Valve stem packing is commonly used in process control valves. In the past, the criteria for selecting stem packing was simply to strike a balance between leakage and friction. Packing box leakage, although not desired, was not a significant concern for many process industries until valve consumers became cost conscious about material losses and recognized that valve stem packing leakage contributed to pollution. The EPA also recognized that stem packing leakage contributed to pollution and set standards for acceptable limits. Many of the largest consumers of process control valves also set their own standards for leakage and friction requirements.
This new interest in valve stem packing performance prompted the industry to develop low-friction packing systems that seal well and provide predictable performance. One development in stem packing is the use of different packing materials in combination, which provides resiliency along with high-pressure sealing capability, that remains consistent throughout the life of the valve packing. For example, Garlock Sealing Technologies markets an ultra-low emission valve stem packing product that uses a single ring of a first braided packing material that is soft and resilient interposed between four rings of a second braided packing material.
In order to realize the benefits of such technology, the correct types of packing material must be installed in the correct order and in the correct amounts. Typically, stem packing materials are provided on large spools and sold by the pound. Thus, consumers are left to determine how much of each type of packing material is required for their facility. Spools also may be difficult to store and may eventually come unraveled possibly resulting in damaged packing material or wasted packing material. Also, storing many different styles of packing material together may lead to confusion regarding which types of packing materials are to be used in combination. Furthermore, where the quantities of materials do not match in the ratio required, there may be a tendency to substitute one material for another leading to insufficient performance of the stem packing system.
Accordingly, there is a need for a stem packing dispenser that provides the correct ratio of materials for a given stem packing system. Furthermore, it is desirable that such a stem packing dispenser protects the packing from damage and provides a convenient means of transporting, storing, and reordering the product.
Disclosed herein is a cord material dispenser, such as a stem packing dispenser. The dispenser comprises a container including a surrounding sidewall having first and second openings formed therethrough, a first cord material disposed in the container, and a second cord material disposed in the container. The first cord material is dispensable through the first opening and the second cord material is dispensable through the second opening. The first cord material is preferably wound around a first spool and the second cord material is preferably wound around a second spool.
The dispenser may include a first quantity of the first cord material and a second quantity of the second cord material wherein the first quantity is less than the second quantity. For example, the first quantity may be one fourth of the second quantity. Preferably the container includes indicia indicative of the ratio of the first quantity to the second quantity. The indicia may be in the form of a graphic representative of the intended use of the spooled materials.
The dispenser may include a spool support insert that includes at least one partition wherein each partition includes a slot. A spool axle extends through the first and second spools and the slot, thereby supporting the spools in the container.
The dispenser includes a first pull string attached to one end of the first cord material and a second pull string attached to one end of the second cord material. Each of the first and second pull strings extends through a respective one of the first and second openings.
Also contemplated is a valve stem packing set, comprising a container and first and second packing cord materials. The container includes a base portion, a surrounding sidewall extending from the base, and a plurality of flaps extend from the surrounding sidewall to form a closable lid for the container. The first packing cord is wound about a first spool and the second packing cord is wound about a second spool. The first packing cord is dispensable through the first opening and the second packing cord is dispensable through the second opening. The valve stem packing set may also include a pouch adhered to the exterior of the surrounding sidewall, the pouch containing a plurality of tags.
Also disclosed is a spooled material container assembly, comprising a container, a spool support insert, and a spool axle. The container comprises a base portion, a surrounding sidewall extending from the base portion, and a plurality of flaps extending from the surrounding sidewall, wherein the sidewall includes a plurality of frangible perforated star patterns formed therethrough. The spool support insert is disposed in the container and includes a plurality of partitions wherein each partition includes a slot. The spool axle extends through the slots of the insert and the spool axle is configured for supporting a plurality of spooled materials. The container may include indicia indicative of the spooled materials to be contained in the container.
The present invention relates generally to a dispenser for spooled materials, and particularly to a dispenser for dispensing valve stem packing material in amounts according to a predetermined ratio. The disclosed dispenser also protects the packing from damage and provides a convenient means of transporting, storing, and reordering stem packing materials. Moreover, the disclosed dispenser is described using recycled and recyclable cardboard products. While the recycled cardboard is desirable to make the dispenser “GREEN”, the dispenser could be made from metal or plastic. Additionally, individual components may be made of different material; for example, the spool axle of
As can be seen with reference to
With reference to
It should be noted that each spool is optionally wrapped with plastic to further protect the packing cord (see
As shown in
The construction of spool support insert 40 is perhaps best shown in
It should be appreciated that while container 20, insert 40, and spools 60 and 70 are all shown in the figures as being formed from cardboard and other paper products, other materials may be suitable. For instance, plastic materials, wood fiberboard, metal, and the like may be preferred in some applications. Preferably, the materials used in the construction of the dispenser are recyclable.
As shown and described, spools 60 and 70 rotate, as packing material is dispensed, out of dispenser 10. However, rotation of the spool is optional.
As shown in
Accordingly, the present invention has been described with some degree of particularity directed to the exemplary embodiments. It should be appreciated, though, that the present invention is defined by the following claims construed in light of the prior art so that modifications or changes may be made to the exemplary embodiments without departing from the inventive concepts contained herein.
This application claims the benefit of U.S. Provisional Patent Application No. 61/170,453, filed Apr. 17, 2009, the disclosure of which is hereby incorporated by reference in its entirety
Number | Date | Country | |
---|---|---|---|
61170453 | Apr 2009 | US |