Information
-
Patent Grant
-
6824443
-
Patent Number
6,824,443
-
Date Filed
Monday, January 28, 200223 years ago
-
Date Issued
Tuesday, November 30, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Ackun; Jacob K.
- Williams; Jamila
Agents
-
-
US Classifications
Field of Search
US
- 446 468
- 446 466
- 446 454
- 446 460
-
International Classifications
-
Abstract
A steering device for toy, which comprises a simple structure, and provides a stable running along a curved line. The steering device for toy, comprises: right and left turning members for turning right and left steering wheels in clockwise and counterclockwise directions around each predetermined shaft; and a connecting member for connecting the right and left turning members with each other and for forming a turning pair with each turning member; wherein the right and left turning members are turned around each predetermined shaft by shaking the connecting member in right and left directions so as to change each direction of the steering wheels; one of a coil and a magnetic body is provided on the connecting member, the other of the coil and the magnetic body is fixed to a fixing portion, and the coil and the magnetic body come close to and go away from each other by shaking the connecting member; and the connecting member takes at least two steering positions by controlling a current to be carried to the coil with a coil current carrying unit.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a steering device for toy and a running toy. In particular, the present invention relates to a steering device for toy, which steers a toy by using an electromagnetic force, and a running toy comprising the steering device, such as a vehicle toy or the like.
2. Description of Related Art
According to an earlier development, a vehicle toy using a mechanism for swinging a front wheel shaft by an electromagnetic force, has been known (Japanese Patent Application Publication No. Tokukai-Hei 11-57235). A steering device for the vehicle toy is one for steering by using a swinging motor. The swinging motor comprises a rotor provided swingably on the front wheel shaft which is provided swingably, by forming unitedly with the front wheel shaft, and a coil for swinging the rotor. The steering device for toy is constructed so that the direction of the front wheel shaft is changed by controlling the current to be carried to the coil in three states which are “OFF”, a forward direction and a reverse direction, in order to swing the swinging motor in a desired direction.
In the concrete, the cylindrical rotor is attached to the front wheel shaft. An upper end of the rotor is supported by an upper chassis. The rotor is inserted rotatably along an inner peripheral portion of a lower chassis around a rotor shaft provided vertically. One position of a peripheral portion of the rotor, which is normal to the front wheel shaft, is the N pole. The other position opposite to the one position is the S pole. On the other hand, a coil for forming the swinging motor is wound around an outer peripheral portion of a cylinder formed by the lower chassis and the upper chassis. The direction of the front wheel shaft is changed by controlling the current to be carried to the coil. A yoke is provided so as to cover an upper surface and both side surfaces, of the middle portion of the coil. When the current is not carried to the coil, the front wheel shaft keeps in a neutral position (position for directing the wheels to a straight direction) by an attractive force generated between the rotor and the yoke.
However, in the above steering device, because the front wheels are provided on both side portions of one front wheel shaft so as to swing the one front wheel shaft, the vehicle toy runs along a curved line unstably by swinging the whole front wheel shaft and the front wheels largely on a winding road or the like, for example, a road in which aright (left) curve suddenly turns to a left (right) curve. In order to solve the above problem, the front wheel shafts may be provided on right and left sides independently of each other to swing each front wheel shaft in right and left directions around a shaft provided near each front wheel. In case that the steering device is applied to this, two parts having a rotor, a coil and a yoke each must be provided on right and left sides. A coil must be wound around the rotor. Further, a coil must be wound in a slightly wider range than a projected width of the rotor so as to sufficiently cause an electromagnetic force for the rotor. As a result, there is a problem that the structure of the steering device is complicated.
SUMMARY OF THE INVENTION
In order to solve the above-described problems, an object of the present invention is to provide a steering device for toy and a vehicle toy, which have simple structures and which provide a stable running along a curved line.
That is, in accordance with the first aspect of the present invention, a steering device for a toy, comprises: right and left turning members for turning right and left steering wheels in clockwise and counterclockwise directions around each predetermined shaft; and a connecting member for connecting the right and left turning members with each other and for forming a turning pair with each turning member; wherein the right and left turning members are turned around each predetermined shaft by moving the connecting member in right and left directions so as to change each direction of the steering wheels; one of a coil and a magnetic body is provided on the connecting member, the other of the coil and the magnetic body is fixed to a fixing portion, and the coil and the magnetic body come close to and go away from each other by moving the connecting member; and the connecting member takes at least two steering positions by controlling a current to be carried to the coil with a coil current carrying unit. In this specification, the term “magnetic body” includes a permanent magnet and material which is magnetized in a magnetic field, that is, which has magnetism.
The arrangement of “coil” and “magnetic body” will be explained in this case. The “permanent magnet ” may be provided on the connecting member, and the “coil” may be provided on the fixing portion which is provided out of the connecting member. To the contrary, the “coil” may be provided on the connecting member, and the “permanent magnet” may be provided on the fixing portion which is provided out of the connecting member. The term “controlling a current” includes a control that a current is cut off, the direction of the current is changed, and the like.
According to the steering device for toy, because the connecting member takes at least two steering positions by controlling the current to be carried to the coil with a coil current carrying unit, the right and left steering wheels can be directed to at least two directions.
In the above-described steering device for toy, preferably, the permanent magnet is provided so as to direct two poles of the permanent magnet to right and left directions, and the coil is provided so as to face an edge portion of the coil to one of the poles.
In this case, in order to “direct two poles of the permanent magnet to right and left directions”, the permanent magnet is disposed so as to arrange the poles (N pole and S pole) of one permanent magnet in each of right and left positions. When two permanent magnets are used, one pole (N pole or S pole) of one permanent magnet is arranged on a left side and the other pole (S pole or N pole) of the other permanent magnet is arranged on a right side. Alternatively, the same poles (N pole or S pole) of two permanent magnets are arranged on right and left sides.
In this case, the controlling of the current to be carried to the coil, may be carried out so as to actuate the right and left coils simultaneously to move the connecting member by both an attractive force and a repulsive force which are generated between the right and left coils and the permanent magnet. Further, the controlling may be carried out so as to actuate one of the right and left coils to move the connecting member by an attractive force or a repulsive force which is generated between the actuated one of the right and left coils and the permanent magnet.
According to the steering device for toy, because the connecting member is moved to one magnetic body by controlling the current to be carried to the coil, the steering can be carried out.
The connecting member may comprise a spring for keeping the connecting member in a neutral position in which the connecting member is not biased toward a right direction nor a left direction when the current is not carried to the coil; and the connecting member may take three steering positions.
According to the steering device for toy, which has such a structure, when the current is not carried to the coil, the connecting member takes the neutral position by the spring. When the current is carried to the coil, the connecting member is moved in a direction corresponding to a direction of the current.
In accordance with the second aspect of the present invention, a steering device for a toy, comprises: right and left turning members for turning right and left steering wheels in clockwise and counterclockwise directions around each predetermined vertical shaft; a connecting member for connecting the right and left turning members with each other and for forming a turning pair with each turning member; an electromagnetic force applying member for applying an electromagnetic force for moving the connecting member in right and left directions; and a current carrying control unit for controlling an operation of the electromagnetic force applying member.
In accordance with the third aspect of the present invention, a running toy comprises: a steering device for a toy, comprising: right and left turning members for turning right and left steering wheels in clockwise and counterclockwise directions around each predetermined shaft; and a connecting member for connecting the right and left turning members with each other and for forming a turning pair with each turning member; wherein the right and left turning members are turned around each predetermined shaft by moving the connecting member in right and left directions so as to change each direction of the steering wheels; one of a coil and a magnetic body is provided on the connecting member, the other of the coil and the magnetic body is fixed to a fixing portion, and the coil and the magnetic body come close to and go away from each other by moving the connecting member; and the connecting member takes at least two steering positions by controlling a current to be carried to the coil with a coil current carrying control unit.
Preferably, the running toy further comprises a suspension for moving the right and left turning members in upper and lower directions in a predetermined range; the suspension comprising a biasing member which is supported in a middle of a width direction of the running toy so that right and left edge portions of the biasing member are elastically deformable in upper and lower directions and which extends on the right and left turning members; wherein the turning members are pressed with the right and left edge portions by a biasing force which is caused by elastically deforming the biasing member, so that the right and left steering wheels are in contact with a ground.
The running toy may further comprise: a suspension for the running toy comprising two wheel shafts for attaching right and left wheels; the suspension comprising a biasing member which is elastically deformable in upper and lower directions and is in contact with the wheel shafts in a middle of a width direction of the running toy; wherein the wheel shafts are movable in the upper and lower directions in a predetermined range; the wheel shafts are constructed so as to perform a seesaw motion by taking a contact point with the biasing member as a fulcrum; and the turning members are pressed at the contact point by a biasing force which is caused by elastically deforming the biasing member, so that the right and left steering wheels are in contact with a ground.
The running toy may further comprise: a suspension for the running toy comprising two wheel shafts for attaching right and left wheels; the suspension comprising a biasing member which extends on the wheel shafts and is supported in a middle of a width direction of the running toy so that right and left edge portions of the biasing member are elastically deformable in upper and lower directions; wherein the wheel shafts are movable in the upper and lower directions in a predetermined range; and the wheel shafts are pressed with the right and left edge portions by a biasing force of the biasing member so that the right and left steering wheels are in contact with a ground.
In accordance with the fourth aspect of the present invention, a running toy comprises:
a steering device comprising: right and left turning members for turning right and left steering wheels in clockwise and counterclockwise directions around each predetermined vertical shaft; a connecting member for connecting the right and left turning members with each other and for forming a turning pair with each turning member; an electromagnetic force applying member for applying an electromagnetic force for moving the connecting member in right and left directions; and a current carrying control unit for controlling a current to be carried to the electromagnetic force applying member, so that the connecting member takes at least two steering positions; and
a suspension device for pressing the right and left turning members which are movable in upper and lower directions in a predetermined range, so that the right and left steering wheels are in contact with a ground.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not intended as a definition of the limits of the present invention, and wherein;
FIG. 1
is a perspective view showing a vehicle toy according to one embodiment of the present invention;
FIG. 2
is a plan view showing a chassis of the vehicle toy shown in
FIG. 1
;
FIG. 3
is a perspective view showing a motor containing part of the vehicle toy shown in
FIG. 1
;
FIG. 4
is a perspective view showing the motor containing part in a state of containing a motor;
FIG. 5
is a perspective view showing an example of a motor used in the vehicle toy shown in
FIG. 1
;
FIG. 6
is a side view showing an open and close state of a motor holding plate of the vehicle toy shown in
FIG. 1
;
FIG. 7
is a block diagram showing an example of an internal circuit of the vehicle toy shown in
FIG. 1
;
FIG. 8
is a perspective view showing an embodiment of a steering device according to the present invention, which is provided in the vehicle toy shown in
FIG. 1
;
FIG. 9
is a plan view showing the steering device;
FIG. 10
is a view showing apart of the coil current carrying circuit of the vehicle toy shown in
FIG. 1
;
FIG. 11
is a vertical sectional view from the front side, which shows an embodiment of a suspension provided in the vehicle toy shown in
FIG. 1
; and
FIGS. 12A and 12B
are vertical sectional views showing each operating state of the suspension shown in FIG.
11
.
PREFERRED EMBODIMENT OF THE INVENTION
FIG. 1
is a perspective view of a racing vehicle (racing car) toy to which a steering device for toy according to an embodiment of the present invention is applied. A housing of the vehicle toy
1
includes a chassis (base body)
2
and a body
3
which are shown in
FIGS. 1 and 2
. The chassis
2
and the body
3
are formed out of plastic or the like. A front portion and side portions, of the body
3
have some elasticity. The chassis
2
and the body
3
are not limited to the following structures and the like. A recess portion or a hole portion (engaging portion) is provided on an inner side of the front portion and each inner side of the side portions. The body
3
is fixed to the chassis
2
by elastically engaging a projection portion
2
a
of the chassis
2
with the recess portion or the hole portion. The vehicle toy
1
comprises an antenna (not shown in the figure) for receiving a control signal outputted from a controller which is not shown in the figure.
FIG. 2
is a plan view showing the chassis
2
. A chargeable battery (for example, Ni—Cd battery)
4
is set to a central portion of the chassis
2
in a state of arranging it longitudinally (so as to direct it to a running direction of the vehicle toy). The battery is not limited to this. The battery
4
is attached to a battery containing part by an attachment member
5
. The attachment member
5
is formed out of plastic or the like and in an inverted U-shape so as to hold a body part of the battery
4
from the upside. Both free end portions of the attachment member
5
have some elasticity and can be deformed in two directions of coming close to and going away from each other. Each engaging pawl (engaging portion)
5
a
and
5
a
is provided on the outer side of each free end portion. The battery
4
is fixed by engaging the engaging pawls
5
a
and
5
a
with each edge (engaging portion) of two hole portions of the chassis
2
, which is not shown in the figure. Two conductive pieces
6
a
and
6
b
which can be electrically connected to the positive electrode and the negative electrode, of the battery
4
are provided on the front side and the rear side of the battery containing part. The conductive pieces
6
a
and
6
b
are partially exposed to a lower surface side of the chassis
2
. The exposed portions are not shown in the figure. The battery
4
can be charged by using the conductive pieces
6
a
and
6
b
which are partially exposed.
A motor containing part
7
is provided on a rear portion of the chassis
2
as shown in FIG.
3
. As shown in
FIG. 4
, a motor
8
is set to the motor containing part
7
in a state of arranging it transversally (so as to direct it to a horizontal direction which is normal to the running direction of the vehicle toy). The motor
8
is a DC motor. As shown in
FIG. 5
, a conductive piece
8
a
is projected from a tail portion of the motor
8
. The conductive piece
8
a
constitutes a negative terminal and is electrically connected to the negative electrode of the battery
4
. On the other hand, a body part
8
b
of the motor
8
constitutes a positive terminal and is electrically connected to the positive electrode of the battery
4
.
Hereinafter, the motor containing part
7
will be explained. The motor containing part is not limited to the following structure. As shown in
FIG. 3
, one edge of the conductive piece
6
a
which is electrically connected to the negative electrode of the battery
4
, is extended to a right side wall of the motor containing part
7
. On the other hand, one edge of the conductive piece
6
b
which is electrically connected to the positive electrode of the battery
4
, is extended to the bottom of the motor containing part
7
. When the motor
8
is set to the motor containing part
7
as shown in
FIG. 4
, the negative terminal
8
a
projecting from the tail portion of the motor
8
is electrically connected to the conductive piece
6
a
automatically. Further, the positive terminal
8
b
provided on the body part of the motor
8
is electrically connected to the conductive piece
6
b
automatically. A gear
8
c
is fixed to a motor shaft of the motor
8
so as to transmit the rotation of the motor
8
to the gear
8
c.
A gear
7
a
and a gear
7
b
are set near the left side wall of the motor containing part
7
as shown in
FIGS. 2
to
4
. These gears
7
a
and
7
b
are unitedly formed out of plastic or the like, and are constructed so as to idle themselves around a transversal shaft (rotational shaft)
9
. The gear
7
b
is engaged with a gear
7
c
which is fixedly provided on a rear wheel shaft
2
h
for the rear wheels
2
b
and
2
b
. As a result, the rear wheels
2
b
and
2
b
are rotated by transmitting the power of the motor from the gear
7
a
to the gears
7
b
and
7
c
in order.
Further, a motor holding plate
10
is provided on the rear portion of the chassis
2
as shown in
FIGS. 2
to
4
. The motor holding plate
10
is not limited to the following structure. The motor holding plate
10
is formed out of copper or the like. A plurality of slits or holes are suitably provided in order to satisfy both the improvement on the radiation of the motor
8
and the effect of holding the motor
8
. The motor holding plate
10
is constructed so as to be rotatable around the transversal shaft
9
extending in a transverse direction on the front side of the motor containing part
7
. The motor holding plate
10
is constructed so as to take an open position (A shown in
FIG. 6
) in which the motor containing part
7
is opened, and a close position (B shown in
FIG. 6
) in which the motor containing part
7
is closed, by rotating it around the transversal shaft
9
. The motor holding plate
10
is constructed so as to hold the body part
8
b
of the motor
8
set to the motor containing part
7
when the motor holding plate
10
is in the close position.
A middle portion of the motor holding plate
10
in a width direction, is curved. An end of the curved portion constitutes an engaging portion
10
a
. The curved portion has some elasticity. When the motor holding plate
10
is moved from the open position (A shown in
FIG. 6
) to the close position (B shown in
FIG. 6
) by rotating it around the transversal shaft
9
, the curved portion is inserted into a hole portion
11
provided on a rear side of the motor containing part
7
of the chassis
2
. The engaging portion
10
a
is engageable with an edge (engaging portion)
11
a
of the hole portion
11
by using the elasticity of the motor holding plate
10
.
FIG. 7
is a block diagram showing an internal circuit of the vehicle toy
1
. The vehicle toy
1
comprises a receiver
12
for receiving a control signal outputted from a remote controller (which is not shown in the figure) via an antenna (which is not shown in the figure), and a control device
13
for controlling the current to be carried to the motor
8
and the coil
14
, of the vehicle toy
1
, in accordance with the control signal received by the receiver
12
. The control device
13
is arranged on a printed wiring board which is not shown in the figure. The printed wiring board is disposed above the battery
4
.
Next, a steering device of the vehicle toy
1
will be explained in detail. As shown in
FIG. 8
, the steering device
20
of the vehicle toy
1
comprises right and left knuckle arms (turning member)
21
and
21
on which right and left front wheel shafts
21
a
and
21
a
are provided respectively, and a tie rod (connecting member)
22
for connecting the right and left knuckle arms
21
and
21
with each other.
The front wheel shaft
21
a
is provided on each knuckle arm
21
. The front wheel
2
c
is attached to the front wheel shaft
21
a
so as to be able to idle it. As shown in
FIG. 9
, the right and left knuckle arms
21
and
21
are supported by the chassis
2
so as to be turnable around each of right and left shafts
21
b
and
21
b
. An upper edge portion and a lower edge portion, of each of the right and left shafts
21
b
and
21
b
are inserted into a hole portion of a lower chassis
2
e
and that of an upper chassis
2
f
, respectively, as shown in FIG.
11
. The hole portion into which the upper edge portion of each shaft
21
b
and
21
b
is inserted, penetrates through the upper chassis
2
f
vertically. The right and left knuckle arms
21
are slightly movable vertically between the lower chassis
2
e
and the upper chassis
2
f
. On the other hand, the tie rod
22
constructs turning pairs with the free end portions of the knuckle arms
21
at the positions of the shafts
21
c
provided on both edge portions of the tie rod
22
. As a result, when the tie rod
22
moves in right and left directions, each of the right and left knuckle arm
21
is turned around the shaft
21
b
. The directions of the right and left front wheels
2
c
are changed.
A torsion spring
23
is provided on the tie rod
22
. A spiral portion of a head part of the torsion spring
23
is set to a projection
22
a
provided on the tie rod
22
. Two rod portions formed on both sides of the torsion spring
23
are hung so as to sandwich the projection
22
b
provided on the tie rod
22
in the course thereof. An end portion of the torsion spring
23
is hung by a trim (fixing portion)
25
provided behind the tie rod
22
. In the concrete, the end portion of the torsion spring
23
is hung by an eccentric cam
25
a
of the trim
25
. The eccentric cam
25
a
is turned in clockwise and counterclockwise directions around the shaft line
25
c
by turning the lever
25
b
exposed under the chassis
2
, in clockwise and counterclockwise directions around the shaft line
25
c
. A neutral position of the tie rod
22
can be finely adjusted by turning the eccentric cam
25
a
. The torsion coil spring
23
keeps the tie rod
22
in a position (neutral position) which is not biased in either right or left directions.
A permanent magnet
24
is disposed on a front side of the tie rod
22
. The permanent magnet
24
is formed in a disk shape, and is disposed so as to direct both side surfaces (both pole faces) thereof to right and left directions. One side surface of the permanent magnet
24
is an S pole. The other side surface is a N pole. Two coils
14
and
14
are provided in front of the tie rod
22
on the right and left sides. The coil
14
is a round air core coil in which a core does not exist. One end portion of each coil
14
faces to the side surface of the permanent magnet
24
disposed on the tie rod
22
. Needless to say, a coil having a core can be also used as a coil
14
. The reason why a disk-shaped permanent magnet and a round air core coil are used is that the whole toy is downsized and lightened by not inserting a core into a coil. In case of the round air core coil, a magnetic force to be generated by the coil is weak. However, this problem is solved by using the torsion spring coil
3
having a slight biasing force.
FIG. 10
shows apart of the coil current carrying circuit. A current carrying operation of the coil current carrying circuit is controlled by the coil current carrying control unit. The coil current carrying circuit is constructed so as to carry the current to the right and left coils
14
and
14
simultaneously. The coil current carrying circuit is constructed so that each side of the coils
14
and
14
, which faces to the both side surfaces of the permanent magnet
24
becomes the same pole (N pole or S pole) when the current is carried to the right and left coils
14
and
14
simultaneously. Therefore, when the current is carried to the right and left coils
14
and
14
, an attractive force is generated between one coil
14
and the permanent magnet
24
and a repulsive force is generated between the other coil
14
and the permanent magnet
24
. As a result, the tie rod
22
is shaken against the biasing force of the torsion coil spring
23
. In this case, in order to change the shaking direction of the tie rod
22
, the direction of the current to be carried to the coils
14
and
14
may be changed by the coil current carrying control unit.
Alternatively, the coil current carrying circuit may be constructed so that the current is selectively carried to one of the right and left coils
14
and
14
. Then, the tie rod
22
may be shaken by an attractive force or a repulsive force, which is generated between the coil
14
to which the current is carried, and the permanent magnet
24
.
FIG. 11
shows an embodiment of a suspension for the vehicle toy according to the present invention. The suspension
40
comprises a leaf spring
30
. The leaf spring
30
is disposed on the upper chassis
2
f
. A middle portion of the leaf spring
30
is curved in a U-shape. The curved portion is lightly held by a shaft
41
provided on the upper chassis
2
f
. On the other hand, the right and left edge portions of the leaf spring
30
are arranged on hole portions for inserting each upper edge portion of the shafts
21
b
and
21
b
therein and are in contact with the shafts
21
b
and
21
b
so as to press each upper edge of the shafts
21
b
and
21
b
. Thereby, the leaf spring
30
has a function of absorbing a shock from a road surface, which is caused in accordance with bumps of a running surface for the front wheels
2
of the vehicle toy
1
.
FIGS. 12A and 12B
show different operating states of the suspension shown in
FIG. 11
from each other. As shown in
FIG. 12A
, when one side front wheel
2
c
is moved up in a direction of an arrow, one side portion of the leaf spring
30
(portion from the shaft
41
to the above-described front wheel
2
c
) is bent. As shown in
FIG. 12B
, when both side front wheels
2
c
and
2
c
are moved up, both side portions of the leaf spring
30
, which are extended from the shaft
41
, are bent. Thereby, the leaf spring
30
can absorb a shock from a road surface, which is caused in accordance with bumps of a running surface for the front wheels
2
of the vehicle toy
1
. Further, the wheels can be properly contacted with a running surface.
Needless to say, the structure of the suspension is effective, even though the suspension is not combined with the steering device.
As described above, the embodiment of the present invention is explained. However, the present invention is not limited to the above embodiment. Needless to say, any modification may be adopted without departing from the gist thereof.
For example, although a permanent magnet is provided on the tie rod and two coils are provided on both sides of the permanent magnet in this embodiment, a coil may be provided on the tie rod and two permanent magnet may be provided on both sides of the coil. In essence, the steering device has a structure that the tie rod is moved in right and left directions by an electromagnetic force generated between a coil and a permanent magnet.
Although a permanent magnet is provided as a magnetic body in the embodiment, a magnetic body which is not magnetized may be provided instead of a permanent magnet.
As described above, in accordance with a steering device for toy according to the present invention, because a tie rod takes at least two steering positions by controlling the current to be carried to the coil with the coil current carrying control unit, the structure thereof can be simple. Further, it is possible to suitably run a toy along a curved line.
In accordance with a running toy according to the present invention, it is possible to steer rapidly. Further, it is possible to enjoy racing on a course having curves, such as a circuit or the like.
The entire disclosure of Japanese Patent Application No. Tokugan 2000-361533 filed on Nov. 28, 2000 including specification, claims drawings and summary are incorporated herein by reference in its entirety.
Claims
- 1. A steering device for toy, comprising:right and left turning members for turning right and left steering wheels in clockwise and counterclockwise directions; a connecting member for connecting the right and left turning members with each other; a coil and magnetic body to move the connecting member in right and left directions by carrying a current to the coil; and a torsion spring to keep the connecting member at a neutral position when the current is not carried to the coil; wherein the right and left turning members are turned by moving the connecting member in right and left directions so as to change each direction of the steering wheels; one of the coil and the magnetic body is provided on the connecting member, the other of the coil and the magnetic body is fixed to a fixing portion, and the connecting member is moved in right and left directions when the coil and the magnetic body come close to and go away from each other; the connecting member takes at least two steering positions by controlling a current to be carried to the coil with a coil current carrying unit; and the coil is an air core coil.
- 2. The steering device for toy as claimed in claim 1, wherein the magnetic body is a permanent magnet and is provided on the connecting member, and the coil is fixed to the fixing portion.
- 3. The steering device for toy as claimed in claim 2, wherein the permanent magnet is provided so as to direct two poles of the permanent magnet to right and left directions, and the coil is provided so as to face an edge portion of the coil to one of the two poles.
- 4. The steering device for toy as claimed in claim 1, wherein the connecting member comprises a spring for keeping the connecting member in a neutral position in which the connecting member is not biased toward a right direction nor a left direction when the current is not carried to the coil; andthe connecting member takes three steering positions.
- 5. The steering device as claimed in claim 1, further comprising:a trim to adjust the neutral position of the connecting member by precisely adjusting a position of the torsion spring, wherein the trim comprises an eccentric cam to hang an end position of the torsion spring; and a lever to rotate the eccentric cam, wherein the eccentric cam is rotated and the position of the torsion spring and the neutral position of the connecting member are precisely adjusted by operating the lever.
- 6. A steering device for toy, comprising:right and left turning members to turn right and left steering wheels in clockwise and counterclockwise directions; a connecting member to connect the right and left turning members with each other; an air core coil to apply an electromagnetic force to move the connecting member in right and left directions to turn the right and left steering wheels; a magnetic body to attract/repel the air core coil when a current is supplied to the air core coil; a current carrying control unit to control an operation of the air core coil; and a torsion spring to keep the connecting member at a neutral position when the current is not carried to the coil.
- 7. A running toy comprising:a steering device for toy, comprising: right and left turning members to turn tight and left steering wheels in clockwise and counterclockwise directions; a connecting member to connect the right end left turning members with each other; a coil and a magnetic body to move the connecting member in right and left directions by carrying a current to the coil; and a torsion spring to keep the connecting member at a neutral position when the current is not carried in the coil, wherein the right and left turning members are turned by moving the connecting member in right and left directions to change each direction of the steering wheels; wherein one of the coil and the magnetic body is provided on the connecting member, the other of the coil and the magnetic body is fixed to a fixing portion; the connecting member is moved in right and left directions when the coil and the magnetic body come close to and go away from each other; the connecting member takes at least two steering positions by controlling a current to be carried to the coil with a coil current carrying control unit; and the coil is an air core coil.
- 8. The running toy as claimed in claim 7, further comprising a suspension for moving the right and left turning members in upper and lower directions in a predetermined range; the suspension comprising a biasing member which is supported in a middle of a width direction of the running toy so that sight and left edge portions of the biasing member are elastically deformable in upper and lower directions and which extends on the right and left turning members; wherein the turning members are pressed with the right and left edge portions by a biasing force which is caused by elastically deforming the biasing member, so that the right and left steering wheels are in contact with a ground.
- 9. The running toy as claimed in claim 7, further comprising:a trim to adjust the neutral position of the connecting member by precisely adjusting a position of the torsion spring, wherein the trim comprises an eccentric cam to hand an end position of the torsion spring; and a lever to rotate the eccentric cam, wherein the eccentric cam is rotated and the position of the torsion spring and the neutral position of the connecting member are precisely adjusted by operating the lever.
- 10. A running toy comprising:a steering device comprising: right and left turning members to turn right and left steering wheels in clockwise and counterclockwise directions; a connecting member to connect the right and left turning members with each other; an air core coil to apply an electromagnetic force to move the connecting member in right and left directions to turn the right and left steering wheels; a magnetic body to attract/repel the air core coil when a current is supplied to the air core coil; a current carrying control unit to control a current carried to the air core coil, so that the connecting member takes at least two steering positions; a torsion spring to keep the connecting member at a neutral position when the current is not carried to the coil; and a suspension device to press the right and left turning members which are movable in upper and lower directions in a predetermined range, so that the right and left steering wheels are in contact with a ground.
- 11. A steering device for a toy, comprising:right and left turning members to turn right and left steering wheels; a connecting member to connect and turn the right and left turning members to take at least two steering positions in correspondence with coil current from a coil current carrying unit; an air core coil and a magnetic body, one of the air core coil and the magnetic body on the connecting member and the other fixed to a fixing portion, to use coil current to move the connecting member in right and left directions as the coil and magnetic body approach/depart from each other; and a torsion spring to hold the connecting member in neutral when no coil current is applied.
- 12. A steering device for a toy, comprising:right and left turning members to turn right and left steering wheels; a tying member to connect the light and left turning members; an air core coil to, upon receiving current, apply an electromagnetic force to move the tying member in right and left directions, to turn the right and left steering wheels; a magnetic body to attract/repel the air core coil; a control unit to control current to the air core coil; and a torsion spring to keep the tying member in neutral when the coil current is halted.
- 13. A running toy comprising:a steering device for the toy, comprising: right and left turning units to turn right and left steering wheels; a tying member, to tie and move the right and left turning units into at least two steering positions in correspondence with coil current from a coil current control unit; an air core coil and a magnetic body, one on the tying member and the other fixed to a fixing portion, to move the tying member in right and left directions when a current is applied to the air core coil, moving the air core coil toward/away from the magnetic body; and a torsion spring to keep the tying member in neutral when the current is halted.
- 14. A running toy comprising:a steering device comprising: right and left turning units to turn right and left steering wheels; a tying member to tie and move the right and left turning units into at least two steering positions; an air core coil to apply an electromagnetic force to move the tying member in right and left directions to turn the right and left steering wheels; a magnetic body to attract/repel the air core coil due to the electromagnetic force; a control unit to control a current to the air core coil; a torsion spring to keep the tying member in neutral when the current is halted; and a suspension device to press the right and left turning units which are movable in upper and lower directions in a predetermined range, to force the right and left steering wheels to contact a ground.
US Referenced Citations (18)
Foreign Referenced Citations (8)
Number |
Date |
Country |
2 112655 |
Jul 1983 |
EP |
0307659 |
Mar 1989 |
EP |
1095490 |
Dec 1967 |
GB |
2201549 |
Sep 1988 |
GB |
61-2884 |
Jan 1986 |
JP |
3111077 |
May 1991 |
JP |
11-57235 |
Mar 1999 |
JP |
11-057235 |
Mar 1999 |
JP |