The present invention generally relates to steering wheel controls.
Motor vehicles such as cars and lorries are ever more richly equipped with a variety of functions and accessories. The safety is still the overriding principle. Therefore, particular attention is paid on the user interfaces. One common development is that the steering wheels often sport different controls for use of car radio and cruise control functions, for example. In other applications e.g. in mobile phones, it is possible to layer different functions into menu structures. Such menus are, however, poorly suited for use for a driver of a car for safety considerations. At the same time, the cost pressures in car industry have been mounting, which causes a continuous need to cut costs wherever possible. Multi-function steering wheels are relatively expensive because of the complexities caused by cabling and because a multitude of durable and reliable buttons are needed.
According to a first example aspect of the invention there is provided an apparatus comprising:
The vibration sensors may comprise piezo-electric sensors and/or microphones.
The vibration sensors may be fixed to a rim of the steering wheel. The vibration sensors may be fixed permanently or detachably. The vibration sensors may be positioned so that vibration from each different section of the steering wheel produces a unique combination of vibration information produced by the vibration sensors.
The apparatus may further comprise a noise detection sensor. The noise detection sensor may be operationally and/or structurally similar to the vibration sensors. The controller may be further configured to perform adaptive filtering to compensate for noise caused by normal vibrations that are carried by the steering column to the steering wheel.
The controller may comprise one or more physical processing units. The processing units may comprise one or more similar or different units selected from the group consisting of: a central processing unit; a master control unit; a digital signal processor; an application specific integrated circuit; a field programmable gate array; and a microcontroller.
The sections of the steering wheel may refer to sections of the rim of the steering wheel. The sections may also comprise spokes or other intermediary elements that connect the rim to a steering shaft.
The sections may be defined relative to the orientation of the steering wheel. Alternatively, the sections may be defined relative to a reference other than the steering wheel. The reference may be the body of a vehicle to which the steering wheel is installed. Alternatively, the reference may be the gravitational field.
The controller and/or the vibration sensors may be configured to detect vibration that exceeds a given threshold. The controller may be configured to determine tapping of the steering wheel and the touch section based on time difference of arrival as measured by different ones of the vibration sensors. The time difference may be measured from detected up and/or down ramps in the vibration information produced by different vibration sensors. Alternatively, the controller may be configured to compare outputs of different vibration sensors in frequency domain.
The apparatus may be incorporated with a steering wheel cover for installation onto an existing steering wheel.
The control command may comprise one or more of the following: select next song or channel; select previous song or channel; fast forward; fast backward; volume up; volume down; mute; release mute; answer phone; end call; select audio source; increase heating; decrease heating; activate navigation; deactivate navigation; select navigation target; show current location; turn on spoken feedback; turn off spoken feedback; switch on traffic announcements; switch off traffic announcements; and query currently effective traffic speed limits and/or parking rules.
In general, the control commands may enable or disable a specific service or application, or a sub-functionality within a service or application.
In addition, the touch section may correspond to a predetermined user command. Alternatively, the touch section may correspond to a context-sensitive user command. In this latter case, context-indicative information may be presented on a display (e.g. in an instrument panel) or by audible information.
A portable device may operate as the controller. The portable device may be selected from a group consisting of: a mobile phone, a personal digital assistant, a game device, and a navigation device. The portable device may configured to be mounted to the steering wheel. Alternatively or additionally, the apparatus may comprise a clamp or connector configured to releasable attach the portable device to the steering wheel.
The portable device may contain the vibration sensors.
The apparatus may comprise a feedback transducer configured to output a user perceivable feedback signal in response to the determining of the user command. The feedback transducer may comprise a vibrator. The feedback transducer may comprise a loudspeaker.
The apparatus may be configured to provide a feedback signal via the controllable device in response to the determining of the user command. The controllable device may be a car media player such as a car radio.
According to a second example aspect of the invention there is provided a method comprising:
According to a third example aspect of the invention there is provided an apparatus comprising:
According to a fourth example aspect of the invention there is provided a computer program product comprising a non-transitory computer readable medium having computer executable program code stored thereon, which when executed by at least one processor causes an apparatus at least to perform:
The computer executable program code may be stored on a memory medium.
Any foregoing memory medium may comprise a digital data storage such as a data disc or diskette, optical storage, magnetic storage, holographic storage, opto-magnetic storage, phase-change memory, resistive random access memory, magnetic random access memory, solid-electrolyte memory, ferroelectric random access memory, organic memory or polymer memory. The memory medium may be formed into a device without other substantial functions than storing memory or it may be formed as part of a device with other functions, including but not limited to a memory of a computer, a chip set, and a sub assembly of an electronic device.
Different non-binding example aspects and embodiments of the present invention have been illustrated in the foregoing. The above embodiments are used merely to explain selected aspects or steps that may be utilized in implementations of the present invention. Some embodiments may be presented only with reference to certain example aspects of the invention. It should be appreciated that corresponding embodiments may apply to other example aspects as well.
Some example embodiments of the invention will be described with reference to the accompanying drawings, in which:
In the following description, like reference signs denote like elements.
Moreover, the system 100 depicts two auxiliary control units 160 and 170, which represent various possible devices that may be controlled by the controller 110. These auxiliary control units 160, 170 may belong or control any of in-car navigation systems, media players, mobile communication units, cabin temperature control and the like. The multifunction steering wheel 140 may be used solely for controlling such functions which are not essential for safety. In some embodiments, the multifunction steering when may also control functions such as cruise control, headlights or gear shifting.
The vibration sensors 120 may comprise piezo-electric sensors and/or microphones.
The vibration sensors 120 may be fixed to a rim of the steering wheel 140. The vibration sensors 120 may be fixed permanently or detachably. The vibration sensors 120 may be positioned so that vibration from each different section of the steering wheel 140 produces a unique combination of vibration information produced by the vibration sensors.
The sections of the steering wheel 140 may refer to sections of the rim of the steering wheel 140. The sections may also comprise spokes or other intermediary elements that connect the rim to a steering shaft.
The controller 110 and/or the vibration sensors 120 may be configured to detect vibration that exceeds a given threshold. The controller 110 may be configured to determine tapping of the steering wheel 140 and the touch section based on time difference of arrival as measured by different ones of the vibration sensors 120. The time difference may be measured from detected up and/or down ramps in the vibration information produced by different vibration sensors. Alternatively, the controller 110 may be configured to compare outputs of different vibration sensors 120 in frequency domain.
The system 100 may be incorporated with a steering wheel cover for installation onto an existing steering wheel 140.
The system 100 may further comprise an orientation detector 180 configured to detect the orientation of the multifunction steering wheel in relation to a vehicle in which the system 100 is mounted. The orientation detector may comprise, for instance, an angle sensor that detects the turning angle of the steering wheel 140 with respect to the steering column's non-rotating body. The orientation detector may also be configured to detect the orientation with respect to the gravitation field of the Earth. It is also possible that the orientation detector is configured to receive an indication of the orientation of the steering wheel from an auxiliary system. For instance, many cars have a variable force power steering system which may measure the extent to which the steering wheel is rotated.
The communication interface module 250 is configured to provide local communications over one or more local links with the auxiliary control units 160, 170. The local links may be wired and/or wireless links. The communication interface module 250 may further implement telecommunication links suited for establishing links with other users or for data transfer (e.g. using the Internet). Such telecommunication links may be links using any of: wireless local area network links, Bluetooth, ultra-wideband, cellular or satellite communication links. The communication interface module 250 may be integrated into the controller 110 or into an adapter, card or the like that may be inserted into a suitable slot or port of the controller 110. While
The processor 210 may be, e.g., a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a graphics processing unit, an application specific integrated circuit (ASIC), a field programmable gate array, a microcontroller 110 or a combination of such elements.
The memory 220 may be for example a volatile or a non-volatile memory, such as a read-only memory (ROM), a programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), a random-access memory (RAM), a flash memory, a data disk, an optical storage, a magnetic storage, a smart card, or the like. The controller 110 may comprise a plurality of memories. The memory 220 may be constructed as a part of the controller 110 or it may be inserted into a slot, port, or the like of the controller 110 by a user. The memory 220 may serve the sole purpose of storing data, or it may be constructed as a part of an apparatus serving other purposes, such as processing data.
A skilled person appreciates that in addition to the elements shown in
The control command may comprise one or more of the following: select next song or channel; select previous song or channel; fast forward; fast backward; volume up; volume down; mute; release mute; answer phone; end call; select audio source; increase heating; decrease heating; activate navigation; deactivate navigation; select navigation target; show current location; turn on spoken feedback; turn off spoken feedback; switch on traffic announcements; switch off traffic announcements; and query currently effective traffic speed limits and/or parking rules.
In general, the control commands may be configured to enable or disable a specific service or application, or a sub-functionality within a service or application.
In addition, the touch section may correspond to a predetermined user command. Alternatively, the touch section may correspond to a context-sensitive user command. In this latter case, context-indicative information may be presented on a display (e.g. in an instrument panel) or by audible information.
A portable device may operate as the controller 110. The portable device may be selected from a group consisting of: a mobile phone, a personal digital assistant, a game device, and a navigation device. The portable device may configured to be mounted to the steering wheel 140. Alternatively or additionally, the apparatus may comprise a clamp or connector configured to releasable attach the portable device to the steering wheel. The connector may comprise, for instance, adhesive tape, releasably attachable fixing tape, cable tie, one or more bolts or threaded elements configured to engage with corresponding elements of the steering wheel 140.
The portable device may contain the vibration sensors 120.
The system 100 may comprise a feedback transducer configured to output a user perceivable feedback signal in response to the determining of the user command. The feedback transducer may comprise a vibrator. The feedback transducer may comprise a loudspeaker. The vibration sensors 120 may be used as the feedback transducer.
The system 100 may be configured to provide a feedback signal via the auxiliary control units 160, 170 (which represent one or more controllable devices) in response to the determining of the user command. The auxiliary control unit 160 may be a car media player such as a car radio.
The calculating 440 of the touch section may be based on determining up/down ramp time of a vibration pulse that propagates along the steering wheel 140. Such calculation may be implemented simply by detecting time difference between the moments at which vibration at different vibration sensors 120 exceeds a threshold level. Alternatively, the calculating 440 may compare waveform signals produced by different vibration sensors 120. The comparison of waveform signals may be implemented with commonly known techniques, for instance, frequency domain operations. In one alternative, the comparison may be implemented by producing a difference signal between each adjacent vibration sensor, optionally noise compensate the difference signal(s), and then compare the difference signals with pre-stored wave patterns that represent vibrations caused at different sections of the steering wheel 140. If a pre-stored wave pattern of one section differs from the difference signal less than by a maximum error, that section is determined to be the touch sector.
The description of the operation of the system 100 is intentionally written with an attempt to avoid defining a particular order for the different steps of
In one example embodiment, the calculating 440 of the touch section may be relative to the steering wheel 140. In other words, when the steering wheel 140 is aligned for driving straight ahead, a given first touch section may reside on the bottom of the steering wheel 140 as seen by the user. However, when the steering wheel 140 is rotated by half a turn, the given first touch section would reside on the top of the steering wheel 140 as then seen by the user.
In another example embodiment, instead, the touch sections are defined with relation to the body of the car or with relation to the gravitational field. In this case, generally, the touch sections are defined so that the given first touch section would always reside on the bottom of the steering wheel 140 as seen by the user, no matter to how large an extent the steering wheel 140 is turned. In this example embodiment, the angle of the steering wheel 140 is determined with relation to the body of the vehicle or to the gravitational field resulting with an angle determination for the steering wheel 140. This angle determination is used to transpose the detected touch section that is measured relative to the steering wheel 140 into a touch section that is relative to the reference alignment. The reference alignment may be based on the body of the vehicle or on the gravitational field.
With the system 100, a user may command the controllable device in a desired manner e.g. by tapping a particular section of the steering wheel 140.
The foregoing description has provided by way of non-limiting examples of particular implementations and embodiments of the invention a full and informative description of the best mode presently contemplated by the inventors for carrying out the invention. It is however clear to a person skilled in the art that the invention is not restricted to details of the embodiments presented above, but that it can be implemented in other embodiments using equivalent means or in different combinations of embodiments without deviating from the characteristics of the invention.
Furthermore, some of the features of the above-disclosed embodiments of this invention may be used to advantage without the corresponding use of other features. As such, the foregoing description shall be considered as merely illustrative of the principles of the present invention, and not in limitation thereof. Hence, the scope of the invention is only restricted by the appended patent claims.
Number | Name | Date | Kind |
---|---|---|---|
5808374 | Miller et al. | Sep 1998 | A |
6157372 | Blackburn et al. | Dec 2000 | A |
6373472 | Palalau et al. | Apr 2002 | B1 |
6418362 | St. Pierre et al. | Jul 2002 | B1 |
6438465 | Obradovich et al. | Aug 2002 | B2 |
6703999 | Iwanami et al. | Mar 2004 | B1 |
7126583 | Breed | Oct 2006 | B1 |
7158871 | Ilan et al. | Jan 2007 | B1 |
7239096 | Hancock et al. | Jul 2007 | B2 |
7242112 | Wolf et al. | Jul 2007 | B2 |
7410202 | Rose et al. | Aug 2008 | B2 |
7663047 | Hanuschak | Feb 2010 | B2 |
7834857 | Prados | Nov 2010 | B2 |
8026902 | Medler et al. | Sep 2011 | B2 |
8058577 | Tissot | Nov 2011 | B2 |
8199111 | Aimi et al. | Jun 2012 | B2 |
8229603 | Miyata et al. | Jul 2012 | B2 |
8309870 | Peterson et al. | Nov 2012 | B2 |
8390422 | Laurent et al. | Mar 2013 | B2 |
8405618 | Colgate et al. | Mar 2013 | B2 |
8406961 | Pathak et al. | Mar 2013 | B2 |
8433470 | Szybalski et al. | Apr 2013 | B1 |
8433481 | Yoshida et al. | Apr 2013 | B2 |
20040030807 | Wessler et al. | Feb 2004 | A1 |
20040122572 | Ichinose | Jun 2004 | A1 |
20050052426 | Hagermoser et al. | Mar 2005 | A1 |
20050143870 | Yoshio et al. | Jun 2005 | A1 |
20060047386 | Kanevsky et al. | Mar 2006 | A1 |
20070057922 | Schultz et al. | Mar 2007 | A1 |
20070236472 | Bentsen et al. | Oct 2007 | A1 |
20080109132 | Yukawa et al. | May 2008 | A1 |
20080174415 | Tanida et al. | Jul 2008 | A1 |
20080243333 | Uchiyama et al. | Oct 2008 | A1 |
20080309634 | Hotelling et al. | Dec 2008 | A1 |
20090322499 | Pryor | Dec 2009 | A1 |
20100302016 | Zaborowski | Dec 2010 | A1 |
20110148774 | Pihlaja | Jun 2011 | A1 |
20130024071 | Sivertsen | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
19927464 | Sep 2008 | DE |
1321346 | Jun 2003 | EP |
2000228126 | Aug 2000 | JP |
WO2006025891 | Mar 2006 | WO |
WO2008125640 | Oct 2008 | WO |
Entry |
---|
O. Palinko and A.L. Kun, “Steering Wheel Sensor As a Push-To-Talk Solution”, 2008, 4 pages. |
Commission of the European Communities, “Commission Recommendation of Dec. 22, 2006 on Safe and Efficient In-Vehicle Information and Communication Systems: Update of the European Statement of Principles on Human Machine Interface”, Brussels, Dec. 22, 2006, 53 pages. |
Number | Date | Country | |
---|---|---|---|
20120150388 A1 | Jun 2012 | US |