The present application generally relates to steering systems used for driving a vehicle and, more particularly, to steering systems equipped in an autonomous vehicle.
Vehicles are being equipped for Level 3 and 4 autonomous functions. However, consumers may also want to drive vehicles by themselves at times. Accordingly, it is desirable to safely and intuitively manage a transition from autonomous driving mode into manual driving mode while driving.
According to one aspect of the invention, a steering control system for an autonomous or semi-autonomous vehicle includes a steering input device accessible to a driver for providing steering control of the vehicle in a manual steering mode. Also included is at least one autonomous steering assembly for providing steering control of the vehicle in an autonomous steering mode. Further included is a plurality of road wheels controlled by a blended output of the steering input device and the at least one autonomous steering assembly during a transition steering mode.
According to another aspect of the invention, a method of transitioning from an autonomous steering mode to a manual steering mode for an autonomous or semi-autonomous vehicle is provided. The method includes controlling a plurality of road wheels with at least one autonomous steering assembly in the autonomous steering mode. The method also includes controlling the plurality of road wheels with a blended output of the at least one autonomous steering assembly and a steering input device operated by a driver during a transition steering mode.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Transitioning from the autonomous steering mode to the manual steering mode, in what is referred to as a transition steering mode, must be handled with many considerations in mind due to the dynamic factors associated with steering the vehicle. For example, consideration must be given to the angular position of the steering input device relative to an actual road wheel angular position. Furthermore, the speed of the vehicle impacts the transitioning. In addition to the physical characteristics of the vehicle, various road conditions may be analyzed to facilitate a safe transition. To execute a safe and intuitive transition from autonomous the autonomous steering mode to the manual steering mode, the embodiments described herein and illustrated in the Figures utilize a transfer function that determines if the transition mode may be safely completed to switch the vehicle to the manual steering mode. In some embodiments, the determination also considers safe and accurate assessment of driver intent and readiness to take over control. The interplay between the transfer function and the driver intent and readiness assessment is depicted in
Referring now to
The term “blended transition” is a progression of manual vehicle steering control that is increased during the transition mode. As illustrated, at the outset 32 of the transition mode, 0% of the total vehicle steering control is allotted to the driver. During the transition mode 30, the percentage of total vehicle steering control allocated to the driver is increased, while the autonomous steering assembly 22 steering control percentage is decreased. As discussed above, the increase may follow a linear slope, a non-linear curve or a combination thereof. During the transition mode 30, one or more steering control analysis systems—such as detection equipment 10 and/or control module 18 with transfer function—receives data related to the safety of the transition to the manual steering mode to evaluate whether completion of the transition to the manual steering mode is permissible. If the system(s) determines that the completion of the transition to the manual steering mode is not permissible, the system halts the transition by reverting to the autonomous steering mode or safely bringing the vehicle to a complete stop. As shown, a buffer zone 40 may be provided after completion of the transition mode 30 and prior to the zone 50 of driving that requires manual steering control. This buffer zone 40 is sufficient to safely stop the vehicle, if needed.
Referring now to
The two primary inputs employed by the algorithms are steering command computed by an on-board path control system 80 and steering command resulting from actions of the driver on the steering input device 82 (e.g., steering wheel). Various sensors are employed to provide these inputs, including vehicle dynamic sensors, hand wheel actuator sensors, and vehicle environment sensors 84, for example. The algorithm primary output is the steering angle command and/or target lateral acceleration used to angulate the wheel of the vehicle. Based on other secondary inputs such as vehicle dynamics data and steering sensors, the algorithm will compute a virtual slippage metric that will be used to blend the two primary inputs during transition mode 30. It will also provide a measure of correlation between the inputs that can be used by a sensor fusion system assessing the readiness of a driver to assume manual control.
The embodiments disclosed herein provide for the transfer of authority from vehicle to driver with the help of a transfer function in a safe and intuitive manner.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description.
This patent application claims priority to U.S. Provisional Patent Application Ser. No. 62/469,867, filed Mar. 10, 2017, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5469356 | Hawkins | Nov 1995 | A |
7894951 | Norris | Feb 2011 | B2 |
9342074 | Dolgov | May 2016 | B2 |
9720411 | Crombez | Aug 2017 | B2 |
10289113 | Perkins | May 2019 | B2 |
20120046817 | Kindo | Feb 2012 | A1 |
20130002416 | Gazit | Jan 2013 | A1 |
20160252903 | Prokhorov | Sep 2016 | A1 |
20180164808 | Prokhorov | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
104583057 | Apr 2015 | CN |
105984485 | Oct 2016 | CN |
105988467 | Oct 2016 | CN |
106080745 | Nov 2016 | CN |
H10309961 | May 1997 | JP |
Entry |
---|
English translation of Office Action regarding related CN App. No. 201810196017.7, dated Mar. 26, 2020. |
Number | Date | Country | |
---|---|---|---|
20180257702 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62469867 | Mar 2017 | US |