The present invention relates to steering shafts for impact-energy absorbing steering columns and a manufacturing method thereof. More particularly, the present invention relates to an improvement in engagements such as serration for providing steering shafts that are contractible for impact-energy absorption.
JP-A 948353 shows a steering shaft comprising a hollow lower shaft and a hollow upper shaft integrated with each other. A circumferential groove is formed in the outer peripheral surface of the lower shaft, whereas a hole is formed in the upper shaft. The groove and the hole are filled with a resin.
In the event of vehicle collision, a secondary collision will occur which a driver collides with a steering wheel by law of inertia. This produces a great impact load applied axially to the upper shaft. Thus, the upper shaft is moved downward with respect to the lower shaft, providing a shearing force to the resin. When a load applied to the upper shaft exceeds a maximum shearing stress for the resin, the resin is sheared to allow movement of the upper shaft toward the lower shaft. This movement contributes to absorption of an impact of the upper shaft applied to the driver.
However, the above steering shaft needs machining of the lower and upper shafts and injection of the resin, leading to high manufacturing cost. Moreover, variations between products often occur due to individual difference, which causes increased number of processes for control of the resin-injection pressure, clamping pressure, etc., resulting in high manufacturing cost.
It is, therefore, an object of the present invention to provide steering shafts for impact-energy absorbing steering columns, which allow a reduction in manufacturing cost with simplified production process. Another object of the present invention is to provide a manufacturing method of such steering shafts.
The present invention generally provides a steering shaft for an energy absorbing steering column, which comprises a first shaft; a second shaft fitted in the first shaft; and a projection formed with the first shaft at a predetermined spot, wherein the projection protrudes inwardly from an inner surface of the first shaft.
A main feature of the present invention is to provide a method of manufacturing such steering shaft, which comprises preparing first and second shafts; fitting the second shaft into the first shaft; pressing the shafts at a predetermined spot, the shafts pressing creating a projection on the first shaft, wherein the projection protrudes inwardly from an inner surface of the first shaft; and moving the first shaft and the second shaft in a relative manner in a direction of energy absorbing motion.
The other objects and features of the present invention will become apparent from the following description with reference to the accompanying drawings, wherein:
Referring to the drawings, a description will be made with regard to a steering shaft for impact-energy absorbing steering columns embodying the present invention.
Referring to
The lower shaft 2 does not need to be hollow throughout the length, but may be hollowed at least in a portion for the female serration 4. The female and male serrations 4, 5 are obtained according to known machining methods such as drawing and rolling.
A shank 6 is integrally formed with the upper shaft 3 at an end thereof to provide a non-serration area adjacent to an end or front edge of the male serration 5. The shank 6 having smaller diameter than the maximum diameter of the male serration 5 extends from the end of the male serration 5 to an end face 3a of the upper shaft 3. In order to prevent a level differential due to diameter difference from occurring at the boundary between the shank 6 and the male serration 5, the shank 6 is formed with an R-chamfered portion 7 to smoothly connect the two. The shank 6 is also formed with a straight portion 6a extending to the end face 3a. Such structures contribute to stabilization of the contour accuracy of a depression 8 as will be described later, resulting in stabilized press-fit load for the lower and upper shafts 2, 3 without any variation. It is noted that the shank 6 is formed concurrently when working the upper shaft 3 by cold forging, for example.
On the other hand, the depression 8 is formed with the lower shaft 2 to correspond to the male serration 5 of the upper shaft 3 in the normal serration engagement of the two shafts 2, 3. The depression 8 is obtained by thrusting inwardly an axial portion of the lower shaft 2 with female serration 4. The depression 8 serves to locally reduce the inner diameter of the female serration 4 of the lower shaft 2. Thus, when the female and male serrations 4, 5 are in engagement, the depression 8 comes in intense press contact with the male serration 5 to increase the slide resistance between the two.
Specifically, when the female and male serrations 4, 5 are in engagement as shown in
Therefore, during steering operation, the steering shaft 1 having the above structure allows torque transfer through engagement of the female and male serrations 4, 5. On the other hand, when undergoing an impact energy to the extent of contracting the steering shaft 1 by a secondary collision of a driver, etc., the steering shaft 1 is contracted by slide movement of the upper shaft 3 with respect to the lower shaft 2 through engagement of the female and male serrations 4, 5.
In the illustrative embodiment, required impact-energy absorbing stroke can be obtained by the lower shaft 2 with depression 8 and the upper shaft 3 with small-diameter shank 6 only, resulting in a reduction in number of parts and working processes, and thus in manufacturing cost.
It is noted that serration engagement of the lower and upper shafts 2, 3 may be replaced with spline engagement, and that the chamfered portion 7 may be of the tapered shape in place of the R-shape. Moreover, the small-diameter shank 6 may be formed with a male serration, since the shank 6 and the R-chamfered portion 7 are formed with a male serration when concurrently shaping the male serration 5 and the shank 6 by one process of cold forging, for example.
Referring to
Referring to
Referring to
Subsequently, referring to
As shown in
Then, a position (ii) of the steering shaft 1 as shown in
After creating the convexes A, B, the lower shat 2 is further inserted into the upper shaft 3 as shown in FIG. 3B. Referring to
Press fit of the lower shaft 2 is achieved as shown in FIG. 3B. The frictional resistance between the lower and upper shafts 2, 3 is increased due to presence of four spots, i.e. two convexes A, B of the lower shaft 2 and two expansions “b, b” of the upper shaft 3. The lower and upper shafts 2, 3 are in press contact with each other at the first convex A and the expansions “b” shown in
In the event that a secondary collision occurs which a driver collides with a steering wheel due to vehicle collision, a compressive force is applied to the steering shaft 1. Specifically, referring to
In the second embodiment, the punch 12 is applied once to obtain single combination of the first convex A and the expansions “b, b”, and the punch 13 is applied once to create single second convex B. Optionally, the punch 12 may be applied twice or more to obtain two or more combinations thereof. And the punch 13 may be applied twice or more to create two or more second convexes B, or it may not be applied at all to create no convex.
Moreover, in the embodiment, the lower shaft 2 is fitted in the upper shaft 3. Optionally, the upper shaft may be fitted in the lower shaft. Further, in the embodiments, the lower and upper shafts 2, 3 are of a modified cross section with two plane portions and two circular portions. Alternatively, the lower and upper shafts may be of a polygonal cross section.
Having described the present invention with regard to the preferred embodiment, it is noted that the present invention is not limited thereto, and various changes and modifications can be made without departing from the scope of the present invention.
The entire teachings of Japanese Patent Application 2000-398050 filed Dec. 27, 2000 and Japanese Patent Application 2001-54171 filed Feb. 28, 2001 are incorporated hereby by reference.
Number | Date | Country | Kind |
---|---|---|---|
2000-398050 | Dec 2000 | JP | national |
2001-054171 | Feb 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4572022 | Mettler | Feb 1986 | A |
4991871 | Sadakata | Feb 1991 | A |
5314204 | DuRocher et al. | May 1994 | A |
5613794 | Isaac et al. | Mar 1997 | A |
5954362 | Aota et al. | Sep 1999 | A |
6068296 | Tomaru et al. | May 2000 | A |
Number | Date | Country |
---|---|---|
56-36572 | Apr 1981 | JP |
58-142178 | Sep 1983 | JP |
59-77965 | May 1984 | JP |
5-37642 | May 1993 | JP |
5-178221 | Jul 1993 | JP |
9-48353 | Feb 1997 | JP |
9-272447 | Oct 1997 | JP |
10-16795 | Jan 1998 | JP |
10-45005 | Feb 1998 | JP |
10-147245 | Jun 1998 | JP |
10-203381 | Aug 1998 | JP |
11-291923 | Oct 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20020079686 A1 | Jun 2002 | US |