The present invention relates to the field of steering assemblies used for downhole directional drilling. The prior art discloses directional drilling drill bit assemblies.
U.S. Pat. No. 6,550,548 to Taylor, which is herein incorporated by reference for all that it contains, discloses a rotary steering apparatus including a drill string, a drill bit, a main body connected at one end to the drill string and at another end to the drill bit, a sleeve extending around the main body such that the main body is freely rotatable within the sleeve, and a locking member affixed to the main body and interactive with the sleeve. The sleeve has at least one protruding pad extending outwardly therefrom so as to bear against a well bore. The locking member serves to lock the sleeve relative to the main body such that the sleeve rotates correspondingly with a rotation of the main body. The locking member locks the sleeve onto the main body relative to an increased flow rate of fluid through the interior passageway of the main body. The locking member includes a flipper pivotally connected to the main body so as to extend into the longitudinal passageway and a spring resiliently connected to the flipper so as to urge the flipper into the interior passageway with a desired spring rate.
U.S. Pat. No. 5,941,323 to Warren, which is herein incorporated by reference for all that it contains, discloses a drilling tool for use with a drill string into which drilling fluid is pumped. The tool comprises: a non-rotating housing having stabilizer blades on its outer surface; a rotating mandrel, passing through the housing; extendible blade means for moving the housing relative to a borehole; and a cam mechanism that is carried by at least one of the mandrel and the housing, and that is operated by drill string rotation and the flow of drilling fluid for operating the extendible blade means to move the drill string and steer the drill bit attached hereto.
In one aspect of the present invention, a steering assembly for downhole directional drilling comprises a drill bit with a cutting portion and an outer diameter. A steering ring is disposed around the outer diameter, and at least one biasing mechanism is disposed intermediate the outer diameter and the steering ring. The at least one biasing mechanism is configured to move the steering ring with respect to the outer diameter.
The biasing mechanism may comprise an expandable element. The expandable element may comprise a composite, rubber, metal, ceramic, and combinations thereof. In some embodiments, when in expandable element is contracted, it may comprise two opposing sides joined by a length with an arched shape.
The biasing mechanism may comprise a piston or a ball configured to push against the steering ring so to move the steering ring with respect to the outer diameter. At least three biasing mechanisms may be equally spaced around the outer diameter.
The steering ring may comprise one continuous body. In some embodiments, the ring is rotationally fixed to the outer diameter. A plurality of cutting elements and/or junk slots may be disposed on the steering ring. A plurality of vanes may be disposed intermediate a plurality of biasing mechanisms and intermediate the steering ring and the outer diameter wherein the biasing mechanism may comprise a pressure region defined by the plurality of vanes.
A valve may be configured to control fluid pressure to the biasing mechanisms. The valve may be controlled by a telemetry system or an electronic circuitry system.
The drill bit may be an inner bit disposed in a bore of an outer bit. The steering ring may be disposed intermediate the outer bit and the inner bit. The steering ring may be configured to push against an inner diameter formed by the outer bit.
In another aspect of the present invention, a method of steering a drill string comprises the steps of: providing a drill bit comprising a cutting portion and an outer diameter, a steering ring disposed around the outer diameter, and a biasing mechanism disposed intermediate the outer diameter and the steering ring; deploying the drilling with in a wellbore; biasing the steering ring by the biasing mechanisms; and pushing off a surface by the steering ring.
The step of biasing may comprise applying fluid pressure on the biasing mechanism. The surface may be a surface of the wellbore or an inner diameter formed by an outer drill bit.
Referring now to the figures,
A steering ring 203 may be disposed around the outer diameter 202, made of one continuous body. The steering ring 203 may also comprise a plurality of blades 208, cutting elements 204, wear blades, junk slots 205 and combinations thereof. During drilling operations, the ring's blades 208 may contact the formation 105. In some embodiments, the blades 208 may be stabilizer blades that center the drill bit 104. The ring's junk slots 205 may be configured to allow drilling mud and debris to pass by the steering ring 203 while the steering ring 203 is in substantial contract with the formation 105. The steering ring 203 may be rotationally fixed to the bit's outer diameter 202. The ring may be rotationally locked to the outer diameter 202 by interlocking a key 206 of the bit with a slot 207 of the steering ring 203 such that the steering ring 203 rotates at the same angular velocity as the drill bit 104. It is believed that rotationally fixing the steering ring 203 may be advantageous because it may be easier to identify the orientation of the outer diameter 202, and thus, the steering ring 203. If the steering ring 203 becomes stuck, then additional torque may be applied to the drill bit 104 to release the steering ring 203. Rotationally fixing the steering ring 203 is also believed to be advantageous because it may reduce friction between the steering ring 203 and outer diameter 202.
However, in some embodiments, the steering ring is not rotationally fixed to the outer diameter. The steering ring may be free-floating or driven at a higher or lower rotational velocity than the drill bit. In embodiments where the steering ring is configured to rotate at a differential speed than the outer diameter, the inner diameter of the steering ring may comprise a low friction surface to prevent wear. This may be accomplished through a coating, a plating, an electric depositation, a ground finish surface, or combinations thereof.
A valve 303 may be configured to control the amount of drilling fluid to flow through the fluid channel 302 and apply pressure to the biasing mechanism 301. The valve 303 may be controlled by a telemetry system or an electronic circuitry system. When the valve 303 is closed, fluid may be prevented from entering the channel 302 and the drilling fluid will remain in the drill string's bore 306 and flow out nozzles 209 of the drill bit 104.
In some embodiments, a plurality of biasing mechanisms 301 may be equally spaced around the outer diameter 202. When a straight trajectory is desired, the valves 303 distribute the drilling fluid such that a substantially equal amount of fluid flows through to each biasing mechanism 301. In some embodiments, the fluid channels 302 may be open to supply a constant flow of drilling fluid.
The embodiment in
This embodiment discloses biasing mechanism 301a in an expanded position. Fluid may flow through fluid channel 302a and apply pressure to biasing mechanism 301a. As pressure is applied to biasing mechanism 301a, biasing mechanism 301a pushes on the steering ring 203 such that the steering ring 203 moves with respect to the outer diameter 202. Because the steering ring 203 is one continuous body encircling the outer diameter 202, as the biasing mechanism 301a pushes on the steering ring 203, the opposite side of steering ring 203 may push on biasing mechanisms 301b and 301c. Biasing mechanisms 301b and 301c may, thus, contract. Any fluid applying pressure to biasing mechanisms 301b and 301c may flow through exhaust channels 502b and 502c, respectively, into the annulus of the borehole. The steering ring 203 may comprise a plurality of cutting elements 204, which may be enhanced with sintered polycrystalline ceramic material 501. The sintered polycrystalline ceramic material 501 may comprise polycrystalline diamond, synthetic diamond, vapor deposited diamond, silicon bonded diamond, cobalt bonded diamond, thermally stable diamond, polycrystalline diamond with a binder concentration of 1 to 40 weight percent, infiltrated diamond, layered diamond, monolithic diamond, polished diamond, course diamond, fine diamond, cubic boron nitride, diamond impregnated matrix, diamond impregnated carbide, silicon carbide, metal catalyzed diamond, or combinations thereof.
The drive shaft may comprise a fluid passage 1111 that provides fluid to a fluid chamber 1112 within the inner bit 1102. Downhole circuitry, which may include a direction and inclination package, may rotate the orientation of the fluid chamber 1112. By rotating the fluid chamber 1112, chamber ports 1113 may align and misalign with the channels 1115 containing the balls 1109 for biasing the steering ring 1107.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
616118 | Kunhe | Dec 1889 | A |
485103 | Wegner | Dec 1891 | A |
946060 | Locker | Jan 1910 | A |
1116154 | Stowers | Nov 1914 | A |
1183630 | Bryson | May 1916 | A |
1189560 | Gondos | Jul 1916 | A |
1360908 | Everson | Nov 1920 | A |
1367733 | Midgett | Jun 1921 | A |
1460671 | Hebsacker | Jul 1923 | A |
1544757 | Hufford | Jul 1925 | A |
2169223 | Christian | Aug 1931 | A |
1821474 | Mercer | Sep 1931 | A |
1879177 | Gautt | Sep 1932 | A |
2054255 | Howard | Sep 1936 | A |
2064255 | Garfield | Dec 1936 | A |
2218130 | Court | Oct 1940 | A |
2320136 | Kammerer | May 1943 | A |
2466991 | Kammerer | Apr 1949 | A |
2540464 | Stokes | Feb 1951 | A |
2544036 | Kammerer | Mar 1951 | A |
2776819 | Brown | Jan 1957 | A |
2819043 | Henderson | Jan 1958 | A |
2838284 | Austin | Jun 1958 | A |
2755071 | Kammerer | Jul 1958 | A |
2894722 | Buttolph | Jul 1959 | A |
2901223 | Scott | Aug 1959 | A |
2963102 | Smith | Dec 1960 | A |
3135341 | Ritter | Jun 1964 | A |
3294186 | Buell | Dec 1966 | A |
3301339 | Pannebaker | Jan 1967 | A |
3379264 | Cox | Apr 1968 | A |
3429390 | Bennett | Feb 1969 | A |
3493155 | Schonfield | Feb 1970 | A |
3583504 | Aalund | Jun 1971 | A |
3764493 | Rosar | Oct 1973 | A |
3821993 | Kniff | Jul 1974 | A |
3955635 | Skidmore | May 1976 | A |
3960223 | Kleine | Jun 1976 | A |
4081042 | Johnson | Mar 1978 | A |
4096917 | Harris | Jun 1978 | A |
4106577 | Summer | Aug 1978 | A |
4176723 | Arceneaux | Dec 1979 | A |
4253533 | Baker | Mar 1981 | A |
4280573 | Sudnishnikov | Jul 1981 | A |
4304312 | Larsson | Dec 1981 | A |
4307786 | Evans | Dec 1981 | A |
4397361 | Langford | Aug 1983 | A |
4416339 | Baker | Nov 1983 | A |
4445580 | Sahley | May 1984 | A |
4448269 | Ishikawa | May 1984 | A |
4499795 | Radtke | Feb 1985 | A |
4531592 | Hayatdavoudi | Jul 1985 | A |
4535853 | Ippolito | Aug 1985 | A |
4538691 | Dennis | Sep 1985 | A |
4566545 | Story | Jan 1986 | A |
4574895 | Dolezal | Mar 1986 | A |
4640374 | Dennis | Feb 1987 | A |
4852672 | Behrens | Aug 1989 | A |
4889017 | Fuller | Dec 1989 | A |
4962822 | Pascale | Oct 1990 | A |
4981184 | Knowlton | Jan 1991 | A |
5009273 | Grabinski | Apr 1991 | A |
5027914 | Wilson | Jul 1991 | A |
5038873 | Jurgens | Aug 1991 | A |
5119892 | Clegg | Jun 1992 | A |
5141063 | Quesenbury | Aug 1992 | A |
5186268 | Clegg | Feb 1993 | A |
5220963 | Patton | Jun 1993 | A |
5222566 | Taylor | Jun 1993 | A |
5255749 | Bumpurs | Oct 1993 | A |
5265682 | Russell | Nov 1993 | A |
5361859 | Tibbitts | Nov 1994 | A |
5410303 | Comeau | Apr 1995 | A |
5417292 | Polakoff | May 1995 | A |
5423389 | Warren | Jun 1995 | A |
5507357 | Hult | Apr 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5568838 | Struthers | Oct 1996 | A |
5655614 | Azar | Aug 1997 | A |
5678644 | Fielder | Oct 1997 | A |
5732784 | Nelson | Mar 1998 | A |
5794728 | Palmberg | Aug 1998 | A |
5896938 | Moeny | Apr 1999 | A |
5947215 | Lundell | Sep 1999 | A |
5950743 | Cox | Sep 1999 | A |
5957223 | Doster | Sep 1999 | A |
5957225 | Sinor | Sep 1999 | A |
5967247 | Pessier | Oct 1999 | A |
5979571 | Scott | Nov 1999 | A |
5992547 | Caraway | Nov 1999 | A |
5992548 | Silva | Nov 1999 | A |
6021859 | Tibbitts | Feb 2000 | A |
6039131 | Beaton | Mar 2000 | A |
6131675 | Anderson | Oct 2000 | A |
6150822 | Hong | Nov 2000 | A |
6186251 | Butcher | Feb 2001 | B1 |
6202761 | Forney | Mar 2001 | B1 |
6213226 | Eppink | Apr 2001 | B1 |
6223824 | Moyes | May 2001 | B1 |
6269893 | Beaton | Aug 2001 | B1 |
6296069 | Lamine | Oct 2001 | B1 |
6340064 | Fielder | Jan 2002 | B2 |
6364034 | Schoeffler | Apr 2002 | B1 |
6394200 | Watson | May 2002 | B1 |
6439326 | Huang | Aug 2002 | B1 |
6474425 | Truax | Nov 2002 | B1 |
6484825 | Watson | Nov 2002 | B2 |
6510906 | Richert | Jan 2003 | B1 |
6513606 | Krueger | Feb 2003 | B1 |
6533050 | Molloy | Mar 2003 | B2 |
6594881 | Tibbitts | Jul 2003 | B2 |
6601454 | Botnan | Aug 2003 | B1 |
6622803 | Harvey | Sep 2003 | B2 |
6668949 | Rives | Dec 2003 | B1 |
6729420 | Mensa-Wilmot | May 2004 | B2 |
6732817 | Dewey | May 2004 | B2 |
6822579 | Goswani | Nov 2004 | B2 |
6929076 | Fanuel | Aug 2005 | B2 |
6953096 | Gledhill | Oct 2005 | B2 |
20030213621 | Britten | Nov 2003 | A1 |
20040238221 | Runia | Dec 2004 | A1 |
20040256155 | Kriesels | Dec 2004 | A1 |
20070227775 | Ma et al. | Oct 2007 | A1 |
20080115974 | Johnson et al. | May 2008 | A1 |
20100006341 | Downton | Jan 2010 | A1 |
20100139980 | Neves et al. | Jun 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120080233 A1 | Apr 2012 | US |