The Society of Automotive Engineers (SAE) has defined multiple levels of autonomous vehicle operation. At levels 0-2, a human driver monitors or controls the majority of the driving tasks, often with no help from the vehicle. At level 0 (“no automation”), a human driver is responsible for all vehicle operations. At level 1 (“driver assistance”), the vehicle sometimes assists with steering, acceleration, or braking, but the driver is still responsible for the vast majority of the vehicle control. At level 2 (“partial automation”), the vehicle can control steering, acceleration, and braking under certain circumstances without human interaction. At levels 3-5, the vehicle assumes more driving-related tasks. At level 3 (“conditional automation”), the vehicle can handle steering, acceleration, and braking under certain circumstances, as well as monitoring of the driving environment. Level 3 requires the driver to intervene occasionally, however. At level 4 (“high automation”), the vehicle can handle the same tasks as at level 3 but without relying on the driver to intervene in certain driving modes. At level 5 (“full automation”), the vehicle can handle almost all tasks without any driver intervention.
With reference to the Figures, wherein like numerals indicate like parts throughout the several views, a computer 32 in a vehicle 30 is programmed to change a steering angle φ of the vehicle 30 and rotate a steering wheel 36 of the vehicle 30 to a steering-wheel angle θ based on the predicted or preset steering angle φ at a preset future time and a determined ratio R of the steering-wheel angle θ to the predicted or preset steering angle φ. The determined ratio R varies based at least on current vehicle speed.
The computer 32 as programmed uses the steering wheel 36 to provide easily understood and intuitive feedback to a human driver. The human driver may feel more comfortable when able to intuitively anticipate actions that the vehicle 30 will soon perform. If the vehicle 30 is operating semi-autonomously (as defined below), the computer 32 may provide the human driver time to react to change an action that the vehicle 30 is about to perform, which may reduce a likelihood of a vehicle impact.
The vehicle 30 may be an autonomous vehicle. The computer 32 may be capable of operating the vehicle 30 independently of the intervention of a human driver, completely or to a greater or a lesser degree. The computer 32 may be programmed to operate a propulsion system 40, brake system 42, steering system 34, and/or other vehicle systems.
For purposes of this disclosure, an autonomous mode is defined as one in which each of the propulsion system 40, the brake system 42, and the steering system 34 of the vehicle 30 are controlled by the computer 32; in a semi-autonomous mode the computer 32 of the vehicle 30 controls one or two of the propulsion system 40, the brake system 42, and the steering system 34. By way of context, the SAE has defined multiple levels of autonomous vehicle operation, as described in the Background. Thus, in one example, nonautonomous modes of operation according to the present disclosure may include levels 0-1, semi-autonomous modes of operation may include levels 2-3, and fully autonomous modes of operation may include levels 4-5.
With reference to
The computer 32 may transmit signals through the communications network 44, which may be a controller area network (CAN) bus, Ethernet, Local Interconnect Network (LIN), Bluetooth, and/or by any other wired or wireless communications network. The computer 32 may be in communication with sensors 46, the propulsion system 40, the brake system 42, and components of the steering system 34 such as a steer-by-wire system 38 and a torque applicator 48.
With continued reference to
The brake system 42 is typically a known vehicle braking subsystem and resists the motion of the vehicle 30 to thereby slow and/or stop the vehicle 30, for example by resisting the rotation of the road wheels 50. The brake system 42 may be friction brakes such as disc brakes, drum brakes, band brakes, etc.; regenerative brakes; any other suitable type of brakes; or a combination. The brake system 42 can include an electronic control unit (ECU) or the like that is in communication with and receives input from the computer 32 and/or a human driver. The human driver may control the brake system 42 via, e.g., a brake pedal.
With continued reference to
The steering rack 52 is connected to the steer-by-wire system 38, and the steering rack 52 is coupled to the road wheels 50. The steering rack 52 may be connected to the steer-by-wire system 38 via, e.g., electromechanical actuators (not shown) that transform an electrical signal into mechanical motion of the steering rack 52. The position of the steering rack 52 determines the turning of the road wheels 50. As shown in
The steer-by-wire system 38 may be connected to the steering rack 52 as described and connected to the steering wheel 36. The steer-by-wire system 38 may include a wiring harness and the ECU (not shown) in communication with the steering rack 52 and the steering wheel 36. In other words, there is no mechanical connection between the steering wheel 36 and the steering rack 52, only an electrical or electronic connection.
The steering wheel 36 may be rotatably coupled to an instrument panel (not shown) facing a seat for a human driver. As shown in
The torque applicator 48 is in communication with the computer 32 and coupled to the steering wheel 36, e.g., via a steering column (not shown). The torque applicator 48 may apply a torque T to the steering wheel 36, causing or resisting rotation of the steering wheel 36. The torque T applied by the torque applicator 48 is variable, and the computer 32 may instruct the torque applicator 48 to apply a particular level of torque T to the steering wheel 36. The torque applicator 48 may be, for example, an electric motor.
With continued reference to
The process 400 begins in a block 405, in which the computer 32 sets the steering angle φ for a preset future time. For example, the computer 32 may provide the steering angle φ for a specified future time as output from the programming conventionally used for autonomous or semi-autonomous operation of the vehicle 30. The preset future time may be a predetermined time Δt from a present time t0, that is, t0+Δt, e.g., two seconds in the future. The preset future time may be chosen to be sufficiently short such that rotation of the steering wheel 36, described below regarding a block 425, is intuitively associated with a change in steering angle φ of the vehicle 30 that would be made by a human driver. Additionally or alternatively, the preset future time may be chosen by a system designer to be sufficiently long so that the human driver may have time to react to the rotation of the steering wheel 36 before the change in steering angle φ of the vehicle 30.
Next, in a block 410, the computer 32 receives a vehicle speed, for example, from one or more sensors 46 or from an odometer.
Next, in a block 415, the computer 32 identifies a roadway type on which the vehicle 30 is traveling. The computer 32 may use location data such as GPS data from the sensors 46 combined with map data to identify a road on which the vehicle 30 is currently located. The computer 32 may use map data to classify the road. Possible roadway types include controlled-access highway, e.g., interstate highway, freeway, tollway, etc.; and noncontrolled-access road, e.g., county highways, local roads, etc. A controlled-access highway for purposes of this disclosure means a highway that is designed for continuous (nonstopping absent a traffic jam) traffic flow and therefore does not have stop-lights or stop-signs. For example, a controlled-access highway can be accessed only by entrance and exits ramps that allow vehicles to merge onto the highway and/or exit without stopping or substantially slowing until on the ramp. A noncontrolled-access road, in contrast, is designed for traffic to stop and start and can be accessed by vehicles turning onto and off of the road, possibly from a stop. A noncontrolled-access road may have stoplights and/or stop-signs.
Next, in a block 420, the computer 32 calculates a determined ratio R. The determined ratio R is used below in the block 425 as the ratio of the steering-wheel angle θ to the steering angle φ at the preset future time, for example, R=θ(t0)/φ(t0+Δt). The determined ratio R varies based at least on the vehicle speed and may also vary based on the roadway type, that is, R(v,h), in which v is current vehicle speed and h is current roadway type. For example, the determined ratio R may be higher at a first vehicle speed than at a second, slower vehicle speed. More specifically, the determined ratio R may increase as the vehicle speed increases and may increase monotonically, that is, without decreasing, as the vehicle speed increases. The determined ratio R may be higher for a controlled-access highway than for a noncontrolled-access road. More specifically, the determined ratio R may be higher at a given speed for a controlled-access highway than for a noncontrolled-access road.
Next, in the block 425, the computer 32 rotates the steering wheel 36 to a steering-wheel angle θ based on the steering angle φ at the preset future time and the determined ratio R. In particular, the steering wheel 36 is rotated to the steering-wheel angle θ equal to the steering angle φ at the preset future time multiplied by the determined ratio R, θ(t0)=R(v,h)*φ(t0+Δt).
Next, in a block 430, the computer 32 changes the steering angle φ of the vehicle 30 by turning the road wheels 50 at the preset future time t0+Δt.
Next, in a decision block 435, the computer 32 determines whether the vehicle 30 has arrived at its destination or has been switched out of the fully autonomous mode or semi-autonomous mode to the nonautonomous mode, in other words, the computer 32 determines whether a situation has occurred that means that the computer 32 should no longer perform the process 400. If the vehicle 30 has not arrived at its destination, etc., then the process 400 proceeds back to the block 405 to begin again; that is, the process 400 continues continuously while the vehicle 30 is operating autonomously or semi-autonomously. If the vehicle 30 has arrived at its destination, etc., the process 400 ends.
In general, the computing systems and/or devices described may employ any of a number of computer operating systems, including, but by no means limited to, versions and/or varieties of the Ford Sync® application, AppLink/Smart Device Link middleware, the Microsoft Automotive® operating system, the Microsoft Windows® operating system, the Unix operating system (e.g., the Solaris® operating system distributed by Oracle Corporation of Redwood Shores, Calif.), the AIX UNIX operating system distributed by International Business Machines of Armonk, N.Y., the Linux operating system, the Mac OSX and iOS operating systems distributed by Apple Inc. of Cupertino, Calif., the BlackBerry OS distributed by Blackberry, Ltd. of Waterloo, Canada, and the Android operating system developed by Google, Inc. and the Open Handset Alliance, or the QNX® CAR Platform for Infotainment offered by QNX Software Systems. Examples of computing devices include, without limitation, an on-board vehicle computer, a computer workstation, a server, a desktop, notebook, laptop, or handheld computer, or some other computing system and/or device.
Computing devices generally include computer-executable instructions, where the instructions may be executable by one or more computing devices such as those listed above. Computer executable instructions may be compiled or interpreted from computer programs created using a variety of programming languages and/or technologies, including, without limitation, and either alone or in combination, Java™, C, C++, Matlab, Simulink, Stateflow, Visual Basic, Java Script, Perl, HTML, etc. Some of these applications may be compiled and executed on a virtual machine, such as the Java Virtual Machine, the Dalvik virtual machine, or the like. In general, a processor (e.g., a microprocessor) receives instructions, e.g., from a memory, a computer readable medium, etc., and executes these instructions, thereby performing one or more processes, including one or more of the processes described herein. Such instructions and other data may be stored and transmitted using a variety of computer readable media. A file in a computing device is generally a collection of data stored on a computer readable medium, such as a storage medium, a random access memory, etc.
A computer-readable medium (also referred to as a processor-readable medium) includes any non-transitory (e.g., tangible) medium that participates in providing data (e.g., instructions) that may be read by a computer (e.g., by a processor of a computer). Such a medium may take many forms, including, but not limited to, non-volatile media and volatile media. Non-volatile media may include, for example, optical or magnetic disks and other persistent memory. Volatile media may include, for example, dynamic random access memory (DRAM), which typically constitutes a main memory. Such instructions may be transmitted by one or more transmission media, including coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to a processor of a ECU. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, any other memory chip or cartridge, or any other medium from which a computer can read.
Databases, data repositories or other data stores described herein may include various kinds of mechanisms for storing, accessing, and retrieving various kinds of data, including a hierarchical database, a set of files in a file system, an application database in a proprietary format, a relational database management system (RDBMS), etc. Each such data store is generally included within a computing device employing a computer operating system such as one of those mentioned above, and are accessed via a network in any one or more of a variety of manners. A file system may be accessible from a computer operating system, and may include files stored in various formats. An RDBMS generally employs the Structured Query Language (SQL) in addition to a language for creating, storing, editing, and executing stored procedures, such as the PL/SQL language mentioned above.
In some examples, system elements may be implemented as computer-readable instructions (e.g., software) on one or more computing devices (e.g., servers, personal computers, etc.), stored on computer readable media associated therewith (e.g., disks, memories, etc.). A computer program product may comprise such instructions stored on computer readable media for carrying out the functions described herein.
In the drawings, the same reference numbers indicate the same elements. Further, some or all of these elements could be changed. With regard to the media, processes, systems, methods, heuristics, etc. described herein, it should be understood that, although the steps of such processes, etc. have been described as occurring according to a certain ordered sequence, such processes could be practiced with the described steps performed in an order other than the order described herein. It further should be understood that certain steps could be performed simultaneously, that other steps could be added, or that certain steps described herein could be omitted. In other words, the descriptions of processes herein are provided for the purpose of illustrating certain embodiments, and should in no way be construed so as to limit the claims.
Accordingly, it is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments and applications other than the examples provided would be apparent to those of skill in the art upon reading the above description. The scope of the invention should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future embodiments. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
All terms used in the claims are intended to be given their plain and ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary in made herein. In particular, use of the singular articles such as “a,” “the,” “said,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.
The disclosure has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present disclosure are possible in light of the above teachings, and the disclosure may be practiced otherwise than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
6209677 | Bohner et al. | Apr 2001 | B1 |
7510038 | Kaufmann et al. | Mar 2009 | B2 |
8660734 | Zhu et al. | Feb 2014 | B2 |
8994521 | Gazit | Mar 2015 | B2 |
20020092696 | Bohner et al. | Jul 2002 | A1 |
20070198145 | Norris et al. | Aug 2007 | A1 |
20070299582 | Raksincharoensak | Dec 2007 | A1 |
20100211270 | Chin | Aug 2010 | A1 |
20100228427 | Anderson et al. | Sep 2010 | A1 |
20130090825 | Park | Apr 2013 | A1 |
20150346724 | Jones et al. | Dec 2015 | A1 |
20160200348 | Lueke | Jul 2016 | A1 |
20160200358 | Pastor et al. | Jul 2016 | A1 |
20160207538 | Urano et al. | Jul 2016 | A1 |
20170203788 | Heo | Jul 2017 | A1 |
20170274928 | Minaki et al. | Sep 2017 | A1 |
20170297578 | Braun | Oct 2017 | A1 |
20180025645 | Schwindt et al. | Jan 2018 | A1 |
20180074497 | Tsuji et al. | Mar 2018 | A1 |
20180150074 | Hashimoto et al. | May 2018 | A1 |
20180178801 | Hashimoto et al. | Jun 2018 | A1 |
20180181132 | Kunihiro et al. | Jun 2018 | A1 |
20180194280 | Shibata et al. | Jul 2018 | A1 |
20180201306 | Tsubaki | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
107336707 | Nov 2017 | CN |
108082185 | May 2018 | CN |
102014107194 | Nov 2015 | DE |
102014220758 | Apr 2016 | DE |
1508495 | Feb 2005 | EP |
2000198458 | Jul 2000 | JP |
200575014 | Mar 2005 | JP |
WO 2016023756 | Feb 2016 | WO |
Entry |
---|
GB Search Report dated Jul. 26, 2018 re GB Appl. No. 1801850.7. |
Non-Final Office Action dated Sep. 17, 2018 re U.S. Appl. No. 15/426,106, filed Feb. 7, 2017. |
Non-Final Office Action dated Feb. 5, 2019 re U.S. Appl. No. 15/426,106, filed Feb. 7, 2017. |
Number | Date | Country | |
---|---|---|---|
20180222524 A1 | Aug 2018 | US |