storage device 630 can be any non-volatile type of storage such as a magnetic disc, EEPROM, Flash, or the like. The storage device 630 stores code and data for applications.
The I/O port 640 further comprises a user interface 642 and a network interface 644. The user interface 642 can output to a display device and receive input from, for example, a keyboard. The network interface 644 connects to a medium such as Ethernet or Wi-Fi for data input and output. In one embodiment, the network interface 644 includes IEEE 802.11 antennae.
Many of the functionalities described herein can be implemented with computer software, computer hardware, or a combination.
Computer software products (e.g., non-transitory computer products storing source code) may be written in any of various suitable programming languages, such as C, C++, C#, Oracle® Java, JavaScript, PHP, Python, Perl, Ruby, AJAX, and Adobe® Flash®. The computer software product may be an independent application with data input and data display modules. Alternatively, the computer software products may be classes that are instantiated as distributed objects. The computer software products may also be component software such as Java Beans (from Sun Microsystems) or Enterprise Java Beans (EJB from Sun Microsystems).
Furthermore, the computer that is running the previously mentioned computer software may be connected to a network and may interface to other computers using this network. The network may be on an intranet or the Internet, among others. The network may be a wired network (e.g., using copper), telephone network, packet network, an optical network (e.g., using optical fiber), or a wireless network, or any combination of these. For example, data and other information may be passed between the computer and components (or steps) of a system of the invention using a wireless network using a protocol such as Wi-Fi (IEEE standards 802.11, 802.11a, 802.11b, 802.11e, 802.11g, 802.11i, and 802.11n, just to name a few examples). For example, signals from a computer may be transferred, at least in part, wirelessly to components or other computers.
In an embodiment, with a Web browser executing on a computer workstation system, a user accesses a system on the World Wide Web (WWW) through a network such as the Internet. The Web browser is used to download web pages or other content in various formats including HTML, XML, text, PDF, and postscript, and may be used to upload information to other parts of the system. The Web browser may use uniform resource identifiers (URLs) to identify resources on the Web and hypertext transfer protocol (HTTP) in transferring files on the Web.
This description of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form described, and many modifications and variations are possible in light of the teaching above. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications. This description will enable others skilled in the art to best utilize and practice the invention in various embodiments and with various modifications as are suited to a particular use. The scope of the invention is defined by the following claims.
This application is a continuation of U.S. patent application Ser. No. 14/727,868, filed Jun. 2, 2015, entitled STEERING CONNECTION REQUESTS FOR AN ACCESS POINT TO A BEST-SERVING ACCESS POINT, which is a continuation of U.S. patent application Ser. No. 13/746,289, entitled DISTRIBUTED CLIENT STEERING ALGORITHM TO A BEST-SERVING ACCESS POINT by Sung-Wook HAN et al. and filed on Jan. 21, 2013, the content of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7797016 | Eran et al. | Sep 2010 | B2 |
9078198 | Han | Jul 2015 | B2 |
9538460 | Han | Jan 2017 | B2 |
20020013864 | Dandrea | Jan 2002 | A1 |
20020181417 | Malhotra | Dec 2002 | A1 |
20050053043 | Rudolf | Mar 2005 | A1 |
20070275746 | Bitran | Nov 2007 | A1 |
20080146240 | Trudeau | Jun 2008 | A1 |
20080170497 | Jeong | Jul 2008 | A1 |
20130294232 | Segev et al. | Nov 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20170071006 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14727868 | Jun 2015 | US |
Child | 15266306 | US | |
Parent | 13746289 | Jan 2013 | US |
Child | 14727868 | US |