Steering of cloned traffic in a service function chain

Information

  • Patent Grant
  • 10225270
  • Patent Number
    10,225,270
  • Date Filed
    Tuesday, August 2, 2016
    8 years ago
  • Date Issued
    Tuesday, March 5, 2019
    5 years ago
Abstract
Aspects of the embodiments are directed to a service classifier configured for steering cloned traffic through a service function chain. The service classifier is configured to create a cloned data packet by creating a copy of a data packet; activate a mirror bit in a network service header (NSH) of the cloned data packet, the mirror bit identifying the cloned packet to a service function forwarder network element as a cloned packet; and transmit the cloned packet to the service function forwarder network element.
Description
FIELD

This disclosure pertains to steering of cloned traffic in a service function chain (SFC).


BACKGROUND

While working on key security use-cases for service chaining, certain traffic can be cloned (or mirrored). Examples of such use cases include:


DDOS behavioral detector needs to perform analytics on cloned traffic to detect DDOS attack and signal the DOTS server in the DDoS mitigation service provider network to mitigate the attack.


Snort in intrusion detection system (IDS) mode needs to process cloned traffic to detect attacks and generate alerts.


Sandboxing technique used by Cisco AMP and Fireye to detect APT threats, traffic is cloned to multiple virtual machines (with different OS versions, browsers etc.) to detect if any of the VM get infected.


DDOS behavioral detection, Snort, Sandboxing etc. can be performed by different service functions in a SFC domain. SFC needs a mechanism to steer cloned traffic to be processed by multiple service functions in the service function path.


At the same time, SFC currently has no concept of cloned or mirrored traffic, and no mechanism to steering such cloned traffic and correlate it.





BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present disclosure and features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying figures, wherein like reference numerals represent like parts.



FIG. 1A is a schematic diagram of a Service Function Chain (SFC), which may include an initial Classification function, as an entry point into a Service Function Path (SFP), according to some embodiments of the disclosure;



FIGS. 1B-C are schematic diagrams of different service paths realized using service function chaining, according to some embodiments of the disclosure;



FIG. 2 is a schematic diagram of a system view of a Service Chain Function-aware network element for prescribing a service path of a traffic flow, according to some embodiments of the disclosure;



FIG. 3 is a schematic diagram of a system view of a service node, according to some embodiments of the disclosure;



FIG. 4 is a flow diagram illustrating a method for augmenting metadata in a network service header, according to some embodiments of the disclosure;



FIG. 5 is a schematic diagram of cloned traffic steering in a service function chain.



FIG. 6A is a process flow diagram of a cloned traffic steering at a service classifier network element in accordance with embodiments of the present disclosure.



FIG. 6B is a process flow diagram of a cloned traffic steering at a service function forwarder network element in accordance with embodiments of the present disclosure.



FIG. 7 is a schematic diagram of a network service header base header in accordance with embodiments of the present disclosure.



FIG. 8 is a process flow diagram of steering cloned traffic in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

This disclosure describes steering of cloned traffic in a service function chain (SFC). In embodiments, this disclosure describes steering, managing, and analyzing cloned traffic in a service function chain (SFC). This enables DDoS open threat signaling (DOTS) behavioral detection, Snort intrusion detection system (IDS), and FireEye sandboxing use cases, or other use cases, without negatively affecting use traffic (e.g., by mis-resetting connections or modifying the traffic). SFC currently has no concept of cloned or mirrored traffic, and no mechanism to steering such cloned traffic and correlate it. This disclosure describes steering cloned traffic in a service function chain.


The steering of cloned traffic in a service function chain as described herein can be applicable to many other use cases and is highly generalized.


Aspects of the embodiments are directed to a computer-readable non-transitory medium comprising one or more instructions for steering cloned traffic in a service function chain. Aspects of the embodiments are directed to a service classifier network element that includes at least one memory element having instructions stored thereon, and at least one processor coupled to the at least one memory element and configured to execute the instructions.


The instructions when executed on a processor are operable to create a cloned data packet by creating a copy of a data packet; activate a mirror bit in a network service header (NSH) of the cloned data packet, the mirror bit identifying the cloned packet to a service function forwarder network element as a cloned packet; and transmit the cloned packet to the service function forwarder network element.


In some embodiments, the mirror bit is part of a base header of the NSH.


In some embodiments, the instructions are further operable when executed to set a type length value (TLV) in the NSH to indicate that the cloned packet is a cloned packet to a service function forwarder network element.


In some embodiments, the instructions are further operable when executed to set a service index (SI) in the NSH based on the length of a service function path. In some embodiments, the instructions are further operable when executed to set a service path identifier (SPI) in the NSH of the cloned packet. The instructions may be further operable when executed to create a plurality of cloned packets by copying the data packet a plurality of times; and set the SI for each cloned packet of the plurality of cloned packets to 1. In some embodiments, the instructions further operable when executed to: receive a service function path for the plurality of cloned packets; identify a unique service path identifier for each cloned packet of the plurality of cloned packets; and transmit each cloned packet of the plurality of cloned packets to a corresponding service function forwarder network element simultaneously. In some embodiments, the instructions are further operable when executed to transmit each cloned packet to a corresponding service function forwarder network element based, at least in part, on the unique service path identifier. In some embodiments, the instructions are further operable when executed to transmit each cloned packet by one of unicast or multicast. In some embodiments, the instructions are further operable when executed to determine that the data packet is to be cloned based, at least in part, on a determination that the data packet is to be analyzed for security or malware detection or for performance measurement. A Control Plane network element may provision multiple SFPs from the service classifier (e.g., in a star fashion) towards all relevant service functions. Cloned traffic can be dropped by the service function forwarder after the cloned traffic is processing by the service function.


If a network device drops the cloned TCP data packet, then the network device can signal the service classifier to drop the ACK for the data packet, so the data packet gets re-transmitted. The SFs and SFFs, using the mirror bit in a network service header (NSH), can identify the SF and/or SFF are acting on cloned traffic and will not modify the cloned packets or reset the connection or drop the cloned packets.


The last SFF in the SFP acting on the cloned traffic should drop the cloned traffic once the service index (SI) reaches zero. The mirror bit in a network service header (NSH) helps the last SFF in the SFP to determine that it is only dropping the cloned traffic and not the normal traffic because of a loop. The mirror bit in NSH TLV further helps with more context on the cloned traffic.


In some embodiments, the last SFF in the SFP can record the cloned traffic before dropping the cloned traffic. In some embodiments, the last SFF can encapsulate and send the cloned traffic to a server for analysis if there is specific information captured on the cloned packet's TLV metadata.


Aspects of the embodiments are directed to a method for steering cloned data traffic in a service function chain. The method may include creating a cloned data packet by creating a copy of a data packet; activating a mirror bit in a network service header (NSH) of the cloned data packet, the mirror bit identifying the cloned packet to a service function forwarder network element as a cloned packet; and transmitting the cloned packet to the service function forwarder network element.


In some embodiments, wherein the mirror bit is part of a base header of the NSH.


Some embodiments may also include setting a type length value (TLV) in the NSH to indicate that the cloned packet is a cloned packet to a service function forwarder network element.


Some embodiments may also include setting a service index (SI) in the NSH based on the length of a service function path.


Some embodiments may also include setting a service path identifier (SPI) in the NSH of the cloned packet.


Some embodiments may also include creating a plurality of cloned packets by copying the data packet a plurality of times; and setting the SI for each cloned packet of the plurality of cloned packets to 1.


Some embodiments may also include receiving a service function path for the plurality of cloned packets; identifying a unique service path identifier for each cloned packet of the plurality of cloned packets; and transmitting each cloned packet of the plurality of cloned packets to a corresponding service function forwarder network element simultaneously.


Some embodiments may also include transmitting each cloned packet to a corresponding service function forwarder network element based, at least in part, on the unique service path identifier.


Some embodiments may also include transmitting each cloned packet by one of unicast or multicast.


Some embodiments may also include determining that the data packet is to be cloned based, at least in part, on a determination that the data packet is to be analyzed for security or malware detection or for performance measurement


EXAMPLE EMBODIMENTS

Basics of Network Service Chaining or Service Function Chains in a Network


To accommodate agile networking and flexible provisioning of network nodes in the network, Service Function Chains (SFC) can be used to ensure an ordered set of Service Functions (SF) to be applied to packets and/or frames of a traffic flow. SFC provides a method for deploying SFs in a way that enables dynamic ordering and topological independence of those SFs. A service function chain can define an ordered set of service functions that is applied to packets and/or frames of a traffic flow, where the ordered set of service functions are selected as a result of classification. The implied order may not be a linear progression as the architecture allows for nodes that copy to more than one branch. The term service chain is often used as shorthand for service function chain.



FIG. 1A illustrates a Service Function Chain (SFC), which may include an initial service classification function 102, as an entry point into a Service Function Path (SFP) 104 (or service path). The (initial) service classification function 102 prescribes a service path, and encapsulates a packet or frame with the service path information which identifies the service path. The classification potentially adds metadata, or shared context, to the SFC encapsulation part of the packet or frame. The service function path 104 may include a plurality of service functions (shown as “SF1,” . . . , “SFN”).


A service function can be responsible for specific treatment of received packets. A service function can act at the network layer or other OSI layers (e.g., application layer, presentation layer, session layer, transport layer, data link layer, and physical link layer). A service function can be a virtual instance or be embedded in a physical network element such as a service node. When a service function or other modules of a service node is executed by at least one processors of the service node, the service function or other modules can be configured to implement any one of the methods described herein. Multiple service functions can be embedded in the same network element. Multiple instances of the service function can be enabled in the same administrative SFC-enabled domain. A non-exhaustive list of SFs includes: firewalls, WAN and application acceleration, Deep Packet Inspection (DPI), server load balancers, NAT44, NAT64, HOST_ID injection, HTTP Header Enrichment functions, TCP optimizer, etc. An SF may be SFC encapsulation aware, that is it receives, and acts on information in the SFC encapsulation, or unaware in which case data forwarded to the service does not contain the SFC encapsulation.


A Service Node (SN) can be a physical network element (or a virtual element embedded on a physical network element) that hosts one or more service functions (SFs) and has one or more network locators associated with it for reachability and service delivery. In many standardization documents, “service functions” can refer to the service nodes described herein as having one or more service functions hosted thereon. Service Function Path (SFP) (or sometimes referred simply as service path) relates to the instantiation of a SFC in the network. Packets follow a service path from a service classifier through the requisite service functions.



FIGS. 1B-1C illustrate different service paths realized using service function chaining. These service paths can be implemented by encapsulating packets of a traffic flow with a network service header (NSH) or some other suitable packet header which specifies a desired service path (e.g., by identifying a particular service path using service path information in the NSH). In the example shown in FIG. 1B, a service path 120 can be provided between end point 160 and endpoint 180 through service node 106 and service node 110. In the example shown in FIG. 1C, a service path 130 (a different instantiation) can be provided between end point 170 and endpoint 190 through service node 106, service node 108, and service node 112.


Network Service Header (NSH) Encapsulation


Generally speaking, an NSH includes service path information, and NSH is added to a packet or frame. For instance, an NSH can include a data plane header added to packets or frames. Effectively, the NSH creates a service plane. The NSH includes information for service chaining, and in some cases, the NSH can include metadata added and/or consumed by service nodes or service functions. The packets and NSH are encapsulated in an outer header for transport. To implement a service path, a network element such as a service classifier (SCL) or some other suitable SFC-aware network element can process packets or frames of a traffic flow and performs NSH encapsulation according to a desired policy for the traffic flow.



FIG. 2 shows a system view of SFC-aware network element, e.g., such as a (initial) service classifier (SCL), for prescribing a service path of traffic flow, according to some embodiments of the disclosure. Network element 202 includes processor 204, (computer-readable non-transitory) memory 206 for storing data and instructions. Furthermore, network element 202 includes service classification function 208 and service header encapsulator 210 (both can be provided by processor 204 when processor 204 executes the instructions stored in memory 206).


The service classification function 208 can process a packet of a traffic flow and determine whether the packet requires servicing and correspondingly which service path to follow to apply the appropriate service. The determination can be performed based on business policies and/or rules stored in memory 206. Once the determination of the service path is made, service header encapsulator 210 generates an appropriate NSH having identification information for the service path and adds the NSH to the packet. The service header encapsulator 210 provides an outer encapsulation to forward the packet to the start of the service path. Other SFC-aware network elements are thus able to process the NSH while other non-SFC-aware network elements would simply forward the encapsulated packets as is. Besides inserting an NSH, network element 202 can also remove the NSH if the service classification function 208 determines the packet does not require servicing.


Network Service Headers


A network service header (NSH) can include a (e.g., 64-bit) base header, and one or more context headers. Generally speaking, the base header provides information about the service header and service path identification (e.g., a service path identifier), and context headers can carry metadata (such as the metadata described herein reflecting the result of classification). For instance, an NSH can include a 4-byte base header, a 4-byte service path header, and optional context headers. The base header can provide information about the service header and the payload protocol. The service path header can provide path identification and location within a path. The (variable length) context headers can carry metadata and variable length encoded information. The one or more optional context headers make up a context header section in the NSH. For instance, the context header section can include one or more context header fields having pieces of information therein, describing the packet/frame. Based on the information in the base header, a service function of a service node can derive policy selection from the NSH. Context headers shared in the NSH can provide a range of service-relevant information such as traffic classification. Service functions can use NSH to select local service policy.


Service Nodes and Proxy Nodes


Once properly encapsulated, the packet having the NSH is then forwarded to one or more service nodes where service(s) can be applied to the packet/frame. FIG. 3 shows a system view of a service node, according to some embodiments of the disclosure. Service node 300, generally a network element, can include processor 302, (computer-readable non-transitory) memory 304 for storing data and instructions. Furthermore, service node 300 includes service function(s) 306 (e.g., for applying service(s) to the packet/frame, classifying the packet/frame) and service header processor 308. The service functions(s) 306 and service header processor 306 can be provided by processor 302 when processor 302 executes the instructions stored in memory 304. Service header processor 308 can extract the NSH, and in some cases, update the NSH as needed. For instance, the service header processor 308 can decrement the service index if a service index=0 is used to indicate that a packet is to be dropped by the service node 300. In another instance, the service header processor 308 or some other suitable module provide by the service node can update context header fields if new/updated context is available.


Metadata Augmentation


Besides general servicing of the NSH, a service node can provide additional functionality by augmenting the metadata, e.g., by adding precision to the metadata. The present disclosure describes some exemplary methods for augmenting metadata of a NSH.


Generally speaking, metadata in the NSH reflects some form of classification. At the initial classifier, a packet or frame can be classified, where a first metadata in the NSH would reflect the classification. For example, the initial classifier can classify that the packet/frame of a traffic flow is associated with e.g., an “employee” or “guest”. When a first service node in the service path processes the first metadata in the NSH, the first service node can apply a first policy accordingly based on the first metadata.


With augmentation, the first service node can also further classify the packet or frame as being associated with, e.g., application X, and accordingly generate a second metadata. The first service node can use this new information, i.e., the second metadata, to augment the first metadata. The NSH for the packet/frame can carry the second metadata, which augments the first metadata, as the packet/frame traverses to the subsequent service node(s) in the service path.


When a subsequent, second service node processes the NSH with the second metadata, the new information provided by the second metadata can affect how the second service node processes the packet or frame. For instance, the second service node may decide to deny the packet/frame because of the second metadata.


The context being shared among service nodes is improved as the metadata is augmented when the packet/frame travels over the service path. The service nodes can optionally serve as a supplemental/additional “classifier” in the service path by classifying the packet/frame using their own capabilities. Through augmentation, a service node in the service path can contribute to the information being shared over the service function chain. The semantics (e.g., meaning, encoding scheme) can be conveyed in-line (in the service plane) or in the control plane.


Augmentation can be advantageous if the initial classifier does not have a particular classification functionality (or cannot conveniently or efficiently provide such functionality), or might not have information needed to know more about the packet. Common example is that the initial classifier is a hardware device that cannot look deep into the packet to get application information about the packet. The first service node, e.g., a firewall, a deep packet inspection engine, a load balancer, etc., may have greater classification capabilities. For instance, the initial classifier may provide first metadata which specifies the packet/frame as being associated with a guest (e.g., as opposed to an employee). A first service node, a deep packet inspection engine may find out that the packet/frame is associated with email (e.g., as opposed to streaming video content). The first service node can augment the first metadata by adding additional information, e.g., using second metadata which specifies the traffic is associated with email. A second service node, e.g., a firewall, can process the packet/frame based on the second metadata accordingly. For instance, the firewall can apply a policy based on the second metadata, wherein the policy may decide to block email traffic of guests. As the packet/frame traverses over the service path over onto other service nodes, more augmentation can occur. The semantics of the second metadata of the network service header can be shared via a control plane of the first service node and the second service node.


Within the context of the application, “metadata” refers to one or more pieces of information (e.g., bits of data, encoded values) in a context header section of a network service header. Metadata can refer to contents of the entire context header section, which can include the contents of one or more context header fields describing various attributes of the packet/frame. Metadata can also refer to contents of one individual context header field or a subset of context header fields in the context header section.


Moreover, the terms “first service node” and “second service node” does not necessarily imply that the “first service node” and the “second service node” are the first and second service nodes at the beginning of the service path that the packet/frame reaches as the packet/frame traverses over the service path. For instance, the first service node can be any suitable one of the service nodes among many service nodes in the service path (e.g., third one the packet/frame reaches as it traverses the service path, fourth one, fifth one, etc.). The second service node can be any suitable one of the service node(s) subsequent to the first service node downstream in the service path.


Exemplary Advantages of Metadata Augmentation in a Service Function Chain


To provide for augmenting metadata of a network service header, the service node 300 of FIG. 3 further includes metadata augmentation module 310 (which can be provided by processor 302 when processor 302 executes the instructions stored in memory 304). The service function(s) 306 and/or service header processor 308 of the service node 300 can perform classification. Upon receipt of a packet/frame, the service function can inspect the payload, and the service header processor can inspect the metadata or other header information in the NSH. The metadata and/or the payload can be used for classification purposes. For instance, the service function 306 can classify the packet/frame based on the metadata extracted from the NSH and/or the payload. The metadata augmentation module 310 can generate the second metadata based on the classification and perform augmentation of the first metadata using the second metadata.


Specifically, various parts/modules of the service node, e.g., the service function 306, the service header processor 308, and the metadata augmentation module 310, can implement the method illustrated in FIG. 4. FIG. 4 shows a flow diagram illustrating a method for augmenting metadata in a network service header, according to some embodiments of the disclosure. Referring to box 402, a first service node receives a packet or frame of a traffic flow. The packet has a payload and the network service header including a first metadata and a first service path information for the traffic flow. Referring to box 404, the first service node classifies at least one of the payload and the first metadata to generate a second metadata different from the first metadata. Referring to box 406, the first service node augments the first metadata using the second metadata before forwarding the packet or frame to a second service function node.


Providing a mechanism for the service nodes to augment the metadata for other service nodes downstream in the SFP can have many advantages. For instance, one advantage includes simplifying or reducing the load on access/edge (or other low power) platforms by allowing other service nodes to perform further classification. Effectively, the mechanism enables minimal classification and allows minimal metadata to be used for a secondary classifier mid-SFP to augment metadata. The mechanism also allows classification based on metadata only, or metadata with additional deep packet inspection of the payload, if desired. In some cases, the metadata can be used as part of the classification input, such that a service node can augmenting the metadata and generate an output for the follow-on classifier, i.e., a service node downstream over the SFP. The mechanism effectively provides for virtualization of the classifier function; the primary classifier can add metadata to be used by a secondary classifier to augment the same.


Various Embodiments of Metadata Augmentation


Augmentation of metadata can be implemented in different ways. As described, initial classification happens and as part of this classification, an SFP is chosen, and specific metadata gets potentially added to the SFC encapsulation of a packet through augmentation. The secondary classification can occur based on metadata alone or with a combination of metadata and payload details. The resulting SFC encapsulation at the first service node, augmenting the metadata, can augment the first metadata the existing metadata with additional details.


In one instance, augmenting the first metadata comprises appending the second metadata to the first metadata of the network service header or adding the second metadata to the network service header (e.g., appending the first metadata with the second metadata in the metadata field before providing the packet/frame to the subsequent service node).


In another instance, augmenting the first metadata comprises replacing the first metadata of the network service header with the second metadata (e.g., replacing the contents of the metadata field of the NSH with the second metadata before providing the packet providing the packet/frame to the subsequent service node). If desired, the resulting SFC encapsulation at the first service node, augmenting the metadata, can encapsulate the packet/frame with new metadata (SFC-in-SFC) by generating a different network service header (or other suitable outer header) having the second metadata and encapsulating the packet or frame of the traffic flow with the different network service header.


Broadly speaking, the initial classifier and the service node(s) in the SFP leverages the augmentation mechanism to provide rich and intelligent classification that affect policies being applied to various traffic flows. The augmentation mechanism enables the second service node to apply a policy on the packet or frame of the traffic flow based on the second metadata (e.g., having additional information about the packet/frame that the NSH would otherwise lack without augmentation).


Typically, the network service header including the first metadata and the first service path information is a result of an initial classification of the packet or frame performed by an initial service classifier. The classification performed by the first service node, generating the second metadata, can be different from the initial classification. The differences in classifications and functionality allow the metadata to improve as the packet/frame traverses through more classifiers. In one example, the initial service classifier is not capable of performing the classification performed by the first service node. In some cases, the second metadata can correct an error of the first metadata, if the initial service classifier did generate a correct classification. In certain cases, the second metadata refines the initial classification with additional information about the packet or frame of the traffic flow.


Policy Enforcement Using Metadata in Network Service Headers


Metadata information in the NSH is usually used for policy enforcement and network context for forwarding post service delivery. Service function instances in service nodes can derive policy selection from the NSH. Context shared in the service header can provide a range of service-relevant information such as traffic classification usable for policy enforcement. Service functions can use the NSH to select local service policy. NSH provides the ability to pass along metadata or augmented metadata over a service path.


The metadata used by various service functions may be derived from several sources. In one example, network nodes information provided by network nodes can indicate network-centric information (such as VRF or tenant) that may be used by service functions, or conveyed to another network node post-service pathing. In another example, external (to the network) systems such as orchestration, often has information that is valuable for service function policy decisions (in some cases, this information may not necessarily be deduced by network nodes). An orchestration platform placing workloads “knows” what application is being instantiated and can communicate this information to all NSH nodes via metadata. In yet another example, service functions can perform very detailed and valuable classification, in some cases they may terminate, and be able to inspect encrypted traffic. Service nodes having such service functions may update, alter or impose metadata information.


Regardless of the source, metadata reflects the “result” of classification. The granularity of classification may vary. For example, a network switch might only be able to classify based on 5-tuple, whereas, a service function may be able to inspect application information. Regardless of granularity, the classification information is represented as metadata in NSH. Once the metadata is added to NSH, the metadata is carried along the service path. Participant service nodes, e.g., service functions in the participant service nodes, can receive the metadata, and can use that metadata for local decisions and policy enforcement.



FIG. 5 is a schematic diagram of cloned traffic steering in a service function chain 500. The service function chain 500 can include a service classifier 502 (referred to as a classifier 502). The classifier 502 is configured to mark traffic as “cloned” or “mirrored” traffic 522. The service function chain 500 includes one or more service function forwarder network elements 504-508 that can forward traffic 520 and cloned traffic 522 to one or more service functions, such as service functions 510-512, as well as to sandboxing service function 514, DDOS detector service function 516, and snort (IDS) service function 518, as well as other service functions. Each service functions (SFs) are configured to act differently on cloned traffic 522 (e.g., by way of not resetting connections, etc.).



FIG. 6A is a process flow diagram 600 of cloned traffic steering in accordance with embodiments of the present disclosure. The service classifier can identifies that certain traffic needs to cloned for processing (e.g., by multiple service functions) (602). Service classifier clones the packet (604). The service classifier can set the SPI for a service path (606). The service classifier sets the service index (SI) depending on the length of the service function path (608). The service classifier sets the “Mirrored/Cloned bit” in the Base Header (610). The service classifier includes a new NSH type length value (TLV) indicating to the SFFs and SFs in the SFP that they are acting on cloned traffic (612). Service classifier learns the exact length of the service function path for the cloned traffic from SFC control plane. The C bit in the Type field of the new TLV must be set to 1 indicating that the TLV is mandatory for the receiver to understand and process. The service classifier can forward the cloned packet into the service function chain (614).



FIG. 6B is a process flow diagram of a cloned traffic steering at a service function forwarder network element in accordance with embodiments of the present disclosure. The SFF can receive a packet (622). The SFFs can determine that the packet is a cloned packet using the “M” bit, and in some embodiments, also using the NSH TLV.


The SFF can determine whether it is the last SFF based on the SI reaching zero (626). The last SFF in the SFP acting on the cloned traffic should drop the cloned traffic once the service index (SI) reaches zero (628). If the SFF is not the last SFF, the SF will not modify the cloned packets or reset the connection or drop the cloned packets (630).


The new NSH Bit-flag value signals to the last SFF in the SFP to determine that it is only dropping the cloned traffic and not the normal traffic because of a loop. The new NSH TLV further identifies more context on the cloned traffic. The new TLV signals to the SFFs not to trigger service function path debugging to detect loops in the SFP just because service index value reached zero value. Cloned traffic can be dropped by the service function forwarder after the cloned traffic is processing by the service function. The SFs and SFFs, using the mirror bit in a network service header (NSH), can identify the SF and/or SFF are acting on cloned traffic and will not modify the cloned packets or reset the connection or drop the cloned packets.


The last SFF in the SFP acting on the cloned traffic can drop the cloned traffic once the service index (SI) reaches zero. In embodiments, the last SFF can record the cloned traffic before dropping, or encapsulate and sent it to a server for analysis if there is specific info captured on the cloned packet's TLV MD


In some embodiments, a Control Plane network element may provision multiple SFPs from the service classifier (e.g., in a star fashion) towards all relevant service functions.


Further, the concepts described herein work for different types of potential metadata, as well as other metadata types.



FIG. 7 is a schematic diagram of a network service header base header 700 in accordance with embodiments of the present disclosure. The NSH base header includes a bit indicating that the packet is a mirror packet. The NSH includes an SPI and SI using traditional semantics for the SPI field, and using SI to limit traffic scope. In the NSH Metadata 2, a TLV is included to capture specific information about cloned/Mirrored traffic. This information includes which copy, how many copies, and other fields.


Extended Use Case:



FIG. 8 is a process flow diagram of steering cloned traffic in accordance with embodiments of the present disclosure. A service classifier identifies that certain traffic needs to cloned for processing by multiple service functions (802). The service classifier creates multiple copies of the traffic equal to the number of service functions that must process the cloned traffic (804). Service classifier sets SPI for each cloned packet (806). Service classifier sets SI for each cloned packet to 1, so that cloned traffic is dropped by the SFF after processing by the SF (808). Service classifier sets “M” bit in NSH for each cloned packet indicating that the packet is a cloned packet (810). Service classifier includes new NSH TLV indicating the SFF and SF in the SFP that they are acting on cloned traffic (812). and sets the service index to 1. The service classifier forwards the cloned traffic to each of these service functions (substantially) simultaneously (814). This cloned traffic can be sent as multicast or unicast.


The Control Plane can provision multiple SFPs from the Classifier, in a star fashion, towards all relevant SFs.


In both the above methods, if a network device drops the cloned TCP data packet then it should signal the service classifier to drop the ACK for the data packet, so the data packet gets re-transmitted.


The advantage of the method described in FIG. 8 is that all the service functions receive the cloned traffic in parallel and act on the cloned traffic simultaneously. The advantage of the method described in FIGS. 6A-6B is that it decreases the load on the service classifier to create multiple copies of the traffic.


Advantages of the present disclosure are readily apparent to those of ordinary skill in the art. As mentioned, the idea of cloned traffic in an SFC can be applied to other cases. One such key cases is Performance Measurement (PM). Specifically, by having two parallel SFPs (Service Function Paths) part of the same SFC (Service Function Chain), where the delta or difference between the two SFPs is constrained (for example, 1 SF difference, or 1 SFP is encrypted whereas the other SFP is not), then the merge point of the normal and cloned traffic can apply PM to the difference.


Within an SFC Domain (that is, from an SFC Classifier until the last SFF) this disclosure facilitates the execution of service functions and network functions on cloned traffic without actually acting on original traffic. This disclosure describes how to perform analytics on traffic without redirecting said traffic. To do so, the original traffic can be cloned (and in some embodiments, the traffic flow can be mirrored), and the cloned traffic can be acted on by the service functions.


This disclosure describes a Service Classifier that can clone traffic, as instructed by a controller. Additionally, a copy of a Service Function Path (SFP) for the original traffic is created, thereby preserving the SFP/SFC copy but directing this copy separately and differently.


The “mirror state” is indicated in the cloned packet's metadata. This metadata mirror bit prevents cloned traffic from leaking out of the SFC Domain.


This disclosure also facilitates using the SI (Service Index) differently for the copied traffic, to make traffic/packets/flows be acted upon at one very specific SF, and ensuring that cloned traffic does not leak outside the SFC Domain.


Variations and Implementations


Within the context of the disclosure, a network used herein represents a series of points, nodes, or network elements of interconnected communication paths for receiving and transmitting packets of information that propagate through a communication system. A network offers communicative interface between sources and/or hosts, and may be any local area network (LAN), wireless local area network (WLAN), metropolitan area network (MAN), Intranet, Extranet, Internet, WAN, virtual private network (VPN), or any other appropriate architecture or system that facilitates communications in a network environment depending on the network topology. A network can comprise any number of hardware or software elements coupled to (and in communication with) each other through a communications medium.


In one particular instance, the architecture of the present disclosure can be associated with a service provider deployment. In other examples, the architecture of the present disclosure would be equally applicable to other communication environments, such as an enterprise wide area network (WAN) deployment, The architecture of the present disclosure may include a configuration capable of transmission control protocol/internet protocol (TCP/IP) communications for the transmission and/or reception of packets in a network.


As used herein in this Specification, the term ‘network element’ is meant to encompass any of the aforementioned elements, as well as servers (physical or virtually implemented on physical hardware), machines (physical or virtually implemented on physical hardware), end user devices, routers, switches, cable boxes, gateways, bridges, loadbalancers, firewalls, inline service nodes, proxies, processors, modules, or any other suitable device, component, element, proprietary appliance, or object operable to exchange, receive, and transmit information in a network environment. These network elements may include any suitable hardware, software, components, modules, interfaces, or objects that facilitate the network service header features/operations thereof. This may be inclusive of appropriate algorithms and communication protocols that allow for the effective exchange of data or information.


In one implementation, nodes with NSH capabilities may include software to achieve (or to foster) the functions discussed herein for providing the NSH-related features/functions where the software is executed on one or more processors to carry out the functions. This could include the implementation of instances of service functions, service header processors, metadata augmentation modules and/or any other suitable element that would foster the activities discussed herein. Additionally, each of these elements can have an internal structure (e.g., a processor, a memory element, etc.) to facilitate some of the operations described herein. In other embodiments, these functions may be executed externally to these elements, or included in some other network element to achieve the intended functionality. Alternatively, these nodes may include software (or reciprocating software) that can coordinate with other network elements in order to achieve the functions described herein. In still other embodiments, one or several devices may include any suitable algorithms, hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof.


In certain example implementations, the NSH-related functions outlined herein may be implemented by logic encoded in one or more non-transitory, tangible media (e.g., embedded logic provided in an application specific integrated circuit [ASIC], digital signal processor [DSP] instructions, software [potentially inclusive of object code and source code] to be executed by one or more processors, or other similar machine, etc.). In some of these instances, one or more memory elements can store data used for the operations described herein. This includes the memory element being able to store instructions (e.g., software, code, etc.) that are executed to carry out the activities described in this Specification. The memory element is further configured to store databases or metadata disclosed herein. The processor can execute any type of instructions associated with the data to achieve the operations detailed herein in this Specification. In one example, the processor could transform an element or an article (e.g., data) from one state or thing to another state or thing. In another example, the activities outlined herein may be implemented with fixed logic or programmable logic (e.g., software/computer instructions executed by the processor) and the elements identified herein could be some type of a programmable processor, programmable digital logic (e.g., a field programmable gate array [FPGA], an erasable programmable read only memory (EPROM), an electrically erasable programmable ROM (EEPROM)) or an ASIC that includes digital logic, software, code, electronic instructions, or any suitable combination thereof.


Any of these elements (e.g., the network elements, service nodes, etc.) can include memory elements for storing information to be used in achieving the NSH-related features, as outlined herein. Additionally, each of these devices may include a processor that can execute software or an algorithm to perform the NSH-related features as discussed in this Specification. These devices may further keep information in any suitable memory element [random access memory (RAM), ROM, EPROM, EEPROM, ASIC, etc.], software, hardware, or in any other suitable component, device, element, or object where appropriate and based on particular needs. Any of the memory items discussed herein should be construed as being encompassed within the broad term ‘memory element.’ Similarly, any of the potential processing elements, modules, and machines described in this Specification should be construed as being encompassed within the broad term ‘processor.’ Each of the network elements can also include suitable interfaces for receiving, transmitting, and/or otherwise communicating data or information in a network environment.


Additionally, it should be noted that with the examples provided above, interaction may be described in terms of two, three, or four network elements. However, this has been done for purposes of clarity and example only. In certain cases, it may be easier to describe one or more of the functionalities of a given set of flows by only referencing a limited number of network elements. It should be appreciated that the systems described herein are readily scalable and, further, can accommodate a large number of components, as well as more complicated/sophisticated arrangements and configurations. Accordingly, the examples provided should not limit the scope or inhibit the broad techniques of using and augmenting NSH metadata, as potentially applied to a myriad of other architectures.


It is also important to note that the various steps described herein illustrate only some of the possible scenarios that may be executed by, or within, the nodes with NSH capabilities described herein. Some of these steps may be deleted or removed where appropriate, or these steps may be modified or changed considerably without departing from the scope of the present disclosure. In addition, a number of these operations have been described as being executed concurrently with, or in parallel to, one or more additional operations. However, the timing of these operations may be altered considerably. The preceding operational flows have been offered for purposes of example and discussion. Substantial flexibility is provided by nodes with NSH capabilities in that any suitable arrangements, chronologies, configurations, and timing mechanisms may be provided without departing from the teachings of the present disclosure.


It should also be noted that many of the previous discussions may imply a single client-server relationship. In reality, there is a multitude of servers in the delivery tier in certain implementations of the present disclosure. Moreover, the present disclosure can readily be extended to apply to intervening servers further upstream in the architecture, though this is not necessarily correlated to the ‘m’ clients that are passing through the ‘n’ servers. Any such permutations, scaling, and configurations are clearly within the broad scope of the present disclosure.


Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained to one skilled in the art and it is intended that the present disclosure encompass all such changes, substitutions, variations, alterations, and modifications as falling within the scope of the appended claims. In order to assist the United States Patent and Trademark Office (USPTO) and, additionally, any readers of any patent issued on this application in interpreting the claims appended hereto, Applicant wishes to note that the Applicant: (a) does not intend any of the appended claims to invoke paragraph six (6) of 35 U.S.C. section 112 as it exists on the date of the filing hereof unless the words “means for” or “step for” are specifically used in the particular claims; and (b) does not intend, by any statement in the specification, to limit this disclosure in any way that is not otherwise reflected in the appended claims.

Claims
  • 1. A computer-readable non-transitory medium comprising one or more instructions for steering cloned traffic in a service function chain, the instructions when executed on a processor are operable to: create a plurality of cloned data packets by creating copies of a data packet;activate a mirror bit in a network service header (NSH) of the cloned data packet, the mirror bit identifying the cloned packet to a service function forwarder network element as a cloned packet;set an indicator in each of the cloned data packets, the indicator representing that the corresponding cloned data packet is to be dropped after processing by a service function forwarder;identify a unique service path identifier for each cloned packet of the plurality of cloned packets; andtransmit each of the cloned packets to a corresponding service function forwarder network element simultaneously based on the service function path identifier.
  • 2. The computer-readable non-transitory medium of claim 1, wherein the mirror bit is part of a base header of the NSH.
  • 3. The computer-readable non-transitory medium of claim 1, the instructions further operable when executed to set a type length value (TLV) in the NSH to indicate that the cloned packet is a cloned packet to a service function forwarder network element.
  • 4. The computer-readable non-transitory medium of claim 1, the instructions further operable when executed to set a service index (SI) in the NSH based on the length of a service function path.
  • 5. The computer-readable non-transitory medium of claim 4, the instructions further operable when executed to set a service path identifier (SPI) in the NSH of the cloned packet.
  • 6. The computer-readable non-transitory medium of claim 1, the instructions further operable when executed to: receive a service function path for the plurality of cloned packets.
  • 7. The computer-readable non-transitory medium of claim 6, the instructions further operable when executed to transmit each cloned packet to a corresponding service function forwarder network element based, at least in part, on the unique service path identifier.
  • 8. The computer-readable non-transitory medium of claim 6, the instructions further operable when executed to determine that the data packet is to be cloned based, at least in part, on a determination that the data packet is to be analyzed for security or malware detection or for performance measurement.
  • 9. The computer-readable non-transitory medium of claim 1, the instructions further operable when executed to transmit each cloned packet by one of unicast or multicast.
  • 10. A service classifier network element of a service function chain, the service classifier network element comprising: at least one memory element having instructions stored thereon;at least one processors coupled to the at least one memory element and configured to execute the instructions to cause the service classifier network element to: create a plurality of cloned data packets by creating copies of a data packet;activate a mirror bit in a network service header (NSH) of the cloned data packet, the mirror bit identifying the cloned packet to a service function forwarder network element as a cloned packet;set an indicator in each of the cloned data packets, the indicator representing that the corresponding cloned data packet is to be dropped after processing by a service function forwarder;identify a unique service path identifier for each cloned packet of the plurality of cloned packets; andtransmit each of the cloned packets to a corresponding service function forwarder network element simultaneously based on the service function path identifier.
  • 11. The service classifier network element of claim 10, wherein the mirror bit is part of a base header of the NSH.
  • 12. The service classifier network element of claim 10, the instructions further operable when executed to set a type length value (TLV) in the NSH to indicate that the cloned packet is a cloned packet to a service function forwarder network element.
  • 13. The service classifier network element of claim 10, the instructions further operable when executed to set a service index (SI) in the NSH based on the length of a service function path.
  • 14. The service classifier network element of claim 13, the instructions further operable when executed to set a service path identifier (SPI) in the NSH of the cloned packet.
  • 15. The service classifier network element of claim 10, the instructions further operable when executed to: receive a service function path for the plurality of cloned packets.
  • 16. The service classifier network element of claim 15, the instructions further operable when executed to transmit each cloned packet to a corresponding service function forwarder network element based, at least in part, on the unique service path identifier.
  • 17. The service classifier network element of claim 15, the instructions further operable when executed to determine that the data packet is to be cloned based, at least in part, on a determination that the data packet is to be analyzed for security or malware detection.
  • 18. The service classifier network element of claim 10, the instructions further operable when executed to transmit each cloned packet by one of unicast or multicast.
  • 19. A method, comprising: creating a plurality of cloned data packets by creating copies of a data packet;activating a mirror bit in a network service header (NSH) of the cloned data packet, the mirror bit identifying the cloned packet to a service function forwarder network element as a cloned packet;setting an indicator in each of the cloned data packets, the indicator representing that the corresponding cloned data packet is to be dropped after processing by a service function forwarder;identifying a unique service path identifier for each cloned packet of the plurality of cloned packets; andtransmitting each of the cloned packets to a corresponding service function forwarder network element simultaneously based on the service function path identifier.
  • 20. The method of claim 19, wherein the mirror bit is part of a base header of the NSH.
US Referenced Citations (351)
Number Name Date Kind
3629512 Yuan Dec 1971 A
4769811 Eckberg, Jr. et al. Sep 1988 A
5408231 Bowdon Apr 1995 A
5491690 Alfonsi et al. Feb 1996 A
5557609 Shobatake et al. Sep 1996 A
5600638 Bertin et al. Feb 1997 A
5687167 Bertin et al. Nov 1997 A
6115384 Parzych Sep 2000 A
6167438 Yates et al. Dec 2000 A
6400681 Bertin et al. Jun 2002 B1
6661797 Goel et al. Dec 2003 B1
6687229 Kataria et al. Feb 2004 B1
6799270 Bull et al. Sep 2004 B1
6888828 Partanen et al. May 2005 B1
6993593 Iwata Jan 2006 B2
7027408 Nabkel et al. Apr 2006 B2
7062567 Benitez et al. Jun 2006 B2
7095715 Buckman et al. Aug 2006 B2
7096212 Tribble et al. Aug 2006 B2
7139239 Mcfarland et al. Nov 2006 B2
7165107 Pouyoul et al. Jan 2007 B2
7197008 Shabtay et al. Mar 2007 B1
7197660 Liu et al. Mar 2007 B1
7209435 Kuo et al. Apr 2007 B1
7227872 Biswas et al. Jun 2007 B1
7231462 Berthaud et al. Jun 2007 B2
7333990 Thiagarajan et al. Feb 2008 B1
7443796 Albert et al. Oct 2008 B1
7458084 Zhang et al. Nov 2008 B2
7472411 Wing et al. Dec 2008 B2
7486622 Regan et al. Feb 2009 B2
7536396 Johnson et al. May 2009 B2
7552201 Areddu et al. Jun 2009 B2
7558261 Arregoces et al. Jul 2009 B2
7567504 Darling et al. Jul 2009 B2
7571470 Arregoces et al. Aug 2009 B2
7573879 Narad et al. Aug 2009 B2
7610375 Portolani et al. Oct 2009 B2
7643468 Arregoces et al. Jan 2010 B1
7644182 Banerjee et al. Jan 2010 B2
7647422 Singh et al. Jan 2010 B2
7657898 Sadiq Feb 2010 B2
7657940 Portolani et al. Feb 2010 B2
7668116 Wijnands et al. Feb 2010 B2
7684321 Muirhead et al. Mar 2010 B2
7738469 Shekokar et al. Jun 2010 B1
7751409 Carolan Jul 2010 B1
7793157 Bailey et al. Sep 2010 B2
7814284 Glass et al. Oct 2010 B1
7831693 Lai Nov 2010 B2
7852785 Lund Dec 2010 B2
7860095 Forissier et al. Dec 2010 B2
7860100 Khalid et al. Dec 2010 B2
7895425 Khalid et al. Feb 2011 B2
7899012 Ho et al. Mar 2011 B2
7899861 Feblowitz et al. Mar 2011 B2
7907595 Khanna et al. Mar 2011 B2
7908480 Firestone et al. Mar 2011 B2
7983174 Monaghan et al. Jul 2011 B1
7990847 Leroy et al. Aug 2011 B1
8000329 Fendick et al. Aug 2011 B2
8018938 Fromm et al. Sep 2011 B1
8094575 Vadlakonda et al. Jan 2012 B1
8095683 Balasubramanian Chandra Jan 2012 B2
8116307 Thesayi Feb 2012 B1
8166465 Feblowitz et al. Apr 2012 B2
8180909 Hartman et al. May 2012 B2
8191119 Wing et al. May 2012 B2
8195774 Lambeth et al. Jun 2012 B2
8280354 Smith et al. Oct 2012 B2
8281302 Durazzo et al. Oct 2012 B2
8291108 Raja et al. Oct 2012 B2
8305900 Bianconi Nov 2012 B2
8311045 Quinn et al. Nov 2012 B2
8316457 Paczkowski et al. Nov 2012 B1
8355332 Beaudette et al. Jan 2013 B2
8442043 Sharma et al. May 2013 B2
8451817 Cheriton May 2013 B2
8464336 Wei et al. Jun 2013 B2
8473981 Gargi Jun 2013 B1
8479298 Keith et al. Jul 2013 B2
8498414 Rossi Jul 2013 B2
8520672 Guichard et al. Aug 2013 B2
8601152 Chou Dec 2013 B1
8605588 Sankaran et al. Dec 2013 B2
8612612 Dukes et al. Dec 2013 B1
8627328 Mousseau et al. Jan 2014 B2
8645952 Biswas et al. Feb 2014 B2
8676965 Gueta Mar 2014 B2
8676980 Kreeger et al. Mar 2014 B2
8700892 Bollay et al. Apr 2014 B2
8724466 Kenigsberg May 2014 B2
8730980 Bagepalli et al. May 2014 B2
8743885 Khan et al. Jun 2014 B2
8751420 Hjelm et al. Jun 2014 B2
8762534 Hong et al. Jun 2014 B1
8762707 Killian et al. Jun 2014 B2
8792490 Jabr et al. Jul 2014 B2
8793400 Mcdysan et al. Jul 2014 B2
8812730 Vos et al. Aug 2014 B2
8819419 Carlson et al. Aug 2014 B2
8825070 Akhtar et al. Sep 2014 B2
8830834 Sharma et al. Sep 2014 B2
8904037 Haggar et al. Dec 2014 B2
8984284 Purdy, Sr. et al. Mar 2015 B2
9001827 Appenzeller Apr 2015 B2
9071533 Hui et al. Jun 2015 B2
9077661 Andreasen et al. Jul 2015 B2
9088584 Feng et al. Jul 2015 B2
9130872 Kumar et al. Sep 2015 B2
9143438 Khan et al. Sep 2015 B2
9160797 Mcdysan Oct 2015 B2
9178812 Guichard et al. Nov 2015 B2
9189285 Ng et al. Nov 2015 B2
9203711 Agarwal et al. Dec 2015 B2
9253274 Quinn et al. Feb 2016 B2
9300579 Frost et al. Mar 2016 B2
9300585 Kumar et al. Mar 2016 B2
9311130 Christenson et al. Apr 2016 B2
9319324 Beheshti-Zavareh et al. Apr 2016 B2
9325565 Yao et al. Apr 2016 B2
9338097 Anand et al. May 2016 B2
9344337 Kumar et al. May 2016 B2
9374297 Bosch et al. Jun 2016 B2
9379931 Bosch et al. Jun 2016 B2
9385950 Quinn et al. Jul 2016 B2
9398486 La Roche, Jr. et al. Jul 2016 B2
9407540 Kumar et al. Aug 2016 B2
9413655 Shatzkamer et al. Aug 2016 B2
9424065 Singh et al. Aug 2016 B2
9436443 Chiosi et al. Sep 2016 B2
9444675 Guichard et al. Sep 2016 B2
9473570 Bhanujan et al. Oct 2016 B2
9479443 Bosch et al. Oct 2016 B2
9491094 Patwardhan et al. Nov 2016 B2
9537836 Mailer et al. Jan 2017 B2
9558029 Behera et al. Jan 2017 B2
9559970 Kumar et al. Jan 2017 B2
9571405 Pignataro et al. Feb 2017 B2
9608896 Kumar et al. Mar 2017 B2
9614739 Kumar et al. Apr 2017 B2
9660909 Guichard et al. May 2017 B2
9723106 Shen et al. Aug 2017 B2
9774533 Zhang et al. Sep 2017 B2
9794379 Kumar et al. Oct 2017 B2
9882776 Aybay Jan 2018 B2
9929945 Schultz et al. Mar 2018 B2
10003530 Zhang et al. Jun 2018 B2
20010023442 Masters Sep 2001 A1
20020085562 Hufferd et al. Jul 2002 A1
20020131362 Callon Sep 2002 A1
20020156893 Pouyoul et al. Oct 2002 A1
20020167935 Nabkel et al. Nov 2002 A1
20030023879 Wray Jan 2003 A1
20030026257 Xu et al. Feb 2003 A1
20030037070 Marston Feb 2003 A1
20030088698 Singh et al. May 2003 A1
20030110081 Tosaki et al. Jun 2003 A1
20030120816 Berthaud et al. Jun 2003 A1
20030214913 Kan et al. Nov 2003 A1
20030226142 Rand Dec 2003 A1
20040109412 Hansson et al. Jun 2004 A1
20040148391 Lake, Sr. et al. Jul 2004 A1
20040199812 Earl Oct 2004 A1
20040213160 Regan et al. Oct 2004 A1
20040264481 Darling et al. Dec 2004 A1
20040268357 Joy et al. Dec 2004 A1
20050044197 Lai Feb 2005 A1
20050058118 Davis Mar 2005 A1
20050060572 Kung Mar 2005 A1
20050086367 Conta et al. Apr 2005 A1
20050120101 Nocera Jun 2005 A1
20050152378 Bango et al. Jul 2005 A1
20050157645 Rabie et al. Jul 2005 A1
20050160180 Rabje et al. Jul 2005 A1
20050204042 Banerjee et al. Sep 2005 A1
20050210096 Bishop et al. Sep 2005 A1
20050257002 Nguyen Nov 2005 A1
20050281257 Yazaki et al. Dec 2005 A1
20050286540 Hurtta et al. Dec 2005 A1
20050289244 Sahu et al. Dec 2005 A1
20060005240 Sundarrajan et al. Jan 2006 A1
20060031374 Lu et al. Feb 2006 A1
20060045024 Previdi et al. Mar 2006 A1
20060074502 Mcfarland Apr 2006 A1
20060092950 Arregoces et al. May 2006 A1
20060095960 Arregoces et al. May 2006 A1
20060112400 Zhang et al. May 2006 A1
20060155862 Kathi et al. Jul 2006 A1
20060168223 Mishra et al. Jul 2006 A1
20060233106 Achlioptas et al. Oct 2006 A1
20060233155 Srivastava Oct 2006 A1
20070061441 Landis et al. Mar 2007 A1
20070067435 Landis et al. Mar 2007 A1
20070094397 Krelbaum Apr 2007 A1
20070143851 Nicodemus et al. Jun 2007 A1
20070237147 Quinn et al. Oct 2007 A1
20070250836 Li et al. Oct 2007 A1
20080056153 Liu Mar 2008 A1
20080080509 Khanna et al. Apr 2008 A1
20080080517 Roy et al. Apr 2008 A1
20080170542 Hu Jul 2008 A1
20080177896 Quinn et al. Jul 2008 A1
20080181118 Sharma et al. Jul 2008 A1
20080196083 Parks et al. Aug 2008 A1
20080209039 Tracey et al. Aug 2008 A1
20080219287 Krueger et al. Sep 2008 A1
20080225710 Raja et al. Sep 2008 A1
20080291910 Tadimeti et al. Nov 2008 A1
20090003364 Fendick et al. Jan 2009 A1
20090006152 Timmerman et al. Jan 2009 A1
20090037713 Khalid et al. Feb 2009 A1
20090094684 Chinnusamy et al. Apr 2009 A1
20090204612 Keshavarz-nia et al. Aug 2009 A1
20090271656 Yokota et al. Oct 2009 A1
20090300207 Giaretta et al. Dec 2009 A1
20090305699 Deshpande et al. Dec 2009 A1
20090328054 Paramasivam et al. Dec 2009 A1
20100058329 Durazzo et al. Mar 2010 A1
20100063988 Khalid Mar 2010 A1
20100080226 Khalid Apr 2010 A1
20100165985 Sharma et al. Jul 2010 A1
20100191612 Raleigh Jul 2010 A1
20100211658 Hoogerwerf et al. Aug 2010 A1
20110023090 Asati et al. Jan 2011 A1
20110032833 Zhang et al. Feb 2011 A1
20110055845 Nandagopal et al. Mar 2011 A1
20110131338 Hu Jun 2011 A1
20110137991 Russell Jun 2011 A1
20110142056 Manoj Jun 2011 A1
20110161494 Mcdysan et al. Jun 2011 A1
20110222412 Kompella Sep 2011 A1
20110255538 Srinivasan et al. Oct 2011 A1
20110267947 Dhar et al. Nov 2011 A1
20120131662 Kuik et al. May 2012 A1
20120147894 Mulligan et al. Jun 2012 A1
20120324442 Barde Dec 2012 A1
20120331135 Alon et al. Dec 2012 A1
20130003735 Chao et al. Jan 2013 A1
20130003736 Szyszko et al. Jan 2013 A1
20130040640 Chen et al. Feb 2013 A1
20130044636 Koponen et al. Feb 2013 A1
20130121137 Feng et al. May 2013 A1
20130124708 Lee et al. May 2013 A1
20130163594 Sharma et al. Jun 2013 A1
20130163606 Bagepalli et al. Jun 2013 A1
20130238806 Moen Sep 2013 A1
20130272305 Lefebvre et al. Oct 2013 A1
20130311675 Kancherla Nov 2013 A1
20130329584 Ghose et al. Dec 2013 A1
20140010083 Hamdi et al. Jan 2014 A1
20140010096 Kamble et al. Jan 2014 A1
20140036730 Nellikar et al. Feb 2014 A1
20140050223 Foo et al. Feb 2014 A1
20140067758 Boldyrev et al. Mar 2014 A1
20140105062 McDysan et al. Apr 2014 A1
20140181267 Wadkins et al. Jun 2014 A1
20140254603 Banavalikar et al. Sep 2014 A1
20140259012 Nandlall et al. Sep 2014 A1
20140279863 Krishnamurthy et al. Sep 2014 A1
20140280836 Kumar et al. Sep 2014 A1
20140317261 Shatzkamer et al. Oct 2014 A1
20140321459 Kumar et al. Oct 2014 A1
20140334295 Guichard et al. Nov 2014 A1
20140344439 Kempf et al. Nov 2014 A1
20140362682 Guichard et al. Dec 2014 A1
20140362857 Guichard et al. Dec 2014 A1
20140369209 Khurshid et al. Dec 2014 A1
20140376558 Rao et al. Dec 2014 A1
20150003455 Haddad et al. Jan 2015 A1
20150012584 Lo et al. Jan 2015 A1
20150012988 Jeng et al. Jan 2015 A1
20150029871 Frost et al. Jan 2015 A1
20150032871 Allan et al. Jan 2015 A1
20150052516 French et al. Feb 2015 A1
20150071285 Kumar et al. Mar 2015 A1
20150074276 DeCusatis et al. Mar 2015 A1
20150082308 Kiess et al. Mar 2015 A1
20150085635 Wijnands et al. Mar 2015 A1
20150085870 Narasimha et al. Mar 2015 A1
20150089082 Patwardhan et al. Mar 2015 A1
20150092564 Aldrin Apr 2015 A1
20150103827 Quinn et al. Apr 2015 A1
20150117308 Kant Apr 2015 A1
20150124622 Kovvali et al. May 2015 A1
20150131484 Aldrin May 2015 A1
20150131660 Shepherd et al. May 2015 A1
20150156035 Foo et al. Jun 2015 A1
20150180725 Varney et al. Jun 2015 A1
20150180767 Tam et al. Jun 2015 A1
20150181309 Shepherd et al. Jun 2015 A1
20150188949 Mahaffey et al. Jul 2015 A1
20150195197 Yong et al. Jul 2015 A1
20150222516 Deval et al. Aug 2015 A1
20150222533 Birrittella et al. Aug 2015 A1
20150236948 Dunbar et al. Aug 2015 A1
20150319078 Lee et al. Nov 2015 A1
20150319081 Kasturi et al. Nov 2015 A1
20150326473 Dunbar et al. Nov 2015 A1
20150333930 Aysola et al. Nov 2015 A1
20150334027 Bosch et al. Nov 2015 A1
20150341285 Aysola et al. Nov 2015 A1
20150365495 Fan et al. Dec 2015 A1
20150381465 Narayanan et al. Dec 2015 A1
20150381557 Fan et al. Dec 2015 A1
20160028604 Chakrabarti et al. Jan 2016 A1
20160028640 Zhang et al. Jan 2016 A1
20160043952 Zhang et al. Feb 2016 A1
20160050117 Voellmy et al. Feb 2016 A1
20160050132 Zhang Feb 2016 A1
20160080263 Park et al. Mar 2016 A1
20160080496 Falanga et al. Mar 2016 A1
20160099853 Nedeltchev et al. Apr 2016 A1
20160119159 Zhao et al. Apr 2016 A1
20160119253 Kang et al. Apr 2016 A1
20160127139 Tian et al. May 2016 A1
20160134518 Callon et al. May 2016 A1
20160134535 Callon May 2016 A1
20160139939 Bosch et al. May 2016 A1
20160164776 Biancaniello Jun 2016 A1
20160165014 Nainar et al. Jun 2016 A1
20160173373 Guichard et al. Jun 2016 A1
20160173464 Wang et al. Jun 2016 A1
20160182336 Doctor et al. Jun 2016 A1
20160182342 Singaravelu Jun 2016 A1
20160182684 Connor Jun 2016 A1
20160212017 Li et al. Jul 2016 A1
20160226742 Apathotharanan et al. Aug 2016 A1
20160248685 Pignataro et al. Aug 2016 A1
20160277250 Maes Sep 2016 A1
20160285720 Mäenpää et al. Sep 2016 A1
20160323165 Boucadair et al. Nov 2016 A1
20160352629 Wang et al. Dec 2016 A1
20160380966 Gunnalan et al. Dec 2016 A1
20170019303 Swamy et al. Jan 2017 A1
20170031804 Ciszewski et al. Feb 2017 A1
20170078175 Xu et al. Mar 2017 A1
20170187609 Lee et al. Jun 2017 A1
20170208000 Bosch et al. Jul 2017 A1
20170214627 Zhang et al. Jul 2017 A1
20170237656 Gage et al. Aug 2017 A1
20170250917 Ruckstuhl et al. Aug 2017 A1
20170272470 Gundamaraju et al. Sep 2017 A1
20170279712 Nainar et al. Sep 2017 A1
20170310611 Kumar et al. Oct 2017 A1
20170331741 Fedyk et al. Nov 2017 A1
20180013841 Nainar et al. Jan 2018 A1
20180026884 Nainar et al. Jan 2018 A1
20180026887 Nainar et al. Jan 2018 A1
20180041470 Schultz et al. Feb 2018 A1
20180062991 Nainar et al. Mar 2018 A1
Foreign Referenced Citations (12)
Number Date Country
103716123 Apr 2014 CN
103716137 Apr 2014 CN
3160073 Apr 2017 EP
2016149686 Aug 2016 JP
WO 2011029321 Mar 2011 WO
WO 2012056404 May 2012 WO
WO 2015065353 May 2015 WO
WO 2015180559 Dec 2015 WO
WO 2015187337 Dec 2015 WO
WO 2016004556 Jan 2016 WO
WO 2016058245 Apr 2016 WO
WO 2017011607 Jan 2017 WO
Non-Patent Literature Citations (60)
Entry
Mortensen, A., et al., “Distributed Denial of Service (DDoS) Open Threat Signaling Requirements,” DOTS, Mar. 18, 2016, 16 pages; https://tools.ietf.org/pdf/draft-ietf-dots-requirements-01.pdf.
Quinn, P., et al., “Network Service Header,” Network Working Group, Mar. 24, 2015, 42 pages; https://tools.ietf.org/pdf/draft-ietf-sfc-nsh-00.pdf.
Newman, “Review: FireEye fights off multi-stage malware,” Network World, May 5, 2014, 7 pages; http://www.networkworld.com/article/2176480/network-security/review-- fireeye-fights-off-multi-stage-malware.html/.
Halpern, J., et al., “Service Function Chaining (SFC) Architecture,” Internet Engineering Task Force (IETF), RFC 7665, Oct. 2015, 32 pages; https://tools.ietf.org/html/rfc7665.
Aldrin, S., et al. “Service Function Chaining Operation, Administration and Maintenance Framework,” Internet Engineering Task Force, Oct. 26, 2014, 13 pages.
Alizadeh, Mohammad, et al., “CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,” SIGCOMM '14, Aug. 17-22, 2014, 12 pages.
Author Unknown, “ANSI/SCTE 35 2007 Digital Program Insertion Cueing Message for Cable,” Engineering Committee, Digital Video Subcommittee, American National Standard, Society of Cable Telecommunications Engineers, © Society of Cable Telecommunications Engineers, Inc. 2007 All Rights Reserved, 140 Philips Road, Exton, PA 19341; 42 pages.
Author Unknown, “AWS Lambda Developer Guide,” Amazon Web Services Inc., May 2017, 416 pages.
Author Unknown, “CEA-708,” from Wikipedia, the free encyclopedia, Nov. 15, 2012; 16 pages http://en.wikipedia.org/w/index.php?title=CEA-708&oldid=523143431.
Author Unknown, “Cisco and Intel High-Performance VNFs on Cisco NFV Infrastructure,” White Paper, Cisco and Intel, Oct. 2016, 7 pages.
Author Unknown, “Cloud Functions Overview,” Cloud Functions Documentation, Mar. 21, 2017, 3 pages; http://could.google.com/functions/docs/concepts/overview.
Author Unknown, “Cloud-Native VNF Modelling,” Open Source Mano, © ETSI 2016, 18 pages.
Author Unknown, “Digital Program Insertion,” from Wikipedia, the free encyclopedia, Jan. 2, 2012; 1 page http://en.wikipedia.org/w/index.php?title=Digital_Program_insertion&oldid=469076482.
Author Unknown, “Dynamic Adaptive Streaming over HTTP,” from Wikipedia, the free encyclopedia, Oct. 25, 2012; 3 pages, http://en.wikipedia.org/w/index.php?title=Dynannic_Adaptive_Streanning_over_HTTP&oldid=519749189.
Author Unknown, “GStreamer and in-band metadata,” from RidgeRun Developer Connection, Jun. 19, 2012, 5 pages https://developersidgerun.conn/wiki/index.php/GStreanner_and_in-band_nnetadata.
Author Unknown, “IEEE Standard for the Functional Architecture of Next Generation Service Overlay Networks, IEEE Std. 1903-2011,” IEEE, Piscataway, NJ, Oct. 7, 2011; 147 pages.
Author Unknown, “ISO/IEC JTC 1/SC 29, Information Technology—Dynamic Adaptive Streaming over HTTP (DASH)—Part 1: Media Presentation Description and Segment Formats,” International Standard © ISO/IEC 2012—All Rights Reserved; Jan. 5, 2012; 131 pages.
Author Unknown, “M-PEG 2 Transmission,” © Dr. Gorry Fairhurst, 9 pages [Published on or about Jan. 12, 2012] http://www.erg.abdn.ac.uk/future-net/digital-video/mpeg2-trans.html.
Author Unknown, “MPEG Transport Stream,” from Wikipedia, the free encyclopedia, Nov. 11, 2012; 7 pages, http://en.wikipedia.org/w/index.php?title=MPEG_transport_streann&oldid=522468296.
Author Unknown, “Network Functions Virtualisation (NFV); Use Cases,” ETSI, GS NFV 001 v1.1.1, Architectural Framework, © European Telecommunications Standards Institute, Oct. 2013, 50 pages.
Author Unknown, “OpenNebula 4.6 User Guide,” Jun. 12, 2014, opennebula.org, 87 pages.
Author Unknown, “Understanding Azure, A Guide for Developers,” Microsoft Corporation, Copyright © 2016 Microsoft Corporation, 39 pages.
Author Unknown, “3GPP TR 23.803 V7.0.0 (Sep. 2005) Technical Specification: Group Services and System Aspects; Evolution of Policy Control and Charging (Release 7),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Val bonne—France, Sep. 2005; 30 pages.
Author Unknown, “3GPP TS 23.203 V8.9.0 (Mar. 2010) Technical Specification: Group Services and System Aspects; Policy and Charging Control Architecture (Release 8),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Val bonne—France, Mar. 2010; 116 pages.
Author Unknown, “3GPP TS 23.401 V13.5.0 (Dec. 2015) Technical Specification: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 13),” 3GPP, 650 Route des Lucioles—Sophia Antipolis Valbonne—France, Dec. 2015, 337 pages.
Author Unknown, “3GPP TS 23.401 V9.5.0 (Jun. 2010) Technical Specification: Group Services and Systems Aspects; General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access (Release 9),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Valbonne—France, Jun. 2010; 259 pages.
Author Unknown, “3GPP TS 29.212 V13.1.0 (Mar. 2015) Technical Specification: 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control (PCC); Reference points (Release 13),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Valbonne—France, Mar. 2015; 230 pages.
Author Unknown, “Service-Aware Network Architecture Based on SDN, NFV, and Network Intelligence,” 2014, 8 pages.
Baird, Andrew, et al. “AWS Serverless Multi-Tier Architectures; Using Amazon API Gateway and AWS Lambda,” Amazon Web Services Inc., Nov. 2015, 20 pages.
Bi, Jing, et al., “Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center,” 2010 IEEE 3rd International Conference on Cloud Computing, Jul. 5, 2010, pp. 370-377, IEEE Computer Society.
Bitar, N., et al., “Interface to the Routing System (I2RS) for the Service Chaining: Use Cases and Requirements,” draft-bitar-i2rs-service-chaining-01, Feb. 14, 2014, pp. 1-15.
Boucadair, Mohamed, et al., “Differentiated Service Function Chaining Framework,” Network Working Group Internet Draft draft-boucadair-network-function-chaining-03, Aug. 21, 2013, 21 pages.
Bremler-Barr, Anat, et al., “Deep Packet Inspection as a Service,” CoNEXT '14, Dec. 2-5, 2014, pp. 271-282.
Cisco Systems, Inc. “Cisco NSH Service Chaining Configuration Guide,” Jul. 28, 2017, 11 pages.
Cisco Systems, Inc. “Cisco VN-LINK: Virtualization-Aware Networking,” 2009, 9 pages.
Dunbar, et al., “Architecture for Chaining Legacy Layer 4-7 Service Functions,” IETF Network Working Group Internet Draft, draft-dunbar-sfc-legacy-14-17-chain-architecture-03.txt, Feb. 10, 2014; 17 pages.
Ersue, Mehmet, “ETSI NFV Management and Orchestration—An Overview,” Presentation at the IETF# 88 Meeting, Nov. 3, 2013, 14 pages.
Farrel, A., et al., “A Path Computation Element (PCE)—Based Architecture,” RFC 4655, Network Working Group, Aug. 2006, 40 pages.
Fayaz, Seyed K., et al., “Efficient Network Reachability Analysis using a Succinct Control Plane Representation,” 2016, ratul.org, pp. 1-16.
Hendrickson, Scott, et al. “Serverless Computation with OpenLambda,” Elastic 60, University of Wisconson, Madison, Jun. 20, 2016, 7 pages, https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_hendrickson.pdf.
Jiang, Y., et al., “An Architecture of Service Function Chaining,” IETF Network Working Group Internet Draft, draft-jiang-sfc-arch-01.txt, Feb. 14, 2014; 12 pages.
Jiang, Yuanlong, et al., “Fault Management in Service Function Chaining,” Network Working Group, China Telecom, Oct. 16, 2015, 13 pages.
Katsikas, Goergios P., et al., “Profiling and accelerating commodity NFV service chains with SCC,” The Journal of Systems and Software, vol. 127, Jan. 2017, pp. 12-27.
Kumar, Surendra, et al., “Service Function Path Optimization: draft-kumar-sfc-sfp-optimization-00.txt,” Internet Engineering Task Force, IETF; Standard Working Draft, May 10, 2014, 14 pages.
Kumbhare, Abhijit, et al., “Opendaylight Service Function Chaining Use-Cases,” Oct. 14, 2014, 25 pages.
Li, Hongyu, “Service Function Chaining Use Cases”, IETF 88 Vancouver, Nov. 7, 2013, 7 pages.
Nguyen, Kim-Khoa, et al. “Distributed Control Plane Architecture of Next Generation IP Routers,” IEEE, 2009, 8 pages.
Penno, Reinaldo, et al. “Packet Generation in Service Function Chains,” draft-penno-sfc-packet-03, Apr. 29, 2016, 25 pages.
Penno, Reinaldo, et al. “Services Function Chaining Traceroute,” draft-penno-sfc-trace-03, Sep. 30, 2015, 9 pages.
Pierre-Louis, Marc-Arhtur, “OpenWhisk: A quick tech preview,” DeveloperWorks Open, IBM, Feb. 22, 2016, modified Mar. 3, 2016, 7 pages; https://developer.ibm.com/open/2016/02/22/openwhisk-a-quick-tech-preview/.
Pujol, Pua Capdevila, “Deployment of NFV and SFC scenarios,” EETAC, Master Thesis, Advisor: David Rincon Rivera, Universitat Politecnica De Catalunya, Feb. 17, 2017, 115 pages.
Quinn, P., et al., “Network Service Chaining Problem Statement,” draft-quinn-nsc-problem-statement-03.txt, Aug. 26, 2013, 18 pages.
Quinn, Paul, et al., “Network Service Header,” Network Working Group, draft-quinn-sfc-nsh-02.txt, Feb. 14, 2014, 21 pages.
Quinn, Paul, et al., “Network Service Header,” Network Working Group, draft-quinn-nsh-00.txt, Jun. 13, 2013, 20 pages.
Quinn, Paul, et al., “Network Service Header,” Network Working Group Internet Draft draft-quinn-nsh-01, Jul. 12, 2013, 20 pages.
Quinn, Paul, et al., “Service Function Chaining (SFC) Architecture,” Network Working Group Internet Draft draft-quinn-sfc-arch-05.txt, May 5, 2014, 31 pages.
Quinn, Paul, et al., “Service Function Chaining: Creating a Service Plane via Network Service Headers,” IEEE Computer Society, 2014, pp. 38-44.
Wong, Fei, et al., “SMPTE-TT Embedded in ID3 for HTTP Live Streaming, draft-smpte-id3-http-live-streaming-00,” Information Internet Draft, Jun. 2012, 7 pages http://tools.ietf.org/htnnl/draft-snnpte-id3-http-live-streaming-00.
Yadav, Rishi, “What Real Cloud-Native Apps Will Look Like,” Crunch Network, posted Aug. 3, 2016, 8 pages; https://techcrunch.com/2016/08/03/what-real-cloud-native-apps-will-look-like/.
Zhang, Ying, et al. “StEERING: A Software-Defined Networking for Inline Service Chaining,” IEEE, 2013, IEEE, p. 10 pages.
Related Publications (1)
Number Date Country
20180041524 A1 Feb 2018 US