The present invention relates to a control member, such as a stem-crown of a water-resistant watch case, in particular for a diving watch.
The invention also relates to a watch case comprising a control member, such as a stem-crown for adjusting time parameters or other functions for a diving watch.
To provide for the use of a mechanical or electronic watch underwater, the watch case, which comprises a horological movement or a time-based horological module, must be sealingly closed. For this purpose, the watch case comprises a back sealingly fixed to a first side of a middle part and a crystal fixed to a second opposite side of the middle part. Seals are provided for the assembly of the back, the middle part and the watch crystal. A member for controlling or adjusting the functions of the watch is also sealingly mounted through the middle part of the case in the rest position.
Generally, watch cases with the control or adjustment member are not configured or assembled to withstand high water pressures for example during a dive since the pressure inside the watch case is close to atmospheric pressure. Simple seals from traditional watches are not enough to guarantee a good water-resistance of the case when diving to very great depths underwater.
Mention may be made of patent application CH 690 870 A5 which describes a water-resistant watch case. The watch case consists of a crystal fixed on the upper side to a middle part-bezel and a back fixed to the middle part by screwing it to an internal tapping of the middle part. The crystal is fixed to the middle part by an annular O-ring shaped seal and bearing on an edge of the middle part. A seal is also provided between an outer edge of the back and a lower surface of the middle part. Since the tapping can be damaged at high water pressure, a strong metal dome is also provided to bear against an inner surface of the back and against an inner edge of the middle part. However, even with such a watch case arrangement, this does not allow to guarantee good water-resistance of the case when diving to very great depths underwater, which constitutes a disadvantage.
Patent CH 372 606 describes a water-resistant watch case, which has a central part or middle part surrounding a back and closed by a crystal. A threaded ring bears against an inclined outer surface of the back to retain it, and is screwed to a fixing part connected to the middle part. With such an arrangement presented, this does not allow to guarantee good water-resistance of the case when diving to very great depths underwater, which constitutes a disadvantage.
Patent application EP 3 432 084 A1 describes a control member, such as a stem-crown, mounted through the middle part of a watch case. The stem-crown comprises a threaded part to be screwed to a tapping of a through opening of the middle part. An upper part of the stem with a diameter larger than its threaded part bears in the rest position against a wedge in the back of a housing for receiving the upper part of the stem. An O-ring shaped seal is disposed in an annular groove in the upper part of the stem and in contact with the inner wall of the housing to ensure a water-resistance. However, such an arrangement presented does not allow to guarantee good water-resistance of the case with its control member when diving to very great depths underwater, which constitutes a disadvantage.
The main purpose of the invention is therefore to overcome the disadvantages of the prior art described above by proposing, on the one hand, a control member, such as a stem-crown of a water-resistant watch case, and on the other hand a water-resistant watch case adapted to withstand high water pressure for diving to great depths underwater.
To this end, the present invention relates to a control member, such as a stem-crown of a water-resistant watch case, which comprises the features of independent claim 1.
Particular embodiments of the control member are defined in dependent claims 2 to 12.
An advantage of the control member of a water-resistant watch case resides in the fact that it is in the shape of a stem-crown, the crown of which comprises a first portion and a second handling portion. The first portion has an annular contact surface, which is inclined at a defined angle less than 90° with respect to a longitudinal central axis of the stem-crown so as to be able to contact an annular receiving surface of the middle part, which is of complementary shape. In this way, once the stem-crown is mounted on the middle part of the watch case, any difference in water pressure compared to the pressure inside the watch case tends to close any gap between the surfaces in contact which are inclined towards the inside of the watch case.
Advantageously, the control member is in the form of a stem-crown. It comprises a bearing washer under a bearing plate or a rounded bearing part under the conical part of the first portion of the crown. The bearing washer is intended to be bearingly housed in an annular groove of the middle part in the contact position of the first conical portion of the crown and of the receiving surface of complementary shape of the middle part in a rest position. When the first conical portion of the crown contacts the receiving surface of the middle part, the bearing washer is compressed to allow it to largely occupy the annular groove in the rest position of the stem-crown and ensure a good water-resistance.
To this end, the present invention also relates to a water-resistant watch case with at least one control member, such as a stem-crown, which comprises the features of independent claim 13.
Embodiments of the water-resistant watch case are defined in dependent claims 14 to 16.
Advantageously, the crown has an annular contact surface, which is inclined at a defined angle less than 90° with respect to a longitudinal central axis of the stem-crown to contact an annular receiving surface of the middle part, which is of complementary shape in a rest position. A bearing washer of the stem-crown is also disposed in an annular slot of the middle part to ensure a good water-resistance by being compressed by a bearing part of the crown in the rest position.
The purposes, advantages and features of the control member, such as a stem-crown of a water-resistant watch case and the watch case comprising same will appear better in the following description in a non-limiting manner with regard to the drawings on which:
In the following description, all the components of a water-resistant watch case, in particular a diving watch, which are well known to a person skilled in the art in this technical field are only described in a simplified manner.
The control member 9 is in the form of a stem-crown 9. It mainly comprises a stem 11, which may preferably be a tubular stem, and a crown 13 capable of being manipulated by a hand of a user from the outside of the watch case 1. The crown 13 may be internally partly hollow or completely solid to be connected directly to the tubular stem 11.
In the rest position as shown in
The tubular stem 11 can be held by a holding means 23 in the tubular opening 12 of the middle part 2 or at its entrance in the watch case, in particular in the rest position without adjustment. Preferably, the tubular stem 11 comprises at one end towards the inside of the watch case, a threaded portion 11′ to be screwed to an internal tapping 23, as a holding means, in the tubular opening 12 of the middle part 2.
The tubular stem 11 also comprises from an outer surface, a first annular slot 18 with a first O-ring shaped seal 17. This first seal 17 is in contact with the inner surface of the tubular opening 12 of diameter slightly larger than the outer diameter of the tubular stem 11. The first annular slot 18 is disposed between the threaded portion 11′ and the crown 13, and preferably closer to the threaded portion 11′, such that in the adjustment or unscrewing position of the tubular stem, the seal 17 remains in contact in the tubular opening 12.
The crown 13 comprises a first portion to be in contact with the middle part 2 and a second handling portion. The first portion comprises an annular contact surface 21, which is inclined at a defined angle less than 90° with respect to a longitudinal central axis of the stem-crown 9 starting from the tubular stem 11 in the direction of the second crown 13 portion.
In this embodiment of
Rubber). The second annular slot 29 may be of rectangular cross section for holding the second seal 19. This second seal 19 is in contact with the inner surface of the tubular opening 41 of the crown 13, which has a diameter slightly larger than the outer diameter of the outer end of the tubular stem 11.
According to the present invention, the stem-crown 9 further comprises a bearing washer 20 under a bearing part 31, which may be a bearing plate 31 or a rounded bearing part under the conical part of the first portion of the crown 13. The bearing washer 20 is intended to be bearingly housed in an annular groove 30 of the middle part 2 in the contact position of the first conical portion 21 of the crown 13 and of the receiving surface 22 of complementary shape of the middle part 2 in a rest position. The thickness of this bearing washer 20 may be defined equal to or slightly greater than the height of the annular groove 30 of the middle part 2, which is opposite the bearing plate 31 or the rounded part of the first portion of the crown 13. The bearing washer 20 can be made of a flexible or elastically deformable material. Thus, when the first conical portion 21 of the crown 13 contacts the receiving surface 22 of the middle part 2, the bearing washer 20 is compressed by the bearing plate 31 or a curved part of the first portion of the crown. This allows the bearing washer 20 to occupy a large part of the annular groove 30 in the rest position of the stem-crown 9.
As can still be seen in
The crown 13 also comprises in its internal hollow part, a piston 50 of generally cylindrical shape, having a head fixed in a housing of complementary shape of the second portion in the shape of a cover of the crown 13. The head of the piston can be fixed by driving into said housing forming the crown cover, and can be pushed completely into said housing, which is not shown, and a fixing by laser welding can also be provided between the head of the piston and the outlet of the housing of the crown. The piston head has a diameter greater than a longitudinal part of the piston, which is introduced inside the tubular stem 11 from its outer end. The piston 50 fixed inside the crown 13 can also comprise means for holding in the tubular stem 11. Preferably, these holding means can consist, seen in
Of course, the means for holding the piston 50 in the tubular stem 11 can also be a simple holding by friction and/or detent so as to define a rest position of the stem-crown 9 as shown in
As previously indicated with reference to
It should also be noted that the first portion and the second portion of the crown 13 form one single piece, for example made of a material, such as titanium, such as also for example the middle part 2. The tubular stem 11 can also be integral directly with the crown 13 to only form one single piece, if the crown 13 is solid without cavities in an embodiment not shown.
The back 4 comprises an annular edge 14 with an internal tapping to be screwed onto a tapping 15 on the lower side of the middle part 2. An annular bearing surface of the back 4 contacts an annular inner surface of the middle part 2 of complementary shape to the bearing surface when mounting the back 4 on the middle part 2. The bearing and inner surfaces are inclined at a determined angle with respect to an axis perpendicular to a watch case plane 1. In the case of a middle part of generally cylindrical shape, the bearing and inner surfaces are conical in shape and inclined towards the inside of the watch case 1 at a determined angle with respect to a central axis of the watch case 1. The lower side of the middle part 2 further comprises an annular slot 16 housing an O-ring shaped seal 6 (Butadiene Nitrile Rubber) in contact with the bearing surface when mounting the back 4 on the middle part 2. For a middle part 2 and a back 4 made of a material, such as titanium, the angle can be of the order of 60°±5° with respect to the central axis. This allows to have a good distribution of the stresses between the back 4 and the middle part 2 due to the pressure of the water when diving at great depths underwater.
The crystal 3 is fixed to the middle part 2 according to the same principle as the mounting of the back 4 to the middle part 2. For this purpose, the crystal 3 comprises an annular peripheral surface to be fixed by means of a fixing gasket 5 on an annular inner surface of the upper side of the middle part 2. The annular inner surface is of complementary shape to the annular peripheral surface. The annular peripheral surface of the crystal 3 is inclined at a defined angle less than 90° with respect to an axis perpendicular to a watch case 1 plane. Preferably, the annular inner surface is inclined generally towards the inside of the watch case 1 at the same angle as the annular peripheral surface with respect to a central axis. If the middle part 2 is generally cylindrical in shape, the annular inner surface and the annular peripheral surface are conical in shape. The defined angle of inclination of the surfaces can be of the order of 43°±5° from the central axis. This allows to have a good distribution of the stresses between the crystal 3 and the middle part 2 due to the pressure of the water when diving at great depths underwater. The difference in water pressure relative to the pressure inside the watch case 1 tends to close any gap between the surfaces in contact with the fixing gasket 5 thanks to the inclination of the contact surfaces towards the inside of the watch case 1. This guarantees a good water-resistance and resistance to high pressures.
The presented fixing gasket 5 can be made of an amorphous metal or an amorphous metal alloy. The fixing gasket 5 is of annular shape for the hermetic closing of the crystal 3 on the middle part 2. For a middle part 2 of generally cylindrical shape, the fixing gasket 5 comprises a conically shaped part surmounted by a cylindrical part attached to an annular inner wall of the middle part 2 and an annular outer wall of the crystal 3. The crystal 3 is fixed to the middle part 2 by means of the amorphous metal gasket following a hot fixing operation.
Several types of amorphous metal alloys can be used to completely make the one-piece metal gasket 5. In the most common cases, the amorphous metal alloy can be mainly composed of zirconium, which allows the gasket to be formed at a temperature higher than 350° C., that is to say above the glass transition temperature of the alloy. The amorphous zirconium metal alloy can be composed of Zr(52.5%), Cu(17.6%), Ni(14.9%), Al(10%) and Ti(5%). The amorphous zirconium metal alloy can also comprise Zr(58.5%), Cu(15.6%), Ni(12.8%), AI(10.3%) and Nb(2.8%). The amorphous metal alloy based on zirconium can also comprise Zr(44%), Ti(11%), Cu(9.8%), Ni(10.2%) and Be(25%), or finally Zr(58%), Cu(22%), Fe(8%) and Al(12%). Preferably, to facilitate the production of such a gasket, the amorphous metal alloy may be mainly composed of platinum (Pt), which allows the gasket to be formed at a temperature above 230° C. The amorphous platinum-based metal alloy can comprise Pt(57.5%), Cu(14.7%), Ni(5.3%) and P(22.5%). Provision can also be made to produce the one-piece metal gasket 5, 5′ from an amorphous metal alloy based mainly on palladium (Pd), which allows to form the gasket at a temperature above 300° C.
Mention can also be made of other amorphous metal alloys. A titanium-based amorphous metal alloy can comprise Ti(41.5%), Zr(10%), Cu(35%), Pd(11%) and Sn(2.5%). An amorphous metal alloy based on palladium can comprise Pd(43%), Cu(27%), Ni(10%) and P(20%), or
Pd(77%), Cu(6%) and Si(16.5%), or finally Pd(79%), Cu(6%), Si(10%) and P(5%). An amorphous nickel-based metal alloy can comprise Ni(53%), Nb(20%), Ti(10%), Zr(8%), Co(6%) and Cu(3%), or Ni(67%), Cr(6%), Fe(4%), Si(7%), C(0.25%) and B(15.75%), or finally Ni(60%), Pd(20%), P(17%) and B(3%). An iron-based amorphous metal alloy can comprise Fe(45%), Cr(20%), Mo(14%), C(15%) and B(6%), or Fe(56%), Co(7%), Ni(7%), Zr(8%), Nb(2%) and B(20%). A gold-based amorphous metal alloy can comprise Au(49%), Ag(5%), Pd(2.3%), Cu(26.9%) and Si(16.3%).
In this embodiment, it is considered that the annular contact surface 21 of the first portion of the crown 13 is conical in shape, as well as the annular receiving surface 22 of the middle part 2 of complementary shape to the annular contact surface 21. The bearing plate 31 or the rounded bearing part located at the back of the first conical portion of the crown 13 are provided to contact the washer 20 and in principle compress it in the slot 30 of the middle part 2 of the rest position shown in
In this rest position in
For the adjustment of time parameters or other functions for a diving watch as shown in
It should also be noted that it can also be considered that the cross section of the first portion of the crown 13 can be square, rectangular or polygonal. This means that the annular contact surface 21 of the crown can be constituted by several portions of inclined plane connected to each other to form the annular bearing surface. Under these conditions, the holding means 23 in the tubular opening 12 can no longer be a tapping, but a detent or hook or other holding means. The same can be done for the piston fixed inside the second portion of the crown 13.
From the description which has just been given, several variant embodiments of the control member, such as a stem-crown and of the watch case can be designed by the person skilled in the art without departing from the scope of the invention defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
00779/20 | Jun 2020 | CH | national |