Not applicable.
The present invention relates generally to a steering head for use with an auger for boring through soil.
Underground dredging and boring operations are necessary for the laying of underground utility lines (e.g. water, sewer, and power). The boring or tunneling of the soil to clear a path for such underground utility lines requires the use of a steering head, a casing, an auger unit, and an auger machine. The casing is typically weldably mounted to the steering head at one end and engaged to the auger machine at the opposite end, with an auger unit extending from the auger machine through the casing and into the steering head. The auger machine rotates the auger, thereby enabling the auger unit to perform the boring or tunneling operation through the surrounding soil. The auger removes the soil through the steering head and into the auger machine. As the bore hole is lengthened, additional sections of casing are welded to previously laid casings until a utility crossing line is completed. The auger machine, auger, and steering head are then removed, and a utility line is then run through the interconnected casings.
The cutting direction of the steering head through the soil will largely determine the path of the underground piping. Accordingly, the maneuverability of the steering head is critical to accurately cutting a desired path through the soil. The more maneuverable the steering head, the easier it may be to accurately steer through the soil. As a result, the maneuverability of the steering head may also improve the efficiency of the boring operation.
It is understood that prior art steering heads included a lateral hinge on each side of the steering head. A pipe-like rod mounted on top of the steering head by a nut and bolt configuration engageably connected each lateral hinge. The rotational loosening or tightening of the nut and bolt by a wrench allowed the position of each lateral hinge to be modified, thereby enabling the adjustment of the elevational direction of the steering head along a vertical axis. However, the position of the steering head along a horizontal axis could not be adjusted in these prior art steering heads. Furthermore, the amount of vertical adjustment was limited by the amount of torsion that could be applied to the nut and bolt configuration Other prior art steering heads utilized projections allowing some adjustment of the direction of the steering head along both vertical and horizontal axes. However, it is understood that the projections on these steering heads could not be completely closed. As a result, the frictional and impact forces between the projections and the surrounding soil wall as well as the penetration of soil under these projections reduced the efficiency of operation and maneuverability of these steering heads. Accordingly, more power and time was required to complete the boring operation. This resulted in increased labor and utility costs budgeted for a project. Furthermore, it is understood that the repeated impact between the steering head projections and the soil wall deformed these projections, thereby damaging the steering head and reducing its operational efficiency, resulting in added equipment and repair costs. In order to partially offset the occurrence of deformation, it is understood that these prior art steering head projections could be partially closed manually, a process that again reduced the efficiency of the boring operation.
Accordingly, there appears to be a need in the art for a new steering head with increased maneuverability along vertical and horizontal axes through various types of soil material for increased efficiency in the boring operation.
According to an aspect of the present invention, there is provided a steering head for use with an auger and a casing engaged to the auger for boring through soil. The steering head comprises a generally cylindrical body defining a longitudinal body axis. The body may have a first body end and an opposing second body end. The second body end may be mounted to the casing. The body may further have a bore channel with a channel surface concentrically received in the body, a front lip radially extending from the bore channel proximate to the first body end, and a rear lip radially extending from the bore channel proximate to the second body end. The body may further have a body surface enveloping the body from the front lip to the rear lip. The body may also have a lead edge radially extending from the front lip at the first body end, with the lead edge having a first soil face and an opposing lead face. The steering head may further have an outer tube having an internal side and an opposing external side. The internal side may generally face and be operative to cover the body surface and the lead face from the first body end to the second body end. The steering head may further have a steering flap disposed on the external side of the outer tube defining a longitudinal flap axis and a generally lateral flap axis disposed perpendicular to the longitudinal flap axis. The steering flap may have a first flap face and an opposing second flap face. The first flap face may be disposable facing toward and generally parallel to the body surface in a retracted position. The first flap face may be disposable radially away from the body surface in an extended position. The steering flap may further have a distal end and a hinge end. The hinge end may generally be disposed between a distal end and the lead edge. The hinge end may be mountable to the outer tube by a biased hinge operative to retract the steering flap into the retracted position. The steering head may further have a powered actuator mountable to the first flap face and the body surface. The powered actuator when activated may be operative to extend the first flap face into the extended position.
The steering head is innovative in that the powered actuator may be mounted to the first flap face of the steering flap and the body surface of the steering head's body. When operative, the powered actuator may extend the first flap face into the extended position, thereby enabling the steering head to change the direction of its cutting path. In the extended position, the steering flap will encounter frictional resistance forces with the soil wall, thereby causing the lead edge of the steering head to move in a direction opposing the extended steering flap. For example, if a steering flap on the right side of the steering head is extended, the lead edge of the steering head will tend to move in a direction toward the left through the soil. These same frictional resistance forces will cause the lead edge of the steering to tend to move in an upward direction in the soil with a steering flap extended on the bottom of the steering head. Once the desired alignment has been achieved, the powered actuator may then be deactivated. This in turn uniquely enables the biased hinge at the hinge end of the steering flap to automatically retract the steering flap into a completely closed position by operation of the spring action of the biased hinge with the assistance of the frictional impact forces of the soil wall pushing on the steering flap. This configuration uniquely allows the steering head to be more maneuverable and therefore easier to steer through a desired cutting path in the soil, along both vertical and longitudinal axes. The steering head is therefore able to operate more efficiently, thereby reducing the amount of time spent and power consumed in the boring operation on a project. Furthermore, as the steering flap may be automatically closed at the hinge end by the biased hinge, the steering flap may be less likely to be deformed or allow soil to enter the steering head underneath a steering flap in the extended position. Accordingly, the steering flap may not sustain damage as frequently during the boring operation and its longevity may therefore be increased.
According to other embodiments of the present invention, the body of the steering head may be made of any durable metal, including steel. Similarly, the lead edge of the steering head may also be made of a durable metal, including steel.
In a further embodiment of the present invention, the steering head may further include a stiffening ring concentrically extending from the front lip proximate to the lead edge. The stiffening ring may have a second soil face facing toward the longitudinal body axis. The stiffening ring may further have an opposing ring face covered by the outer tube facing away from the longitudinal body axis between the body surface and the lead face.
In another embodiment, the steering head may further include a rear edge concentrically extending from the rear lip and mountable to the casing. The rear edge may have a casing face facing toward the longitudinal body axis and an opposing rear face facing away from the longitudinal body axis. The rear face may be covered by the outer tube.
In yet a further embodiment, the steering head may include a plurality of steering flaps disposed on the external side of the outer tube. Each steering flap may define a longitudinal flap axis and a generally lateral flap axis disposed perpendicular to the longitudinal flap axis. Each steering flap may have a first flap face and an opposing second flap face. Each first flap face may be disposable facing toward and generally parallel to the body surface in a retracted position. Each first flap face may be disposable radially away from the body surface in an extended position. Each steering flap may further have a distal end and an opposing hinge end. Each hinge end may be generally disposed between the distal end and the lead edge. Each hinge end may be mountable to the outer tube by a biased hinge operative to retract the steering flap into the retracted position.
As discussed above, this configuration uniquely enables the steering head to be more maneuverable in soil and therefore more efficient in its boring operation. The plurality of steering flaps may enable an efficient change of direction of the steering head toward the desired cutting path. For example, if a steering flap on the right side of the steering head is extended, a steering head on the left side of the steering head may be retracted, thereby steering the lead edge of the steering head toward the left. Likewise, these same frictional resistance forces will cause the lead edge of the steering to tend to move in an upward direction in the soil with a steering flap extended on the bottom of the steering head and retracted on the top of the steering head. With the deactivation of the powered actuator on a steering flap, the configuration of the spring action on the biased hinge of each deactivated steering flap uniquely enables these steering flaps to uniformly retract with the assistance of the frictional impact forces of the soil wall on the steering flaps. This configuration may therefore improve the efficiency of the boring operation and the longevity of the steering head.
In another embodiment, the biased hinge on the steering flap may be spring-loaded. In an alternative embodiment, the biased hinge may be made of spring steel. As discussed above, the spring operation of the biased hinge uniquely enables the steering flaps to retract into their retracted position with the assistance of the frictional impact forces of the soil wall.
According to another embodiment of the present invention, the steering head may further include a plurality of biased hinges on the hinge end of the steering flap.
In another embodiment, the steering head may have a plurality of powered actuators mounted to the first flap face of each steering flap.
In another embodiment, the powered actuator may be a hydraulic air or electric actuator having a motor, a cylinder, and a shaft. The shaft may be mounted to the first flap face. The hydraulic air or electric actuator may be operative to extend the first flap face, with the cylinder powered by the motor in the case of an electric actuator to extend the shaft mounted to the first flap face.
According to another embodiment, a steering head may include a plurality of powered actuators, with each steering flap having a powered actuator mountable to each first flap face.
In yet a further embodiment, the steering head may include an altitude sensor disposed on the outer tube proximate to the second body end. The altitude sensor may be operative to measure the position of the steering head along a vertical soil axis in the soil. In another embodiment, the steering head may also include a first positional sensor on the rear lip proximate to the second body end. The first positional sensor may be operative to measure the position of the steering head along a horizontal soil axis in the soil. The steering head may also include a second positional sensor adjacent to the first positional sensor.
The combination of an altitude sensor and one or more positional sensors may uniquely enable the steering head to be accurately positioned in the desired cutting path of the soil, along vertical and horizontal axes. The information gathered by the altitude sensor and the positional sensors may therefore indicate when one or more of the steering flaps should be extended or retracted, depending on the position of the steering head in reference to the desired cutting path.
In yet a further embodiment, the steering head may further include a rear hatch on the outer tube proximate to the second body end. The rear hatch may be operative to cover at least one power and/or communication line from an external control system to the steering head. In another embodiment, the steering head may also include a top box on the outer tube extending from the rear hatch toward the first body end. In one embodiment, the top box may be operative to cover a multifunctional sensor positioned underneath the top box. The multifunctional sensor may be operative to measure the depth, position, pitch, and roll of the steering head in the soil.
In another embodiment of the present invention, the steering head may further include one or more shields laterally disposed on the first flap face of the steering flap adjacent to the outer tube. The shields may be operative to prevent soil from entering beneath the steering flap in the extended position and to provide support to the steering flap. In another embodiment, a center rib may be disposed proximate to the shields operative to provide additional support to the steering flap.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
The drawings referred to herein are for the purposes of illustrating the preferred embodiments of the present invention and not for the purposes of limiting the same.
Referring again to
In one embodiment of the steering head 10, the distance between the front lip 26 and the rear lip 28 is approximately 48 inches. However, it is contemplated within the scope of the present invention that the distance from the front lip 26 to the rear lip 28 may be more or less than 48 inches, depending on the requirements of the boring operation.
Although the steering head 10 depicted in
Still referring to
Referring now to an exploded rear view of an embodiment of the steering head 10 in
Referring again to
In one embodiment of the steering head 10 with an outer tube 44 whose diameter is greater than 30 inches, the bore channel 22 may have a corresponding diameter that is approximately 12 inches less than the diameter of the outer tube 44. However, it is contemplated within the scope of the present invention that the ratio of the diameter of the outer tube 44 and the bore channel 22 may be varied, depending on the requirements of the boring operation.
Although the steering head 10 may be typically made of metal such as steel to withstand the impact and frictional forces of soil 11 pressing upon the lead edge 38, the outer tube 44, and the channel surface 24, it is also contemplated within the scope of the present invention that the various aspects of the steering head 10 may be employed from any hard, durable material.
Referring again to
In one embodiment of the steering head 10, the steering flaps 50, 80 will have a diameter that is approximately 114 inch wider than the diameter of the outer tube 44. This configuration uniquely enables the steering flaps 50, 80 to absorb most of the frictional resistance and impact forces with the soil wall 11, thereby potentially reducing the amount of drag and friction on the casing 108 mounted to the second body end 20 of the steering head 10. However, it is contemplated within the scope of the present invention that the diameter of the steering flaps 50, 80 as compared to the diameter of the outer tube 44 may be varied, depending on the requirements of the boring operation.
As shown in
In
Although the steering flaps 50, 80 depicted in
In one embodiment of the steering head 10, the hinge end 68 of the steering flaps 50, 80 may be positioned between approximately 8 to 18 inches from the lead edge 38, thereby enabling a quicker response time for the lead edge 38 to change direction. However, it is contemplated within the scope of the present invention that the hinge end 68 of the steering flaps 50, 80 may be positioned less than 8 inches or more than 18 inches from the lead edge 38, depending on the requirements of the boring operation.
Referring now to
Referring to
For example, if a steering flap 50, 80 on the right side of the steering head 10 is in the extended position 64, the lead edge 38 will tend to move in a direction toward the left through the soil 11. These same frictional resistance forces will cause the lead edge 38 of the steering head 10 to tend toward an upward direction in the soil 11 with the steering flap 50, 80 in the extended position 64 on the bottom of the steering head 10, as depicted in
Referring to
A plurality of steering flaps 50, 80 may enable an efficient change of direction of the steering head 10 toward the desired cutting path. For example, if a steering flap 50, 80 on the right side of the steering head 10 is extended, a steering flap 50, 80 on the left side of the steering head 10 may be retracted, thereby steering the lead edge 38 of the steering head 10 toward the left. Likewise, these same frictional resistance forces will cause the lead edge 38 of the steering head 10 to tend in an upward direction along a vertical soil axis 94 with the steering flap 50, 80 on the bottom of the steering head 10 in the extended position 64 and with a steering flap 50, 80 on the top of the steering head 10 in the retracted position 62, as shown in
Although one of the steering flaps 50, 80 depicted in
Referring to
The altitude sensor 92 may be disposed on the outer tube 44 proximate to the second body end 20. The altitude sensor 92 may be operative to measure the position of the steering head 10 along a vertical soil axis 94 in the soil 11. With information obtained from the altitude sensor 92, the steering flaps 50, 80 may be adjusted such that the steering head 10 may be positioned to go higher and/or deeper into the soil 11, depending on the desired cutting path. In a further embodiment, the steering head 10 may also include a first positional sensor 96 on the rear lip 28 proximate to the second body end 20. The first positional sensor 96 may be operative to measure the position of the steering head 10 along a horizontal soil axis 98 in the soil 11. In yet a further embodiment, the steering head 10 may further include a second positional sensor 100 adjacent to the first positional sensor 98. The first positional sensor 96 and/or the second positional sensor 100 may for example be light fixtures operative to fix the position of the steering head 10 by illuminating the cutting path of the soil 11. With the information provided by the first positional sensor 96 and/or the second positional sensor 100, the steering flaps 50, 80 may be adjusted and the direction of the steering head 10 may accordingly be modified to the left or to the right in the soil 11, depending on the desired cutting path.
Referring to
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
This application is a continuation of U.S. patent application Ser. No. 14/480,304 filed Sep. 8, 2014, now U.S. Pat. No. 9,551,187 issued Jan. 24, 2017, which is a continuation of U.S. patent application Ser. No. 14/027,839 filed on Sep. 16, 2013, now U.S. Pat. No. 8,827,007 issued Sep. 9, 2014, which is a continuation of U.S. patent application Ser. No. 13/669,068 filed Nov. 5, 2012, now U.S. Pat. No. 8,534,385 issued Sep. 17, 2013, which is a continuation of U.S. patent application Ser. No. 13/243,231 filed Sep. 23, 2011, now U.S. Pat. No. 8,302,704 issued Nov. 6, 2012, which is a continuation of U.S. patent application Ser. No. 12/433,587 filed Apr. 30, 2009, now U.S. Pat. No. 8,276,687 issued Oct. 2, 2012, the entire disclosures of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 14480304 | Sep 2014 | US |
Child | 15412623 | US | |
Parent | 14027839 | Sep 2013 | US |
Child | 14480304 | US | |
Parent | 13669068 | Nov 2012 | US |
Child | 14027839 | US | |
Parent | 13243231 | Sep 2011 | US |
Child | 13669068 | US | |
Parent | 12433587 | Apr 2009 | US |
Child | 13243231 | US |