The present disclosure relates to a stemless prosthesis anchor component of a joint prosthesis.
Skeletal joints have a variety of configurations providing for a wide range of smooth movement of two or more bones relative to each other. For example, in a shoulder joint, the head of the humerus interacts with the glenoid cavity of the scapula in a manner similar to a “ball and socket” joint. Over time, it may become necessary to replace a joint, such as the shoulder joint, with a prosthetic joint. The prosthetic joint can include components mounted to one, two or more than two bones at the joint. For example, the prosthetic joint can include a humeral component, a glenoid component or both a humeral and a glenoid component.
Conventional humeral components include a humeral head jointed to a stem. The stem is configured to be inserted into a medullary canal of the humerus. In certain cases, insertion of the stem disadvantageously requires bone to be removed to fit the stem to the medullary canal due to patient-to-patient anatomical variation. Another disadvantage of this approach is that integration of the stem into the bone through a natural process of bone ingrowth can make it difficult to remove the humeral component if it becomes necessary to replace the humeral component with another device.
A stemless humeral component may be used to address some of the disadvantages of conventional humeral components. Stemless humeral components can decrease the amount of bone loss in preparing the humerus to receive the component and decrease the complexity of the joint replacement procedure.
Stemless humeral component designs can be more challenging to secure to the humerus. Conventional stemless designs rely on bone ingrowth for strength. While such designs perform well over time, there is a risk in the early days and weeks after surgery where such ingrowth has not yet occurred that the stemless humeral component will be dislodged from the humerus. Dislodgement may also occur due to backing out after being inserted, excessive wear, forces applied thereto during a revision surgery or other high load conditions.
Accordingly, there is a need for additional stemless components or prostheses designed to preserve bone in initial implantation while enhancing initial pull-out and back-out resistance. Preferably enhanced initial dislodgement resistance will also provide excellent long term fixation.
In one embodiment, a shoulder assembly is provided that includes a base member and a locking device. The base member includes a collar, a helical structure, and a first pathway projecting distally of the collar. The helical structure extends from the collar in a distal direction. The first pathway projects distally of the collar and through the helical structure. The first pathway is disposed adjacent to an inner periphery of the helical structure. The first pathway is generally transverse to the helical structure and extending in a space between successive portions of the helical structure. The locking device has a proximal support and a first arm that projects distally of the proximal support. The first arm is configured to be disposed in the first pathway that projects distally of the collar when the proximal support is disposed adjacent to the collar. The first arm is disposed through bone in the space between successive portions of the helical structure when the shoulder assembly is implanted.
In some embodiments, a kit can be provided that includes a shoulder assembly as described above, an anatomic articular component, and a reverse articular component. The anatomic articular component is mateable with the shoulder assembly. The anatomic articular component has a convex articular surface adapted to articulate with a concave surface of or on a scapula of a patient. The reverse articular component is mateable with the shoulder assembly. The reverse articular component comprises a concave articular surface adapted to articulate with a convex surface on a scapula of a patient. The reverse articular component can include a separate tray component for mating an articular surface to the base member.
In another embodiment, a prosthesis assembly is provided that includes a base member that has a helical structure and a first pathway. The base member has a first end and a second end. The helical structure extends between the first end and the second end. The first end comprises a distal or medial end in some applications. The second end comprises a proximal end or a lateral end in some applications. The first pathway is accessible from the second end and is directed toward the first end through the helical structure. The first pathway is located inward of an outer periphery of the helical structure, e.g., adjacent to an inner periphery of the helical structure. The first pathway is generally transverse to the helical structure. The first pathway extends in a space between successive portions of the helical structure. The prosthesis assembly includes a locking device that has a support member and a first arm that projects away from the support member. The first arm is configured to be disposed in the first pathway when the support member is disposed adjacent to the second end of the base member. The first arm is disposed through bone in the space between successive portions of the helical structure when the prosthesis assembly is implanted.
The prosthesis assembly discussed above can be mated with a proximal humerus. The prosthesis assembly discussed above can be mated with other anatomy as well, such as a glenoid of a scapula. The prosthesis assembly discussed above can be mated with a bone adjacent to an elbow joint, such as a distal humerus or a proximal radius. The prosthesis assembly discussed above can be mated with a bone adjacent to a wrist joint, such as a distal radius. The prosthesis assembly discussed above can be mated with a bone adjacent to the hip, such as a proximal femur. The prosthesis assembly discussed above can be mated with a bone adjacent to a knee joint, such as a distal femur or a proximal tibia. The prosthesis assembly discussed above can be mated with a bone adjacent to an ankle joint, such as a distal tibia or a proximal talus
In another embodiment, a method of implanting a prosthesis is provided. The method includes advancing by rotation a base member into a bone adjacent to a joint. The bone can include an epiphysis of a humerus of a patient. The bone can include a glenoid of a scapula of a patient. The bone can include a distal portion of a humerus adjacent to an elbow joint. The bone can include a proximal portion of a radius adjacent to an elbow joint. The bone can include a distal portion of a radius adjacent to a wrist joint. The bone can include a proximal portion of a femur adjacent to a hip joint. The bone can include a distal portion of a femur adjacent to a knee joint. The bone can include a proximal portion of a tibia adjacent to a knee joint. The bone can include a distal portion of a tibia adjacent to an ankle joint. The bone can include a proximal portion of a talus adjacent to an ankle joint. The base member comprising a helical structure configured to engage cancellous bone of the epiphysis or other portion of any of the bones set forth above. A locking device is advanced by linear translation into the base member. The locking device has at least one arm adapted to span a gap between adjacent portions of the helical structure. The locking device contacts the cancellous bone in the gap.
In another embodiment, a glenoid assembly is provided. The glenoid assembly includes a base member and a plate member. The base member has a medial end and a lateral end. The base member has a helical structure that extends between the medial end and the lateral end and a first pathway. The first pathway is accessible from the lateral end and is directed toward the medial end. The first pathway can extend through the helical structure and can be located inward of an outer periphery of the helical structure, e.g., adjacent to an inner periphery of the helical structure. The first pathway can be generally transverse to the helical structure and can extend in a space between successive portions of the helical structure. The plate member has a flange and a first arm that projects away from the flange. The first arm is configured to be disposed in the first pathway when the plate member is disposed adjacent to the lateral end of the base member. The first arm is disposed through bone in the space between successive portions of the helical structure when the prosthesis assembly is implanted.
Any feature, structure, or step disclosed herein can be replaced with or combined with any other feature, structure, or step disclosed herein, or omitted. Further, for purposes of summarizing the disclosure, certain aspects, advantages, and features of the inventions have been described herein. It is to be understood that not necessarily any or all such advantages are achieved in accordance with any particular embodiment of the inventions disclosed herein. No aspects of this disclosure are essential or indispensable.
These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate but not to limit the inventions. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments. The following is a brief description of each of the drawings.
While the present description sets forth specific details of various embodiments, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting. Furthermore, various applications of such embodiments and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described herein. Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually inconsistent.
I. Humeral Shoulder Assemblies Having Rotation Control Locking Devices
The proximal face of the base member 104 also can include a tool interface 158 that enables the base member to be advanced by an inserter into bone, as discussed below in
One or more structures for securing the locking device 108 to the base member 104 can be provided as discussed further below. For example the locking device can have an engagement feature 164 disposed on the proximal support 132 that is adapted to engage a corresponding feature on the proximal face of the base member 104. The engagement feature 164 can include an actuatable member that can move into a secure position relative to the recess 140 of the base member 104. As discussed below in connection with
In another embodiment, a serration 172 is provided between the arms 110 of the locking device 108 and the base member 104 as discussed in greater detail below in connection with
The base member 104 can include a collar 220 and a helical structure 224. The helical structure 224 is disposed about a cylindrical portion 260 of the body 212 of the base member 104. In some embodiments, the helical structure 224 extends directly from the body 212 and may be considered threads of the body 212. The helical structure 224 can include one or a plurality of threads, e.g., two, three, four, or more threads, disposed between the first end 204 and the second end 208. The threads can start adjacent to the first end 204 and extend toward, e.g., entirely to the second end 208.
The body 212 surrounds the recess 102, which is configured to mate with an articular component, such as humeral head or a glenoid sphere. In one embodiment, the body 212 includes a cylindrical portion 260 within which the recess 102 is disposed. The cylindrical portion 260 can have any suitable outside configuration, such as including a textured surface that is well suited to encourage bony ingrowth. The cylindrical portion 260 can include a generally tapered profile in which a portion at or adjacent to the first end 204 of the base member 100 has a first width and a portion at or adjacent to the second end 208 of the base member 100 can have a second width, the second width being greater than the first width. In some embodiments, the cylindrical portion 260 is generally rounded and formed a blunt but tapered profile. The cylindrical portion 260 can have a flat distal surface in some embodiments.
The collar 220 can be disposed at or can comprise the second end 208 of the base member 104. The collar 220 can have a transverse width, e.g., a diameter that is suitable for a given condition. For example, the diameter of the collar 220 can be selected such that the entire outer periphery of the base 104 is within the bone exposed by resection and/or recessed into such an exposed bone portion, e.g., as illustrated in
The pathway 300 can extend through one or more spaces between adjacent threads of the helical structure 224. The pathway 300 can comprise two or more segments surrounded by portions of the base member 104 and at least one exposed segment ES. The exposed segments comprise portions of the first and second segments 300A, 300B and between the second and third segments 300B, 300C in some embodiment. The exposed segments ES are exposed in that, unlike the segments 300A, 300B, 300C, the exposed segments of the pathway 300 are not enclosed circumferentially and thus bone disposed within the helical portion 224 can directly contact the arms 110 in the exposed segment. As such the pathway 300 is bounded by bone matter in the exposed segments.
The first arm 110 is configured to be disposed in the first pathway 300. The pathway 300 projects distally of the collar 220. The first arm 110 is disposed distal of the collar 220 when the proximal support 132 is disposed adjacent to a proximal side of the collar 220 and the first arm 110 is in the first pathway 300.
The first arm 110 includes an outer edge 370, an inner edge 374 and a span 378 disposed therebetween. The first arm 110 includes a first end 382 disposed away from the support 132 and a second end 386 disposed adjacent to and in some cases directly coupled to the support 132. The first arm 110 can be tapered, for example with the outer edge 370 approaching the inner edge 374 in the direction toward the first end 382 and/or with the outer edge 370 diverging away from the inner edge 374 in the direction toward the second end 386. In one embodiment, opposite faces 390 of the span 378 are also tapered with at least one of, e.g., both of, the opposite faces 390 approaching a longitudinal mid-plane M of an arm 110. The tapering of the arms between the edges 370, 374 facilitates providing a tapered profile in the base member 104. The tapering of the arms between the edges 370, 374, sometimes referred to herein as a radial taper, facilitates insertion of the first end 382 into the aperture 124 because the first end 382 is much narrower in the dimension between the edges 370, 374 than the aperture 124 is in the radial direction. The tapering of the arms 110 between the faces 390, sometimes referred to herein as a circumferential taper, facilitates insertion of the first end 382 into the aperture 124 because the first end 382 is much narrower in the dimension between the faces 390 than the aperture 124 is in the circumferential direction.
At least one of the circumferential and radial tapers of the arms 110 enables the locking device 108 to easily be advanced through bone matter that is disposed along the pathway 300.
As discussed above, the first arm 110 is disposed through bone in the space between successive portions of the helical structure 224, e.g., in the first segment of the path 300 and in the second segment of the path 300, when the humeral shoulder assembly is implanted. The span 378 and/or other parts of the arms 110 can be porous to enhance bony ingrown when the assembly 100 is implanted. The porous properties can be provided by a porous metal surface or structure or by other porous layers disposed on an underlying layer of metal or another material. At least the widening of the arms 110 toward the second end 386 increases the purchase of bone in the widened area, e.g., in the first segment of the path 300 and also in the second segment of the path 300 compared to an arm that is not tapered.
In some embodiments, the arms 110 are not tapered in the radial direction. For example the arms 110 can have a constant radial dimension between the edges 370 and 374 at a length between, e.g., along the entire length between, the first end 382 and the second end 386. In some embodiments, the arms 110 are not tapered in the circumferential direction. For example the arms 110 can have a constant circumferential dimension between the first end 382 and the second end 386.
As discussed above, the locking device 108 facilitates retaining the base member 104 in the bone at least by opposing, and in some cases completely preventing, rotation of the base member that would cause the base member to back out of the bone into which it has been advanced. Additionally, in some embodiments, it is beneficial to oppose, and in some cases completely prevent, axial movement of the locking device 108 away from the base member 104. At the extreme, such movement could result in the arms 110 of the locking device 108 completely coming out of the pathways 300 and, indeed, out of the base member 104 completely. It also may be desirable to prevent even lesser movements of the locking device 108 relative to the base member 104. As shown in
Another advantageous aspect of the assembly 100 is that the locking device 108 can be quickly and easily disengaged from the base 104. The tooling interface 158 allows an extraction tool to be disposed between the raised outer portion 152 and the spring arm 168. The extraction tool can apply a radially inward force on an outer periphery of the elongate portion 428 of the spring arm 168. Compression of the spring arm 168 decreases the gap G as the proximal facing surface 472 is moved radially inward of the distal facing surface 476. Once the first end 420 is entirely radially inward of the distal facing surface 476, the engagement feature 164 is disengaged from the base 104. If more than one spring arm 168 is provided some or all of the spring arms can be compressed to allow the locking device 108 to be withdrawn from the base 104.
The serrations 172 can be disposed along the entire length of the interface between the arms 110 and the base member 104 or just at a position where the base member 104 and the locking device 108 are fully engaged.
II. Method of Application to an End Portion of a Long Bone
In one variation of these methods, assemblies, and kits the locking device 108 is inserted at the same time as some or all of the reverse articular component 88 or at the same time as the anatomic articular component 84. The locking device 108 can be a separate component that is loaded onto an inserter or impacting tool that can be previously loaded with the reverse articular component 88 or the anatomic articular component 84. The locking device 108 can be a separate component that is loaded onto an inserter or impactor with, but relatively moveable to, the reverse articular component 88 or the anatomic articular component 84. The locking device 108 and the reverse articular component 88 can be formed as a monolithic structure that can be loaded together onto an inerter. The locking device 108 and the anatomic articular component 84 can be formed as a monolithic structure that can be loaded together onto an inerter.
III. Additional Apparatuses and Methods
The base member 804 includes a first pathway 830 accessible from the lateral end 820 of the base member 804. The first pathway 830 is directed toward the medial end 816 through the helical structure 824. The first pathway 830 can be located adjacent to an inner periphery of the helical structure 824, as discussed above. The first pathway 830 can be partly defined by an outer surface of the body 812. The first pathway 830 can be disposed generally transverse to the helical structure 824. The first pathway 830 extends in a space 832 between successive portions of the helical structure 824. In one embodiment, a first segment 830A of the first pathway 830 is disposed through a proximal portion of the helical structure 824, a second segment 830B of the first path 830 is located medial of the first segment 830A, and a third segment 830C of the first path 830 is disposed medial of the second segment 830B.
The plate member 808 has a flange 842 and a first arm 846 that projects distally, medially away from or generally in a direction of implantation of the plate member 808 from the flange 842. The plate member 808 can have a second arm 846 that projects away from the flange 842. The first arm 846 is configured to be disposed in the first pathway 830 when the plate member 808 is disposed adjacent to the lateral end 820 of the base member 804. The first arm 846 is disposed through bone in the space 832 between successive portions of the helical structure 824 when the shoulder assembly 800 is implanted.
The plate member 808 also includes a boss 850 that extends laterally of the flange 842. The boss 850 comprises an arcuate outer periphery 854 and an aperture 858 that provides access to a lumen 862 through the aperture 858. The lumen 862 is defined by a tapered surface 864 that mates with a glenoid sphere 870, as discussed below. In another embodiment, the glenoid sphere 870 and the boss 850 are configured such that the glenoid sphere 870 coupled with the outer surface of the boss 850.
The glenoid sphere 870 comprises a recess 874 disposed on a medial side and a convex side 878 disposed opposite the recess 874. The glenoid sphere 870 has a tapered surface 882 disposed within the recess 874. The tapered surface 882 is partly disposed in the recess 874 and partly extends medially of the recess 874. The tapered surface 882 is disposed on a projection 890. The boss 850 receives the projection of the glenoid sphere 870 therein. The tapered surface 864 on the boss 850 mates with the tapered surface 882 on the medial side of the glenoid sphere 870 to form a connection between the glenoid sphere 870 and the plate member 808. The mating tapered surfaces 864, 882 can form a Morse taper connection between the glenoid sphere 870 and the plate member 808.
A fastener 910 is used to secure the glenoid sphere 870, the plate member 808, and the base member 804 together. The fastener 910 includes a medial end 914 with a threaded zone 918 and a lateral end 922. The lateral end 922 includes a tool interface 926.
The connection between the components of the shoulder assembly 900 is shown in
The plate member 808 includes additional features for enhancing securement to the bone. The plate member 808 can includes one or more apertures 920. The apertures 920 can receive bone screws to enhance securement of the plate member 808 to the bone, e.g., to the scapula SC. Advantageously, the bone screw will lock into the apertures 920 by a thread engagement. In some embodiments, the locking mechanism will be multi-directional providing the possibility to lock the bone screws at a variable angle from the axis of the flange 842. Additionally, the medial side of the plate member 808 can includes a textured surface 924 e.g., coated or layered with a porous material in order to accelerate tissue ingrowth such as bony ingrowth. Advantageously, the plate member 808 could be manufactured by additive manufacturing to incorporate the porous surface 924.
Though shown in use to secure a hard material (e.g. ceramic, pyrocarbon, or metal) glenoid sphere 99 to a glenoid, the assembly 800 could be used to secure a soft-material (e.g. polyethylene, polyurethane, PEEK) glenoid sphere. Though shown in use to secure a glenoid sphere 99 to a glenoid, the assembly 800 could be used to secure an atomic glenoid. Though shown in use to secure a glenoid sphere 99 to a glenoid, the assembly 800 could be used in other anatomy to achieve very secure connection to relatively shallow layers of bone, which can include cancellous bone that is exposed during a procedure.
IV. Additional Applications
Each of the applications illustrated in
V. Performance of Embodiments Disclosed Herein
As used herein, the relative terms “proximal” and “distal” shall be defined from the perspective of the humeral shoulder assembly. Thus, distal refers the direction of the end of the humeral shoulder assembly embedded in the humerus, while proximal refers to the direction of the end of the humeral shoulder assembly facing the glenoid cavity when the assembly is applied to the humerus. Distal refers the direction of the end of the humeral shoulder assembly embedded in the scapula, while proximal refers to the direction of the end of the humeral shoulder assembly facing the humerus when the assembly is applied to the glenoid. In the context of a glenoid component, the distal end is also sometimes referred to as a medial end and the proximal end is sometimes referred to as a lateral end.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, 0.1 degree, or otherwise.
Some embodiments have been described in connection with the accompanying drawings. However, it should be understood that the figures are not drawn to scale. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Although these inventions have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while several variations of the inventions have been shown and described in detail, other modifications, which are within the scope of these inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combination or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Further, the actions of the disclosed processes and methods may be modified in any manner, including by reordering actions and/or inserting additional actions and/or deleting actions. Thus, it is intended that the scope of at least some of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.
This application is a divisional application of co-pending U.S. patent application Ser. No. 16/320,860, filed Jan. 25, 2019, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
448126 | Craig | Mar 1891 | A |
1065456 | Lowrey | Jun 1913 | A |
1123730 | Greenfield | Jan 1915 | A |
2444099 | Hennessey, Jr. | Jun 1948 | A |
2886081 | Cowley | May 1959 | A |
3523395 | Rutter et al. | Aug 1970 | A |
3609056 | Hougen | Sep 1971 | A |
3738217 | Walker | Jun 1973 | A |
4042980 | Swanson et al. | Aug 1977 | A |
4147464 | Watson et al. | Apr 1979 | A |
4250600 | Gunther | Feb 1981 | A |
4261062 | Amstutz et al. | Apr 1981 | A |
4406023 | Harris | Sep 1983 | A |
4550450 | Kinnett | Nov 1985 | A |
4601289 | Chiarizzio et al. | Jul 1986 | A |
4623353 | Buechel et al. | Nov 1986 | A |
4632111 | Roche | Dec 1986 | A |
4743262 | Tronzo | May 1988 | A |
D296714 | Averill et al. | Jul 1988 | S |
4865605 | Dines et al. | Sep 1989 | A |
4883491 | Mallory et al. | Nov 1989 | A |
4919670 | Dale et al. | Apr 1990 | A |
4964865 | Burkhead et al. | Oct 1990 | A |
4986833 | Worland | Jan 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5032132 | Matsen et al. | Jul 1991 | A |
5044393 | Jiles | Sep 1991 | A |
5080673 | Burkhead et al. | Jan 1992 | A |
5112338 | Anspach, III | May 1992 | A |
5163964 | Lazzeri et al. | Nov 1992 | A |
5171277 | Roger | Dec 1992 | A |
5257995 | Umber et al. | Nov 1993 | A |
5282865 | Dong | Feb 1994 | A |
5358526 | Tornier | Oct 1994 | A |
5443471 | Swajger | Aug 1995 | A |
5489309 | Lackey et al. | Feb 1996 | A |
5489310 | Mikhail | Feb 1996 | A |
5507817 | Craig et al. | Apr 1996 | A |
5514136 | Richelsoph | May 1996 | A |
5534006 | Szabo et al. | Jul 1996 | A |
5540697 | Rehmann et al. | Jul 1996 | A |
5681134 | Ebert | Oct 1997 | A |
5702486 | Craig et al. | Dec 1997 | A |
5720750 | Koller et al. | Feb 1998 | A |
5723018 | Cyprien et al. | Mar 1998 | A |
5776194 | Mikol et al. | Jul 1998 | A |
5800551 | Williamson et al. | Sep 1998 | A |
5810524 | Wirth, Jr. et al. | Sep 1998 | A |
5820315 | Collard | Oct 1998 | A |
5830215 | Incavo et al. | Nov 1998 | A |
5849015 | Haywood et al. | Dec 1998 | A |
5954727 | Collazo | Sep 1999 | A |
5976148 | Charpenet et al. | Nov 1999 | A |
6045582 | Prybyla | Apr 2000 | A |
6063124 | Amstutz | May 2000 | A |
6099214 | Lee et al. | Aug 2000 | A |
6110179 | Flivik et al. | Aug 2000 | A |
6113605 | Storer | Sep 2000 | A |
6132469 | Schroeder | Oct 2000 | A |
6139551 | Michelson et al. | Oct 2000 | A |
6146423 | Cohen et al. | Nov 2000 | A |
6174335 | Varieur et al. | Jan 2001 | B1 |
6187012 | Masini | Feb 2001 | B1 |
6197063 | Dews | Mar 2001 | B1 |
6264299 | Noda | Jul 2001 | B1 |
6264657 | Urbahns et al. | Jul 2001 | B1 |
6306171 | Conzemius | Oct 2001 | B1 |
6322564 | Surma | Nov 2001 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6368271 | Sharratt | Apr 2002 | B1 |
6368353 | Arcand | Apr 2002 | B1 |
6379917 | Okun et al. | Apr 2002 | B1 |
6409730 | Green et al. | Jun 2002 | B1 |
6508840 | Rockwood, Jr. et al. | Jan 2003 | B1 |
6520994 | Nogarin | Feb 2003 | B2 |
6537278 | Johnson | Mar 2003 | B1 |
6626913 | McKinnon et al. | Sep 2003 | B1 |
6666874 | Heitzmann et al. | Dec 2003 | B2 |
6736851 | Maroney et al. | May 2004 | B2 |
6746452 | Tuke et al. | Jun 2004 | B2 |
6783549 | Stone et al. | Aug 2004 | B1 |
6786684 | Ecker | Sep 2004 | B1 |
6797006 | Hodorek et al. | Sep 2004 | B2 |
7044973 | Rockwood, Jr. et al. | May 2006 | B2 |
7097663 | Nicol et al. | Aug 2006 | B1 |
7140087 | Giltner | Nov 2006 | B1 |
7160328 | Rockwood, Jr. et al. | Jan 2007 | B2 |
7169184 | Dalla Pria | Jan 2007 | B2 |
7175663 | Stone | Feb 2007 | B1 |
7179084 | Kometas | Feb 2007 | B1 |
7189036 | Watson | Mar 2007 | B1 |
7189261 | Dews et al. | Mar 2007 | B2 |
7204854 | Guederian et al. | Apr 2007 | B2 |
7208222 | Rolfe et al. | Apr 2007 | B2 |
7344565 | Seyer et al. | Mar 2008 | B2 |
7465319 | Tornier | Dec 2008 | B2 |
7476228 | Abou | Jan 2009 | B2 |
7476253 | Craig et al. | Jan 2009 | B1 |
7585327 | Winslow | Sep 2009 | B2 |
7615080 | Ondrla | Nov 2009 | B2 |
7637703 | Khangar et al. | Dec 2009 | B2 |
7648530 | Habermeyer et al. | Jan 2010 | B2 |
7670382 | Parrott et al. | Mar 2010 | B2 |
7678150 | Tornier et al. | Mar 2010 | B2 |
7744602 | Teeny et al. | Jun 2010 | B2 |
7758650 | Dews et al. | Jul 2010 | B2 |
7887544 | Tornier et al. | Feb 2011 | B2 |
7927376 | Leisinger et al. | Apr 2011 | B2 |
D643926 | Collins | Aug 2011 | S |
8021370 | Fenton et al. | Sep 2011 | B2 |
8114089 | Divoux et al. | Feb 2012 | B2 |
8162947 | Dreyfuss | Apr 2012 | B2 |
8182541 | Long et al. | May 2012 | B2 |
8187282 | Tornier et al. | May 2012 | B2 |
8192497 | Ondrla | Jun 2012 | B2 |
8202275 | Wozencroft | Jun 2012 | B2 |
8221037 | Neitzell | Jul 2012 | B2 |
8231682 | LaFosse | Jul 2012 | B2 |
8246687 | Katrana et al. | Aug 2012 | B2 |
8262667 | Silver et al. | Sep 2012 | B1 |
D668331 | Ren et al. | Oct 2012 | S |
8277512 | Parrott et al. | Oct 2012 | B2 |
8317871 | Stone et al. | Nov 2012 | B2 |
8409798 | Luy et al. | Apr 2013 | B2 |
8419798 | Ondrla et al. | Apr 2013 | B2 |
D685474 | Courtney | Jul 2013 | S |
8500744 | Wozencroft et al. | Aug 2013 | B2 |
8506638 | Vanasse et al. | Aug 2013 | B2 |
8512410 | Metcalfe et al. | Aug 2013 | B2 |
D691710 | White | Oct 2013 | S |
8591592 | Dreyfuss | Nov 2013 | B2 |
8641773 | Bergin et al. | Feb 2014 | B2 |
8647387 | Winslow | Feb 2014 | B2 |
8663334 | Viscardi et al. | Mar 2014 | B2 |
8690958 | Klawitter et al. | Apr 2014 | B2 |
8702800 | Linares et al. | Apr 2014 | B2 |
8753402 | Winslow et al. | Jun 2014 | B2 |
8795379 | Smith et al. | Aug 2014 | B2 |
8840671 | Ambacher | Sep 2014 | B2 |
8845742 | Kusogullari et al. | Sep 2014 | B2 |
8864834 | Boileau et al. | Oct 2014 | B2 |
8870962 | Roche et al. | Oct 2014 | B2 |
8876908 | Katrana et al. | Nov 2014 | B2 |
8882845 | Wirth et al. | Nov 2014 | B2 |
8992623 | Hopkins et al. | Mar 2015 | B2 |
D745678 | Courtney et al. | Dec 2015 | S |
9233003 | Roche et al. | Jan 2016 | B2 |
9289218 | Courtney, Jr. et al. | Mar 2016 | B2 |
9326865 | Katrana et al. | May 2016 | B2 |
9364334 | Katrana et al. | Jun 2016 | B2 |
9498345 | Burkhead, Jr. et al. | Nov 2016 | B2 |
9510839 | Maroney et al. | Dec 2016 | B2 |
9603712 | Bachmaier | Mar 2017 | B2 |
9610165 | Poncet et al. | Apr 2017 | B2 |
9615928 | Visser et al. | Apr 2017 | B2 |
9820859 | Gervasi et al. | Nov 2017 | B2 |
9956083 | Humphrey | May 2018 | B2 |
D831218 | da Costa | Oct 2018 | S |
10166032 | Stone et al. | Jan 2019 | B2 |
D840539 | Courtney et al. | Feb 2019 | S |
10335285 | Viscardi et al. | Jul 2019 | B2 |
10368999 | Greiwe | Aug 2019 | B2 |
10433969 | Humphrey | Oct 2019 | B2 |
10456264 | Hodorek et al. | Oct 2019 | B2 |
10463499 | Emerick et al. | Nov 2019 | B2 |
D875936 | Martin | Feb 2020 | S |
10898348 | Vivanz et al. | Jan 2021 | B2 |
10945862 | Roby et al. | Mar 2021 | B2 |
11076962 | Kemp et al. | Aug 2021 | B2 |
D938034 | Knox et al. | Dec 2021 | S |
11229524 | Sperling | Jan 2022 | B2 |
D951449 | Knox et al. | May 2022 | S |
D952143 | Conklin | May 2022 | S |
20010034553 | Michelson | Oct 2001 | A1 |
20010047210 | Wolf | Nov 2001 | A1 |
20020116007 | Lewis | Aug 2002 | A1 |
20020156534 | Grusin et al. | Oct 2002 | A1 |
20030028253 | Stone et al. | Feb 2003 | A1 |
20030031521 | Haughton et al. | Feb 2003 | A1 |
20030114933 | Bouttens et al. | Jun 2003 | A1 |
20030125810 | Sullivan et al. | Jul 2003 | A1 |
20040010262 | Parkinson et al. | Jan 2004 | A1 |
20040049270 | Gewirtz | Mar 2004 | A1 |
20040186586 | Seyer et al. | Sep 2004 | A1 |
20040193276 | Maroney et al. | Sep 2004 | A1 |
20040193277 | Long et al. | Sep 2004 | A1 |
20040193278 | Maroney et al. | Sep 2004 | A1 |
20040220674 | Pria | Nov 2004 | A1 |
20040243136 | Gupta et al. | Dec 2004 | A1 |
20040254646 | Stone et al. | Dec 2004 | A1 |
20050107882 | Stone et al. | May 2005 | A1 |
20050112397 | Rolfe et al. | May 2005 | A1 |
20050203539 | Grimm et al. | Sep 2005 | A1 |
20050209597 | Long et al. | Sep 2005 | A1 |
20050261775 | Baum et al. | Nov 2005 | A1 |
20050267478 | Corradi et al. | Dec 2005 | A1 |
20060004378 | Raines | Jan 2006 | A1 |
20060009852 | Winslow et al. | Jan 2006 | A1 |
20060020344 | Shultz et al. | Jan 2006 | A1 |
20060064173 | Guederian | Mar 2006 | A1 |
20060089656 | Allard et al. | Apr 2006 | A1 |
20060142866 | Baratz et al. | Jun 2006 | A1 |
20060195105 | Teeny et al. | Aug 2006 | A1 |
20060200165 | Tulkis | Sep 2006 | A1 |
20060200249 | Beguin et al. | Sep 2006 | A1 |
20070010825 | Leisinger et al. | Jan 2007 | A1 |
20070100458 | Dalla Pria | May 2007 | A1 |
20070123890 | Way et al. | May 2007 | A1 |
20070123893 | O'Donoghue | May 2007 | A1 |
20070123909 | Rupp et al. | May 2007 | A1 |
20070156246 | Meswania et al. | Jul 2007 | A1 |
20070162038 | Tuke | Jul 2007 | A1 |
20070162141 | Dews et al. | Jul 2007 | A1 |
20070173945 | Wiley et al. | Jul 2007 | A1 |
20070212179 | Khangar et al. | Sep 2007 | A1 |
20070219562 | Slone et al. | Sep 2007 | A1 |
20070225817 | Reubelt et al. | Sep 2007 | A1 |
20070233132 | Valla | Oct 2007 | A1 |
20070288096 | Surma | Dec 2007 | A1 |
20080021564 | Gunther | Jan 2008 | A1 |
20080077146 | Pernsteiner et al. | Mar 2008 | A1 |
20080172061 | Ragbir | Jul 2008 | A1 |
20080195111 | Anderson | Aug 2008 | A1 |
20080221576 | Keller | Sep 2008 | A1 |
20080249577 | Dreyfuss | Oct 2008 | A1 |
20090099662 | Splieth et al. | Apr 2009 | A1 |
20090171462 | Poncet et al. | Jul 2009 | A1 |
20090281630 | Delince et al. | Nov 2009 | A1 |
20090306782 | Schwyzer | Dec 2009 | A1 |
20100042214 | Nebosky et al. | Feb 2010 | A1 |
20100087927 | Roche et al. | Apr 2010 | A1 |
20100114326 | Winslow et al. | May 2010 | A1 |
20100121331 | Sharp et al. | May 2010 | A1 |
20100191340 | Dreyfuss | Jul 2010 | A1 |
20100268238 | Sikora et al. | Oct 2010 | A1 |
20100274360 | Gunther | Oct 2010 | A1 |
20100278601 | Beynon | Nov 2010 | A1 |
20100331902 | Biegun | Dec 2010 | A1 |
20110082587 | Ziaei et al. | Apr 2011 | A1 |
20110153023 | Deffenbaugh et al. | Jun 2011 | A1 |
20110224673 | Smith | Sep 2011 | A1 |
20110276144 | Wirth et al. | Nov 2011 | A1 |
20110313533 | Gunther | Dec 2011 | A1 |
20120022664 | Vandermeulen et al. | Jan 2012 | A1 |
20120083769 | Burgi et al. | Apr 2012 | A1 |
20120109321 | Stone et al. | May 2012 | A1 |
20120184964 | Hudak et al. | Jul 2012 | A1 |
20120221111 | Burkhead, Jr. et al. | Aug 2012 | A1 |
20120232562 | Mani et al. | Sep 2012 | A1 |
20120265315 | Kusogullari et al. | Oct 2012 | A1 |
20120265319 | Prybyla et al. | Oct 2012 | A1 |
20120277880 | Winslow et al. | Nov 2012 | A1 |
20120290099 | Gibson et al. | Nov 2012 | A1 |
20120296435 | Ambacher | Nov 2012 | A1 |
20130018382 | Jones et al. | Jan 2013 | A1 |
20130018476 | Katrana et al. | Jan 2013 | A1 |
20130123929 | McDaniel et al. | May 2013 | A1 |
20130123930 | Burt | May 2013 | A1 |
20130150972 | Iannotti et al. | Jun 2013 | A1 |
20130173006 | Duport | Jul 2013 | A1 |
20130178943 | Duport | Jul 2013 | A1 |
20130190882 | Humphrey | Jul 2013 | A1 |
20130211539 | McDaniel et al. | Aug 2013 | A1 |
20130261626 | Chavarria et al. | Oct 2013 | A1 |
20130261629 | Anthony et al. | Oct 2013 | A1 |
20130261630 | Courtney, Jr. et al. | Oct 2013 | A1 |
20130261754 | Anthony et al. | Oct 2013 | A1 |
20130261755 | Anthony et al. | Oct 2013 | A1 |
20130282129 | Phipps | Oct 2013 | A1 |
20130331849 | Splieth et al. | Dec 2013 | A1 |
20140012272 | Leisinger | Jan 2014 | A1 |
20140012380 | Laurence et al. | Jan 2014 | A1 |
20140058523 | Walch et al. | Feb 2014 | A1 |
20140074246 | Huebner et al. | Mar 2014 | A1 |
20140107792 | Hopkins et al. | Apr 2014 | A1 |
20140156012 | Winslow | Jun 2014 | A1 |
20140236304 | Hodorek et al. | Aug 2014 | A1 |
20140257499 | Winslow et al. | Sep 2014 | A1 |
20140288657 | Lederman et al. | Sep 2014 | A1 |
20140296988 | Winslow et al. | Oct 2014 | A1 |
20140358239 | Katrana et al. | Dec 2014 | A1 |
20140358240 | Katrana et al. | Dec 2014 | A1 |
20140379089 | Bachmaier | Dec 2014 | A1 |
20150134066 | Bachmaier | May 2015 | A1 |
20150250601 | Humphrey | Sep 2015 | A1 |
20150265411 | Deransart et al. | Sep 2015 | A1 |
20150289984 | Budge | Oct 2015 | A1 |
20150297354 | Walch et al. | Oct 2015 | A1 |
20150328015 | Olson et al. | Nov 2015 | A1 |
20160051367 | Gervasi et al. | Feb 2016 | A1 |
20160059403 | Mugnier | Mar 2016 | A1 |
20160157911 | Courtney, Jr. et al. | Jun 2016 | A1 |
20160206445 | Gheevarughese et al. | Jul 2016 | A1 |
20160324648 | Hodorek et al. | Nov 2016 | A1 |
20160331551 | Slade et al. | Nov 2016 | A1 |
20160374815 | Siccardi et al. | Dec 2016 | A1 |
20170105843 | Britton et al. | Apr 2017 | A1 |
20170112634 | Gunn et al. | Apr 2017 | A1 |
20170273800 | Emerick et al. | Sep 2017 | A1 |
20170304063 | Hatzidakis et al. | Oct 2017 | A1 |
20170367714 | McCulloch et al. | Dec 2017 | A1 |
20170367836 | Cardon et al. | Dec 2017 | A1 |
20180028249 | Jaumard | Feb 2018 | A1 |
20180092757 | Behzadi et al. | Apr 2018 | A1 |
20180092760 | Sperling et al. | Apr 2018 | A1 |
20180103967 | Rouyer et al. | Apr 2018 | A1 |
20180161176 | Vivanz et al. | Jun 2018 | A1 |
20180193168 | Termanini et al. | Jul 2018 | A1 |
20180200067 | Axelson et al. | Jul 2018 | A1 |
20180206859 | Pendleton et al. | Jul 2018 | A1 |
20180271667 | Kemp et al. | Sep 2018 | A1 |
20180280152 | Mutchler et al. | Oct 2018 | A1 |
20190105165 | Sikora et al. | Apr 2019 | A1 |
20190105169 | Sperling | Apr 2019 | A1 |
20190159906 | Knox et al. | May 2019 | A1 |
20190175354 | Knox et al. | Jun 2019 | A1 |
20190216518 | Courtney, Jr. et al. | Jul 2019 | A1 |
20190231558 | Beck et al. | Aug 2019 | A1 |
20190328536 | Martin et al. | Oct 2019 | A1 |
20190336307 | Sungu et al. | Nov 2019 | A1 |
20190374349 | Müller | Dec 2019 | A1 |
20200000573 | Whittaker et al. | Jan 2020 | A1 |
20200008947 | Emerick et al. | Jan 2020 | A1 |
20200121474 | Pendleton et al. | Apr 2020 | A1 |
20200188125 | Hodorek et al. | Jun 2020 | A1 |
20200214845 | Knox et al. | Jul 2020 | A1 |
20200214853 | Sweitzer | Jul 2020 | A1 |
20200222205 | Gosik-Wolfe et al. | Jul 2020 | A1 |
20210030565 | Dun et al. | Feb 2021 | A1 |
20210045895 | Sapio et al. | Feb 2021 | A1 |
20210212840 | Sweitzer et al. | Jul 2021 | A1 |
20210212841 | Sweitzer et al. | Jul 2021 | A1 |
20210228362 | Whitwell et al. | Jul 2021 | A1 |
20210228370 | Ek et al. | Jul 2021 | A1 |
20210244487 | Beck | Aug 2021 | A1 |
20210251643 | Stump | Aug 2021 | A1 |
20210290411 | Gosik-Wolfe | Sep 2021 | A1 |
20210315713 | Keach et al. | Oct 2021 | A1 |
20210330476 | Alden | Oct 2021 | A1 |
20210338456 | Wolfe et al. | Nov 2021 | A1 |
20210386558 | Alden | Dec 2021 | A1 |
20210393414 | Robicheaux et al. | Dec 2021 | A1 |
20220023053 | Kim et al. | Jan 2022 | A1 |
20220023071 | Sweitzer | Jan 2022 | A1 |
20220104835 | Blaser et al. | Apr 2022 | A1 |
20220117756 | Blaser et al. | Apr 2022 | A1 |
20220125591 | Rivera, Jr. | Apr 2022 | A1 |
20220151794 | Fattori et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
211530 | May 2022 | CA |
4220217 | Dec 1993 | DE |
10233204 | Jan 2004 | DE |
102004042502 | Mar 2006 | DE |
0 274 094 | Aug 1990 | EP |
1 413 265 | Apr 2004 | EP |
0 959 822 | May 2004 | EP |
1 125 565 | Dec 2004 | EP |
1 518 519 | Mar 2005 | EP |
1 004 283 | May 2005 | EP |
1 639 967 | Mar 2006 | EP |
1 762 191 | Mar 2007 | EP |
1 952 788 | Aug 2008 | EP |
1 867 303 | Sep 2010 | EP |
1 977 720 | Jan 2011 | EP |
1 550 420 | Feb 2012 | EP |
2 261 303 | Nov 2012 | EP |
1 706 074 | Dec 2012 | EP |
2 564 814 | Mar 2013 | EP |
2 567 676 | Mar 2013 | EP |
2 574 313 | Apr 2013 | EP |
2586387 | May 2013 | EP |
2 616 013 | Jul 2013 | EP |
2 474 288 | Sep 2013 | EP |
2 663 263 | May 2014 | EP |
2 502 605 | Aug 2014 | EP |
2 800 541 | Nov 2014 | EP |
2 815 726 | Aug 2015 | EP |
2 353 549 | Jun 2016 | EP |
3 117 801 | Jan 2017 | EP |
2 965 720 | Jul 2017 | EP |
2 674 122 | Sep 1992 | FR |
2997290 | Nov 2015 | FR |
2405346 | Mar 2005 | GB |
2009523578 | Jun 2009 | JP |
2015532863 | Nov 2015 | JP |
2016528956 | Sep 2016 | JP |
WO 0167988 | Sep 2001 | WO |
WO 0217822 | Mar 2002 | WO |
WO 2008011078 | Jan 2008 | WO |
WO 2008146124 | Dec 2008 | WO |
WO 2011081797 | Jul 2011 | WO |
WO 2012035263 | Mar 2012 | WO |
WO 2012130524 | Oct 2012 | WO |
WO 2013009407 | Jan 2013 | WO |
WO 2013064569 | May 2013 | WO |
WO 2013148229 | Oct 2013 | WO |
WO 2014005644 | Jan 2014 | WO |
WO 2014058314 | Apr 2014 | WO |
WO 2015112307 | Jul 2015 | WO |
2016094739 | Jun 2016 | WO |
WO 2016094739 | Jun 2016 | WO |
WO 2017165090 | Sep 2017 | WO |
WO 2017184792 | Oct 2017 | WO |
WO 2018022227 | Feb 2018 | WO |
WO 2019060780 | Mar 2019 | WO |
WO 2019106278 | Jun 2019 | WO |
2019133905 | Jul 2019 | WO |
Entry |
---|
Barth, et al., “Is global humeral head offset related to intramedullary canal width? A computer tomography morphometric study,” Journal of Experimental Orthopaedics, 2018, vol. 5, pp. 1-8. |
Boileau, et al., “The Three-Dimensional Geometry of the Proximal Humerus: Implications for Surgical Technique and Prosthetic Design,” J Bone Joint Surg, Sep. 1997, vol. 79-B, Issue 5, pp. 857-865. |
Routman, et al., “Reverse Shoulder Arthroplasty Prosthesis Design Classification System,” Bulletin of the Hospital for Joint Diseases, 2015, vol. 73 (Suppl 1), pp. S5-S14. |
International Search Report and Written Opinion for PCT/US2018/052294 dated Apr. 4, 2019 in 13 pages. |
Non-Final Office Action issued in connection with U.S. Appl. No. 16/519,937, filed Aug. 17, 2021, 21 pages. |
Final Rejection issued in connection with U.S. Appl. No. 16/249,720, filed Aug. 20, 2021, 40 pages. |
Final Rejection issued in connection with U.S. Appl. No. 16/580,367, filed Aug. 24, 2021, 9 pages. |
Office Action issued in connection with Canadian Patent Application No. 3,114,804, dated May 25, 2021, 7 pages. |
First Examination Report issued in connection with Australian Patent Application No. 2019352591, dated May 19, 2021, 4 pages. |
First Office Action issued in connection with Japanese Patent Application No. 2022-520122, dated Apr. 18, 2023, 4 pages. |
Med Gadget, “Tornier Announces First Implant in U.S. Trial of Its Simpliciti Stemless Shoulder Joint Replacement System”, first available Aug. 5, 2011. (https:/Avwww.medgadget.com/2011/08/tornier-announces-first-implant-in-u-s-trial-of-its-simpliciti-stemless-shoulder-joint-replacement-system.html) (Year 2011). |
Wright Media, “Tornier Aequalis Reversed FX”, first available May 19, 2016. (https:/Awww.wrightemedia.com/ProductFiles/Files/PDFs/ CAW-1146_EN_LR_LE.pdf) (Year: 2016). |
Wright Media, “Aequalis Ascend Flex”, first available Jul. 30, 2019. (https:/Avww.wrightemedia.com/ProductFiles/Files/PDFs/AP- 010187_EN_LR_LE.pdf) (Year: 2019). |
Arthrex, “Univers Revers Shoulder System”, first available Apr. 24, 2019. (https:/Avww.arthrex.com/resources/surgical-technique-guide/ qkv6M00_50qt2QFBx1PKnA/univers-revers-shoulder-system) (Year: 2019). |
Non-Final Office Action issued in connection with U.S. Appl. No. 16/648,128, dated Mar. 28, 2022, 43 pages. |
Non-Final Office Action issued in connection with U.S. Appl. No. 17/250,964, filed Feb. 24, 2022, 12 pages. |
First Office Action issued in connection with Japanese Patent Application No. 2019-555151, dated Feb. 21, 2022, 5 pages. |
First Examination Report issued in connection with Australian Patent Application No. 2020360410, datedNov. 24, 2022, 5 pages. |
Office Action issued in connection with Japanese Patent Application No. 2021-518159, dated May 24, 2022, 5 pages. |
Third Examination Report issued in connection with Australian Patent Application No. 2019355854, dated May 10, 2022, 4 pages. |
First Examination Report issued in connection with Australian Patent Application No. 2021250994, dated Jun. 2, 2022, 5 pages. |
Non-Final Office Action issued in connection with U.S. Appl. No. 17/717,253, filed Jun. 29, 2022, 56 pages. |
Office Action issued in connection with Japanese Patent Application No. 2021-518174, dated May 24, 2022, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20210378831 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62368036 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16320860 | US | |
Child | 17407250 | US |