Information
-
Patent Grant
-
6382095
-
Patent Number
6,382,095
-
Date Filed
Wednesday, November 8, 200024 years ago
-
Date Issued
Tuesday, May 7, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 101 116
- 101 118
- 101 1271
- 101 1281
- 101 129
- 101 477
- 101 4151
- 101 1284
-
International Classifications
-
Abstract
A stencil leading end mounting device of a printing drum of a rotary stencil printer for clamping a stencil leading end between a stencil leading end supporting surface 70 of a base member 72 and a clamping surface 74 of a clamp member 76, the clamp member being biased at a drive portion 82 by a lever member 108 of an actuator to be tilted open about a linear pivot axis P, wherein the linear pivot axis P is defined by a contact point between a convex cam 115 and a bearing surface provided between the clamp member 76 and the based member 72, so as to move from a side of the clamping surface toward a side of the drive portion as the clamp member is more tilted.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of rotary stencil printer, and more particularly to a device for mounting a leading end of a stencil to the printing drum of a rotary stencil printer.
2. Description of the Prior Art
A full automatic rotary stencil printer having a basic construction such as shown in
FIG. 1
is already known. In
FIG. 1
,
10
is a printing drum which is driven to rotate anti-clockwise as shown by an arrow by printing drum driving means not shown in the figure when a stencil is mounted to the printing drum, also when the printing is carried out, and also when the used stencil is exhausted from the printing drum.
A stencil leading end mounting device generally designated by
12
in which the present invention is incorporated is provided at a part of the printing drum
10
.
14
is a roll of a band stencil sheet providing a stencil sheet supply source. The stencil sheet drawn out from the roll
14
is conducted through a guide passage
16
, between a thermal head
18
and a platen roller
20
, the thermal head
18
perforating the stencil sheet to form a stencil according to image data based upon an electric image data signal supplied thereto from image data processing means not shown in the figure, a cutter
22
in an open state, a movable passage
24
adapted to be positioned horizontal for receiving the leading end of the stencil and thereafter to break down at a break point
25
to be inclined as shown by phantom lines in the figure for giving an allowance in the feed of the stencil, and between stencil feed rollers
26
and
28
which feed the stencil so that the leading end thereof proceeds into the stencil leading end mounting device
12
under a controlled feed rate through a passage
30
and a movable stencil guide lip
32
.
After the leading end of the stencil has been fastened by the stencil leading end mounting device
12
, the succeeding part of the stencil perforated by a further operation of the thermal head
18
is first slackened for each predetermined length corresponding to a stroke of swing of the movable passage
24
about the break point
25
, while the printing drum
10
is intermittently driven in synchronization therewith to take up each allowance provided by the slackened stencil so that the stencil is gradually mounted around the printing drum
10
.
The stencil feed rollers
26
and
28
are put into idling, after the leading end of the stencil has been fastened by the stencil leading end mounting device
12
. When a predetermined amount of stencil has been fed, the cutter
22
is operated to cut out a sheet of stencil from the continuous band stencil sheet.
When a sheet of perforated stencil has been mounted around the printing drum
10
, the printer proceeds to a printing process, wherein print sheets are successively supplied from a print sheet supply tray not shown in the figure and are fed through between print sheet feed rollers
34
and
36
to a nipping region
40
between the printing drum
10
and a press roller
38
.
A squeeze roller
42
is provided in the printing drum
10
to oppose the nipping region and to be driven anti-clockwise as shown by the arrow in the figure in synchronization with the rotation of the printing drum
10
. A doctor rod
44
is provided adjacent the squeeze roller
42
to define a groove
46
to hold an ink deposit
52
formed by ink
50
supplied from an ink distributor
48
.
An agitation rod
54
is provided in the groove
46
at a central position thereof to provide a core of the ink deposit
52
, so that the ink deposit
52
forms a rotating mass of ink rotating clockwise around the agitation rod
54
when the squeeze roller
42
rotates anti-clockwise as viewed in the figure, with a part of the rotating mass of ink being successively drawn out therefrom in the form of an ink layer
56
carried on the squeeze roller
42
to be supplied to the inner circumferential surface of the printing drum
10
, this ink being further passed through the perforations of the stencil mounted around the printing drum
10
and transferred onto the print sheet fed through the nipping region
40
to form a stencil print image on the print sheet.
The print sheet thus applied with the stencil printing tends to move along the outer circumferential surface of the printing drum
10
due the adhesiveness of the ink, but the print sheet is removed from the outer circumferential surface of the printing drum as peeled off therefrom by a print sheet removal claw
58
and is transferred by a belt conveyer type print sheet discharge means
60
toward a printed sheet receiving tray not shown in the figure.
When the stencil mounted around the printing drum
10
is to be exhausted, the stencil leading end mounting device
12
is operated in a manner described in detail hereinbelow, so that the leading end of the stencil is released from the clamping by stencil leading end mounting device
12
and is brought into a state freely placed thereon.
Then the printing drum
10
is rotated in the direction shown by the arrow for the exhausting of the stencil such that the leading end of the stencil is scooped up by a stencil removal claw
62
when it traverses the tip end of the claw and is then bitten into between belt conveyers
64
and
66
of a stencil exhausting means, each of which-is moving in the direction shown by arrows, thus the stencil being successively peeled off from the printing drum
10
as the printing drum
10
is further rotated, to be finally exhausted into a stencil exhaust box positioned on the left side of the belt conveyers
64
and
66
though not shown in the figure.
A belt conveyer
68
operates to guide the leading end of the stencil toward a nipping region between the belt conveyers
64
and
66
if the leading end of the stencil would divert away from the nipping region.
With respect to a rotary stencil printer having such a known basic construction, in U.S. Pat. No. 5,575,204 owned by the same assignee as the present application, there has been proposed an improved construction of the stencil leading end mounting device
12
such as shown in
FIGS. 2 and 3
a-
3
h.
In these figures, the stencil leading end mounting device
12
comprises a base member
72
having a band surface
70
working as a stencil leading end supporting surface, the band surface extending along a portion of the cylindrical outer surface of the printing drum
10
along a generatrix of the printing drum in parallel with the central axis thereof and incorporating a magnet piece (desirably a rubber magnet piece) planted therein, and a clamp member
76
having a clamping surface
74
and movable between a closed position (the position shown in FIG.
2
and
FIG. 3
a
) where the clamping surface is laid over the stencil leading end supporting surface
70
and an open position (the position shown in
FIG. 3
b
) where the clamping surface is removed from the stencil leading end supporting surface
70
.
The clamp member
76
is a plate element of a magnetic material having an elongated rectangular shape extending in parallel with the central axis of the printing drum, and is pivotably supported at longitudinally opposite end portions by a pair of bearing means
78
mounted to the base member
72
, so as to be movable between the above-mentioned closed and open positions. The clamp member
76
is constantly magnetically attracted toward the closed position by the above-mentioned magnet piece. The clamp member
76
has a plurality of ribs
80
spaced along the upper surface of the plate element forming the principal portion of the clamp member. Further, the plate element forming the principal portion of the clamp member
76
includes a lever portion
82
at one longitudinal end thereof.
The stencil leading end mounting device
12
further comprises a snap-up member
88
which, in the shown construction, is formed of a rod element
84
and a pair of arm elements
86
firmly mounted at opposite ends of the rod element. The snap-up member is movable such that the part formed by the rod element
84
moves between a first position close to the inlet edge
90
of the stencil leading end supporting surface
70
(the position shown in
FIG. 3
a
) and a second position close to the inlet edge
92
of the clamping surface
74
of the clamp member
76
positioned at the open position thereof (the position shown in
FIG. 3
e
) in relation to supply/exhaust of the stencil.
The pair of arm elements
86
are pivotably supported by a pair of bearing means
94
mounted to the base member
72
so that the rod element
84
is movable between the first and second positions. The pair of arm elements
86
are each a plate element made of a magnetic material and are constantly magnetically attracted by the above-mentioned magnet piece just as the clamp member
76
is, such that when the rod element
84
is at the first position, the pair of arm elements
86
are seated on the stencil leading end supporting surface
70
. One of the pair of arm elements
86
includes a lever portion
96
extending to the opposite side of the bearing means
94
relative to the rod element
84
.
Thus the clamp member
76
is biased around the bearing means
78
toward the closed position by the magnetic attraction of the above-mentioned magnet piece, and when the clamp member
76
is at the closed position, the clamping surface
74
of the clamp member is pressed against the stencil leading end supporting surface
70
under a predetermined pressing force. The snap-up member
88
formed of the rod element
84
and the pair of the arm elements
86
is also biased about the bearing means
94
toward the first position by the magnetic attraction force of the magnet piece.
Further, there are provided means for pivoting the clamp member
76
biased to the closed position toward the open position against the biasing force of the magnet piece and means for pivoting the snap-up member
88
from the first position toward the second position against the biasing force of the magnet piece. These means are actuating means comprising a pulse, motor
98
having a shaft
100
, first and second cams
102
and
104
supported by the shaft
100
, first and second lever members
108
and
110
adapted be pivoted about a pivot shaft
106
by those cams, and tension coil springs
112
and
114
biasing those lever members about the pivot shaft
106
.
The cam
102
has first cam portion
102
a
and a second cam portion
102
b
displaced from one another for 180° around the central axis of the pulse motor shaft
100
to be opposite to one another while the cam
104
has a single cam portion
104
a
angularly shifted relative to the cam portions
102
a
and
102
b
as shown in FIG.
2
. The pulse motor shaft
100
rotates clockwise when viewed in
FIG. 2
from front and left side therein.
The stencil leading end mounting device
12
of the above-mentioned construction operates as follows:
First, at the starting of the operation of the stencil printer where no leading end of the stencil is yet mounted to the stencil leading end mounting device
12
, the respective portions of the device are in the state depicted in FIG.
2
and
FIG. 3
a.
In this connection, however, it is to be noted that in this kind of rotary stencil printer, except when a new machine is going to be first started, it is the general practice that, when the stencil printing by a sheet of stencil has been completed, the used stencil is left in the mounted condition until the next printing by the next sheet of stencil is started, to avoid the drying up of the ink contained in the circumferential wall of the printing drum while the stencil printer is at rest.
Therefore, generally, prior to starting of the printing operation by a new stencil, prior to the perforation of the new stencil or in parallel thereto, the process of exhausting the used stencil from the printing drum is carried out. Therefore, the condition shown in FIG.
2
and
FIG. 3
a
as the starting condition is the condition where such a prior stencil exhausting process has been finished. In this state, neither of the cams
102
and
104
are pressing the lever members
108
and
110
downward, so that the lever members
108
and
110
are turned up around the pivot shaft
106
to the respective highest position by the action of the springs
112
and
114
, so that the lever portion
82
of the clamp member
76
and the lever portion
96
of the snap-up member
88
are both released from the pressing action by the lever members
108
and
110
, respectively, so that the clamp member
76
is at the closed position with the clamping surface
74
being laid over the stencil leading end supporting surface
70
of the base member
72
, while the snap-up member
88
is at the first position with the rod element
84
being positioned close to the leading edge
90
of the stencil leading end supporting surface
70
.
When there comes a time that the leading end of a stencil is to be mounted to the stencil leading end mounting device
12
, the respective portions of the device take the state shown in
FIG. 3
b,
so that the lever member
108
is turned around the pivot shaft
106
downward by the cam portion
102
a
of the cam
102
against the action of the spring
112
, so that the tip end of the lever member
108
pushes the lever portion
82
of the clamp member
76
against the magnetic attraction force acting thereto from the magnet piece, so that the clamp member
76
is turned around the pair of bearings
78
as shown in
FIG. 3
b,
such that the clamping surface
74
makes such a space against the stencil leading end supporting surface
70
of the base member
72
suitable for taking in the leading end
116
of the stencil approaching thereto from the right side in the figure.
When the pulse motor
98
turns its shaft
100
further, the respective portions of the device take the state shown in
FIG. 3
c,
wherein the clamp member
76
is positioned at the closed position with the clamp member
76
laid over the stencil leading end supporting surface
70
of the base member
72
. Therefore, the leading end
116
of the stencil having proceeded between the stencil leading end supporting surface
70
and the clamping surface
74
is clamped therebetween, and held in the clamped state under the magnetic attraction force of the magnet piece acting to the clamp member
76
.
Thereafter, as already described with reference to
FIG. 1
, the printing drum
10
is rotated in the direction shown by the arrow, with a progress of the perforation of the stencil by the thermal head
18
, so that the stencil is gradually intermittently mounted around the printing drum
10
starting from the leading end thereof mounted to the stencil leading end mounting device
12
, until such a perforation/mounting transfer of the stencil reaches a predetermined length, and then the cutter
22
is operated to cut off a piece of stencil from the band sheet of stencil, thus finishing the mounting process of the stencil around the printing drum
10
. Then, the printing process is carried out as described above.
After a required printing operation had been finished, and after the used stencil has been left as mounted around the printing drum, when the used stencil is to be removed from the printing drum
10
prior to the next printing by a new stencil, the pulse motor
98
is further rotated so that the cam portion
102
b
of the cam
102
pushes the lever member
108
downward so that the clamp member
76
is turned up from the closed position shown in
FIG. 3
c
toward the open position against the magnetic attraction force of the magnet piece to take the state shown in
FIG. 3
d,
whereby the leading end
116
of the stencil is released as shown in
FIG. 3
d
from the prior condition clamped between the stencil leading end supporting surface
70
and the clamping surface
74
, although the leading end of the stencil is still laid below the clamp member
76
so that it can not yet move beyond the clamp member toward the stencil exhausting means.
Then, the pulse motor
98
is further rotated so that the snap-up member
88
is moved from the first position close to the inlet edge
90
of the stencil leading end supporting surface
70
to the second position close to the inlet edge
92
of the clamping surface
74
of the clamp member
76
still maintained at the open position by the cam
102
as shown in
FIG. 3
e.
By this action of the snap-up member
88
, the leading end
116
of the stencil is brought to the state floated up from the stencil leading end supporting surface
70
as shown
FIG. 3
e.
Then, the pulse motor
98
is further rotated so that the lever member
108
is lifted as released from the pressing action of the cam
102
, and in accordance therewith the clamp member
76
is returned to the closed position as shown in
FIG. 3
f,
while the snap-up member
88
is still maintained at the second position. Therefore, the leading end
116
of the stencil moves from the lower side of the clamping surface
74
to the other side of the clamp member
76
(upper side in the figure) by traversing the inlet edge
92
of the clamp member
74
as shown in
FIG. 3
f.
Thereafter, the pulse motor
98
further rotates so far that the clamp member
76
and the snap-up member
88
are returned to the respective closed and first positions as shown in
FIG. 3
g,
wherein, however, the leading end
116
of the stencil is released on the upper side of the clamp member
76
.
When the printing drum is further rotated, the tip end of the stencil removal claw
62
gets into under the leading end
116
of the stencil to scoop it up as shown in
FIG. 3
h,
and then, in the manner described with reference to
FIG. 1
, the stencil is bitten into between the belt conveyers
64
and
66
of the stencil exhausting means starting from the leading end thereof, so that the stencil is gradually removed from the circumferential surface of the printing drum according to the rotation thereof, and the removed stencil is finally transferred into the stencil exhaust box provided on the left side in the figure but not shown in the figure.
As well known in the art, the magnetic attraction force is reversely proportional to the square of the inter distance. Therefore, in the above-mentioned prior art construction of the stencil leading end mounting device, when the clamp member
76
is opened from the closed position laid over the stencil leading end supporting surface
70
toward the open position, the clamp member laid over the stencil leading end supporting surface
70
incorporating the magnet piece is first attracted by the magnetic attraction force at such a relatively high intensity as needed to definitely fasten the stencil leading end to the stencil leading end supporting surface
70
available by the contact approach of the clamp member
76
to the magnet piece, and therefore, the pressing force applied by the first lever member
108
to the lever portion
82
of the clamp member
76
needs to be substantially high at the beginning to overcome such a high magnetic attraction force applied thereto by the magnet piece, but such a high resistance decreases quite rapidly as the clamp member departs from the stencil leading end supporting surface, or the magnet piece.
Therefore, under such a circumstance, a substantial elastic energy is stored in the clamp member and the related clamp member driving construction in the initial stage of opening the clamp member from the closed position until the moment at which the clamp surface
74
of the clamp member
76
detaches from the stencil leading end supporting surface
70
, such a stored elastic energy being instantly released after the detachment of the clamp surface
74
from the stencil leading end supporting surface
70
as the magnetic attraction force rapidly lowers according to the inverse proportion of the square of the distance of removal, thereby causing vibrations of the clamp member and the related clamp member driving construction by the released elastic force being overlapped to the driving force by the lever member
108
.
SUMMARY OF THE INVENTION
In view of the above-mentioned problem, it is a principal object of the present invention to provide an improved stencil leading end mounting device of a rotary stencil printer in which the above-mentioned problem is effectively avoided.
According to the present invention, the above-mentioned object is accomplished by a stencil leading end mounting device of a printing drum of a rotary stencil printer, comprising:
a base member having a stencil leading end supporting surface incorporating a magnet therein, the stencil leading end mounting surface extending along a generatrix of the printing drum for receiving thereon a leading end of a stencil to be mounted around the printing drum;
a clamp member having a clamp portion formed with a stencil clamping surface and a drive portion opposite to the clamp portion, the clamp member being supported on the base member to be tiltable relative to the stencil leading end supporting surface between a closed position in which the clamp portion is laid over the stencil supporting surface so as to clamp the stencil leading end between the stencil supporting surface and the stencil clamping surface under a magnetic attraction of the clamp portion by the magnet toward the stencil supporting surface and an open position in which the stencil clamping surface is inclined apart relative to the stencil leading end supporting surface so as to expose an inter space therebetween for entrance thereto and removal therefrom of the stencil leading end;
pivot means for providing a linear pivot axis between the base member and the clamp member for the clamp member to tilt thereabout between the closed position and the open position with the linear pivot axis being positioned between the clamp portion and the drive portion of the clamp member; and
actuation means for selectively biasing the drive portion of the clamp member for tilting the clamp member from the closed position to the open position,
wherein the pivot means provide the linear pivot axis so as to move relative to the clamp member from a side of the clamp portion to a side of the drive portion according to a progress of tilting of the clamp member away from the closed position toward the open position.
According to the above-mentioned construction of the stencil leading end mounting device, when the clamp member is opened from the closed position toward the open position, at the initial stage of the clamp member being just removed from the stencil leading end supporting surface by the drive portion thereof being biased by the actuation means, since the linear pivot axis is positioned at the utmost clamp portion side while remotest from the drive portion side to provide a largest force magnifying lever ratio for the actuation means to tilt the clamp member by biasing the drive portion, the clamp member is softly driven by a relatively strong and slowly acting force, and when the clamp member is moved more from the closed position toward the open position, the linear pivot axis shifts more from the clamp portion side toward the drive portion side of the clamp member, so that the force magnifying lever ratio is gradually decreased so as to meet with the decrease of need for the driving, while conversely increasing a displacement magnifying lever ratio for more widely opening the inter space between the stencil leading end supporting surface and the stencil clamping surface of the clamp member relative to the biasing amount of the drive portion by the actuation means.
By such an arrangement, the clamp member is softly detached from the stencil leading end supporting surface as driven by a relatively strong and slowly acting force in the beginning stage of opening from the closed position toward the open position, then being driven by a rapidly decreasing biasing drive force to balance with the released elastic energy, while in the final stage of the opening the clamp member is relatively widely opened for a better convenience of an infallible clamping of the stencil leading end.
In the above-mentioned stencil leading end mounting device the clamp member may have either a pair of bearing surfaces or a pair of convex cams along opposite end portions of the stencil clamping surface thereof corresponding to opposite axial ends of the printing drum, while the base member comprises either a pair of convex cams supporting the pair of bearing surfaces or a pair of bearing surfaces supporting the pair of convex cam surfaces, such that each cam surface of the pair of convex cams contacts with each of the pair of bearing surfaces at a point which moves along the cam surface from the clamp portion side to the drive portion side according to the progress of tilting of the clamp member away from the closed position.
In such a construction, the pivot means may further comprise means for restricting a slipping of the bearing surface relative to the cam surface therealong.
Such slip restriction means may comprise a pair of guide grooves provided on either side of the base member and the clamp member adjacent the pair of cams to extend substantially perpendicularly relative to a direction of extension of the cam surface and a pair of projections provided on the other side of the base member and the clamp member so as to engage in the guide grooves.
In this case, the pair of guide grooves may each be arcuate to follow a contour of movement of each of the pins relative to each of the guide grooves due to a rolling of the clamp member on the cams.
Alternatively, the slip restriction means may comprise a plurality of projections formed along each of either the cam surfaces or the bearing surfaces, and a corresponding plurality of openings formed in each of wither the bearing surfaces of the clamp member or the cam surfaces so as to engage with the projections according to a rolling of the bearing surfaces on the cam surfaces.
BRIEF DESCRIPTION OF THE DRAWING
In the accompanying drawing.
FIG. 1
is a diagrammatic view depicting essential portions of the basic construction of a prior art full automatic rotary stencil printer for the purpose of illustrating the position at which the stencil leading end mounting device according to the present invention is positioned in the full automatic rotary stencil printer;
FIG. 2
is a perspective view showing essential portions of a prior art printing drum incorporating a type of stencil leading end mounting device in which the present invention is incorporated;
FIGS. 3
a,
3
b,
3
c,
3
d,
3
e,
3
f,
3
g
and
3
h
are diagrammatic side views of the prior art stencil leading end mounting device shown in
FIG. 2
, showing a series of operating conditions thereof;
FIGS. 4-9
are perspective views similar to
FIG. 2
, showing essential portions of a printing drum incorporating an embodiment of the stencil leading end mounting device according to the present invention, wherein the operating conditions of the clamp member and the snap-up member shown in
FIGS. 4-9
correspond to those shown in
FIGS. 3
a-
3
f,
respectively;
FIG. 10
is a plan view of the stencil leading end mounting device (omitting the actuation means) of the embodiment shown in
FIGS. 4-9
;
FIGS. 11-13
are diagrammatic side views similar to
FIGS. 3
a-
3
h,
showing further detailed constructions of the stencil leading end mounting device according to the present invention;
FIG. 14
is a partial plan view showing a modification of a part of the construction of the stencil leading end clamping device shown in
FIG. 10
;
FIG. 15
is a diagrammatic side view similar to
FIGS. 11-13
, showing the modification of
FIG. 14
;
FIG. 16
is a partial plan view shown another modification of a part of the construction of the stencil leading end clamping device shown in
FIG. 10
; and
FIG. 17
is a diagrammatic side view similar to
FIGS. 11-13
, showing the modification of FIG.
16
.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the following the present invention will be described in more detail with respect to some preferred embodiments with reference to
FIGS. 4-17
.
The stencil leading end mounting device according to the present invention operates generally in the same manner as the prior art stencil leading end mounting device shown and explained with reference to
FIGS. 2 and 3
a-
3
h.
Therefore, in
FIGS. 4-17
, the portions corresponding to those shown in
FIGS. 2 and 3
a-
3
h
are designated by the same reference numerals as in
FIGS. 2 and 3
a-
3
h,
and further repetitive descriptions of those corresponding portions in the embodiments of the present invention will be omitted for the brevity of the specification.
For the general understanding of the present invention, the operating conditions of the embodiment of the present invention shown in
FIGS. 4-9
correspond to those shown in
FIGS. 3
a-
3
f
of the prior art, respectively. However, the pivotably supporting construction of the clamp member
76
is substantially different in the present invention.
According to the present invention, referring
FIGS. 4-13
, particularly
FIGS. 10-13
, the clamp member
76
includes a clamp portion principally made of elongated rectangular magnetic plate members
76
A and
76
B fixed one over the other by an adhesive or the like and extending along a generatrix of the printing drum, and a pair of bearing portions made of smaller elongated rectangular plate members
76
C extending perpendicularly to the elongation of the plate member
76
B and connected to opposite narrower ends thereof, the bearing portions each presenting a bearing surface
76
C
1
facing downward toward the base member
72
.
A leftside end portion
82
of one of the bearing portions provided by one of the plate members
76
C closer to the actuation means composed of the pulse motor
98
, cams
102
and
104
and lever members
108
and
110
operates as the drive portion to be biased downward toward the based member
72
by the lever member
108
for tilting the clamp member
76
from the closed position shown in
FIG. 11
to the open position shown in FIG.
13
. The end portion
82
corresponds to the lever portion
82
of the prior art shown in FIG.
2
.
Below the pair of bearing surfaces
76
C
1
there are provided a pair of convex cams
115
each having a cam surface
116
facing toward the corresponding bearing surface
76
C
1
, so that the clamp member
76
is seated on the pair of cams
115
. The pair of plate members
76
C have each a side integral projection
124
, while a pair of guide walls
120
are provided adjacent opposite outsides of the cams
115
, so as each to present a vertically extending arcuate guide groove
122
into which each corresponding one of the projections
124
is received to be guided thereby. By such an arrangement, the clamp member
76
rolls on the pair of convex cams
115
at its opposite end portions provided by the plate members
76
C, with its bearing surfaces
76
C
1
being in a rolling contact with the cam surfaces
116
not to cause any slip therebetween along the cam surfaces.
Since the cam surfaces
116
are each convex as seen in
FIGS. 11-13
, when the clamp member
76
is in the closed position as shown in
FIG. 11
, a pair of contact points P between the bearing surfaces
76
C
1
and the cam surfaces
116
are located at an utmost right side of the cam surfaces as viewed in
FIGS. 11-13
, so as to provide a linear pivot axis at a position connecting those pair of contact points, while when the clamp member
76
is tilted to be more opened against the stencil leading end supporting surface
70
provided by a magnet sheet
71
through the position shown in
FIG. 12
to the position shown in
FIG. 13
, the contact points P shift leftward in these figures as shown therein, thereby providing the linear pivot axis for the tilting of the clamp member
76
relative to the base member
72
in such a manner that the linear pivot axis is shifted from the side of the stencil clamping surface
74
toward the side of the drive portion provided by the end portion
82
of the plate member
76
C.
In this connection, it will be noted that, as shown by phantom lines, similar convex cam surfaces such as the cam surfaces
116
may be provided along the lower surfaces of the pair of plate members
76
C, so that the clamp member
76
tilts by rolling on the base member
72
with such convex cam surfaces, whereby contacts points similar to the points P defining a similar linear pivot axis for the clamp member
76
is shifted from the side of the stencil clamping surface
74
toward the side of the drive portion provided by the end portion
82
of the plate member
76
C when the clamp member
76
is more opened from the closed position. Such an alternative construction is substantially in symmetry to the illustrated construction and operates in the same principle.
When the linear pivot axis is located at such an advanced position as shown by point P in
FIG. 11
, the force magnifying lever ratio provided by the clamp opening construction for opening the clamp member
76
from the closed position toward the open position by biasing the end portion
82
of the plate member
76
C by the lever member
108
is at a relatively high value, so as to apply a relatively strong clamp opening force at a relatively low force application speed according to a constant biasing movement of the lever member
108
. Therefore, the clamp member
76
is smoothly detached from the stencil leading end supporting surface
70
against the strongest magnetic attraction force acting thereto according to the principle of reverse proportion of the square of the inter distance.
When the biasing of the end portion
82
of the plate member
76
C by the lever member
108
proceeds so as to more remove the clamp portion
76
A and
76
B from the magnet sheet
71
, the magnetic attraction force acting to the clamp portion rapidly lowers against the same biasing force applied by the lever member
108
. However, since the linear pivot axis by points P shifts swiftly toward the lever member
108
according to the progress of the removal of the clamp portion
76
A and
76
B from the magnet sheet
71
, so that the force magnifying lever ratio is correspondingly decreased, no overshooting of the opening movement of the clamp member will occur. Further, since the displacement magnifying lever ratio of the clamp opening construction increases inversely to the decrease of the force magnifying lever ratio according to the shifting of the linear pivot axis toward the lever member
108
, in the final stage of the opening the clamp member
76
is widely opened as shown in
FIG. 13
even when the stroke of the lever member
108
is relatively restricted.
FIG. 14
is a partial plan view corresponding to the upper end portion of
FIG. 10
in a somewhat larger scale, showing a small modification of a part of the construction shown in
FIG. 10
, while
FIG. 15
is a diagrammatic side view similar to
FIGS. 11-13
of the construction shown in FIG.
14
. In these figures, the portions corresponding to those shown in
FIGS. 10-13
are designated by the same reference numerals and operate in the same manner. In this modification, the integral projection
124
in the embodiment shown in
FIGS. 10-13
is replaced by a pin projection
132
attached to the drive portion
82
formed by one end portion of the plate member
76
C, while the opposite ends of the guide groove
122
is rounded to coincide with the rounded outside shape of the pin
132
.
FIGS. 16 and 17
are views similar to
FIGS. 14 and 15
, respectively, showing another embodiment with respect to the cam
115
and the slip stopper construction provided by the integral or pin projection
124
or
132
and the guide groove
122
in the embodiment or its modification shown in the preceding figures. In
FIGS. 16 and 17
, the portions corresponding to those shown in
FIGS. 14 and 15
are designated by the same reference numerals and operate in the same manner. In this embodiment, a cam member
126
corresponding to the preceding cam
115
is formed with a plurality of (indeed three in the shown embodiment) projections
128
A,
128
B and
128
C along its cam surface, while the plate member
76
C providing the bearing surface is formed with a plurality of holes
130
A,
130
B and
130
C adapted to engage with the corresponding projections
128
A,
128
B and
128
C. By such an arrangement, it is also effectively prevented that there occurs a relative slipping between the cam
126
and the plate member
76
C along the cam surface.
In this connection, it will also be noted that the provision of the plurality of projections
128
A,
128
B and
128
C in the cam member
126
and the corresponding plurality of holes
130
A,
130
B and
130
C in the plate member
76
C may be reversed such that the plate member
76
C is provided with a plurality of projections similar to the projections
128
A,
128
B and
128
C, while the cam member
126
is formed with a plurality of corresponding grooves similar to the plurality of holes
130
A,
130
B and
130
C for receiving the projections of the plate member
79
C. It will be apparent that such an alternative construction operates in the substantially same manner so as to restrict a relative slipping between the cam member
126
and the plate member
76
C along the cam surface. Therefore, no further illustration will be required for the full disclosure of the invention in this regard.
Although the present invention has been described in detail with respect to some preferred embodiments thereof, it will be apparent for those skilled in the art that the present invention is not limited to the shown embodiments and other various embodiments are possible based upon the technical concept of the present invention.
Claims
- 1. A stencil leading end mounting device of a printing drum of a rotary stencil printer, comprising:a base member having a stencil leading end supporting surface incorporating a magnet therein, the stencil leading end supporting surface extending along a generatrix of the printing drum for receiving thereon a leading end of a stencil to be mounted around the printing drum; a clamp member having a clamp portion formed with a stencil clamping surface and a drive portion opposite to the clamp portion, the clamp member being supported on the base member to be tiltable relative to the stencil leading end supporting surface between a closed position in which the clamp portion is laid over the stencil leading end supporting surface so as to clamp the stencil leading end between the stencil leading end supporting surface and the stencil clamping surface under a magnetic attraction of the clamp portion by the magnet toward the stencil leading end supporting surface and an open position in which the stencil clamping surface is inclined apart relative to the stencil leading end supporting surface so as to expose an inter space therebetween for entrance thereto and removal therefrom of the stencil leading end; pivot means for providing a linear pivot axis between the base member and the clamp member for the clamp member to tilt thereabout between the closed position and the open position with the linear pivot axis being positioned between the clamp portion and the drive portion of the clamp member; and actuation means for selectively biasing the drive portion of the clamp member for tilting the clamp member from the closed position to the open position, wherein the pivot means provide the linear pivot axis so as to move relative to the clamp member from a side of the clamp portion to a side of the drive portion according to a progress of tilting of the clamp member away from the closed position toward the open position.
- 2. A stencil leading end mounting device according to claim 1, wherein the clamp member includes one of a pair of bearing surfaces and a pair of convex cams along opposite end portions of the stencil clamping surface thereof corresponding to opposite axial ends of the printing drum, while the base member has the other of the pair of bearing surfaces and the pair of convex cams for supporting the one of the pair of bearing surfaces and convex cams on the clamp member, such that each cam surface of the pair of convex cams contacts with each of the pair of bearing surfaces at a point which moves along the cam surface from the clamp portion side to the drive portion side according to the progress of tilting of the clamp member away from the closed position.
- 3. A stencil mounting device according to claim 2, wherein the pivot means further comprise means for restricting a slipping of the bearing surfaces relative to the cam surfaces therealong.
- 4. A stencil mounting device according to claim 3, wherein the slip restriction means comprise a pair of guide grooves provided on the base member adjacent the pair of cams to extend substantially perpendicularly relative to a direction of extension of each cam surface and a pair of projections provided on the clamp member so as to engage in the guide grooves.
- 5. A stencil mounting device according to claim 4, wherein the pair of guide grooves are each arcuate to follow a contour of movement of each of the projections relative to each of the guide grooves due to a rolling of the clamp member on the cams.
- 6. A stencil mounting device according to claim 3, wherein the slip restriction means comprise a plurality of projections formed along the cam surfaces, and a corresponding plurality of openings formed in the bearing surfaces so as to engage with the projections according to a rolling of the bearing surfaces on the cam surfaces.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-321579 |
Nov 1999 |
JP |
|
US Referenced Citations (6)
Foreign Referenced Citations (5)
Number |
Date |
Country |
0 111 050 |
Jun 1984 |
EP |
0 596 746 |
May 1994 |
EP |
A-59-96983 |
Jun 1984 |
JP |
A-59-96984 |
Jun 1984 |
JP |
A-59-143679 |
Aug 1984 |
JP |