The present disclosure relates to a stent assembly for heart valve replacement and, in particular, to collapsible prosthetic heart valves. More particularly, the present disclosure relates to collapsible prosthetic transcatheter heart valves which minimize or reduce paravalvular leaks.
Prosthetic heart valves that are collapsible to a relatively small circumferential size can be delivered into a patient less invasively than valves that are not collapsible. For example, a collapsible valve may be delivered into a patient via a tube-like delivery apparatus such as a catheter, a trocar, a laparoscopic instrument, or the like. This collapsibility can avoid the need for a more invasive procedure such as full open-chest, open-heart surgery.
Collapsible prosthetic heart valves typically take the form of a valve structure mounted on a stent. There are two common types of stents on which the valve structures are ordinarily mounted: a self-expanding stent and a balloon-expandable stent. To place such valves into a delivery apparatus and ultimately into a patient, the valve is first collapsed or crimped to reduce its circumferential size. It is therefore desirable that the valve have a low profile or volume to minimize the size of the delivery apparatus.
When a collapsed prosthetic valve has reached the desired implant site in the patient (e.g., at or near the annulus of the patient's heart valve that is to be replaced by the prosthetic valve), the prosthetic valve can be deployed or released from the delivery apparatus and re-expanded to full operating size. For balloon-expandable valves, this generally involves releasing the valve, assuring its proper location, and then expanding a balloon positioned within the valve stent. For self-expanding valves, on the other hand, the stent automatically expands as a sheath covering the valve is withdrawn.
There is a need for improvements to prosthetic heart valves, and specifically, to collapsible prosthetic heart valves that would reduce the likelihood of paravalvular leakage due to gaps between the implanted prosthetic heart valve and patient tissue.
In one embodiment of the present disclosure there is described a stent assembly for use in a prosthetic heart valve for replacing a native valve. The prosthetic heart valve includes a stent having a luminal surface and an abluminal surface extending between a distal end and a proximal end thereof. A valve may be disposed within the stent. A cuff may be coupled to the stent having a first orientation and a second orientation. A plurality of members may be provided having a distal end coupled to the stent and a proximal end coupled to the cuff. The plurality of members has a first state when the cuff is arranged in the first orientation and a second state when the cuff is arranged in the second orientation.
In another embodiment of the present disclosure there is also described a stent assembly for use in a prosthetic heart valve for replacing a native valve. The prosthetic heart valve includes a stent having a proximal end and an abluminal surface. A valve may be disposed within the stent. A cuff may be coupled to the stent by a plurality of members having a relaxed state and a tensioned state for orienting at least a portion of the cuff at least partially disposed on the abluminal surface when the plurality of members are in a relaxed state.
In a further embodiment of the present disclosure there is also described a stent assembly for use in a prosthetic heart valve for replacing a native valve. The prosthetic heart valve includes a stent. A valve may be disposed within the stent. A cuff may be coupled to the stent having a first orientation and a second orientation. A plurality of members may be coupled between the stent and cuff. The members are configured to arrange the cuff between the first and second orientations, wherein the members remain coupled to the stent and cuff after replacement of the native valve.
In a further embodiment of the present disclosure there is also described a stent assembly for use in a prosthetic heart valve for replacing a native valve. The prosthetic heart valve includes a stent configured to have a collapsed condition and an expanded condition. The stent has a luminal surface and an abluminal surface extending between a distal end and a proximal end thereof. A valve assembly may be disposed within the stent. The valve assembly may include a plurality of leaflets and a cuff having a portion at least partially disposed on the luminal surface of the stent. At least a portion of the cuff has a first orientation extending outwardly of the proximal end of the stent or at least partially disposed on the abluminal surface of the stent and a second orientation with a portion of the cuff at least partially disposed on the abluminal surface of the stent. A plurality of elongated elastic members has a distal end coupled to the stent and a proximal end coupled to the cuff at circumferentially spaced apart locations. The plurality of elastic members has a tensioned state when the cuff is arranged in the first orientation and a relaxed state when the cuff is arranged in the second orientation.
In a further embodiment of the present disclosure there is also described a stent assembly for use in a prosthetic heart valve for replacing a native valve. The prosthetic heart valve includes a stent. A cuff may be coupled to the stent having a first orientation and a second orientation. A plurality of inverting members may be coupled between the stent and cuff. The members are configured to arrange the cuff between the first and second orientations, wherein the inverting members remain coupled to the stent and cuff after replacement of the native valve.
Various embodiments of the presently disclosed stent assembly and prosthetic heart valves may be more fully understood with reference to the following detailed description when read with the accompanying drawings, in which:
As used herein, the term “proximal,” when used in connection with a prosthetic heart valve, refers to the end of the heart valve closest to the heart when the heart valve is implanted in a patient, whereas the term “distal,” when used in connection with a prosthetic heart valve, refers to the end of the heart valve farthest from the heart when the heart valve is implanted in a patient. Like reference numbers refer to similar or identical elements throughout the disclosure.
The prosthetic heart valve 100 includes a stent constructed as a frame 102 from a plurality of attached cells 112, which may be wholly or partly formed of any biocompatible material, such as metals, synthetic polymers, or biopolymers capable of functioning as a stent. Suitable biopolymers include, but are not limited to, elastin, and mixtures or composites thereof. Suitable metals include, but are not limited to, cobalt, titanium, nickel, chromium, stainless steel, and alloys thereof, including shape memory alloys known as Nitinol. Suitable synthetic polymers for use as a stent include, but are not limited to, thermoplastics, such as polyolefins, polyesters, polyamides, polysulfones, acrylics, polyacrylonitriles, polyetheretherketone, and polyaramides.
The stent 102 extends from a proximal or annulus end 130 to a distal or aortic end 132, and includes an annulus section 104 adjacent the proximal end 130 and an aortic section 142 adjacent the distal end 132. The annulus section 104 has a relatively small cross-section in the expanded condition, while the aortic section 142 has a relatively large cross-section in the expanded condition. The annulus section 104 may be in the form of a cylinder having a substantially constant diameter along its length. A transition section 144 may taper outwardly from the annulus section 104 to the aortic section 142. Each of the sections of the stent 102 includes a plurality of cells 112 connected to one another in one or more annular rows around the stent 102. For example, as shown in
The stent 102 may include one or more retaining elements 118 at the distal end 132 thereof, the retaining elements 118 being sized and shaped to cooperate with retaining structures provided on a deployment device (not shown). The engagement of the retaining elements 118 with the retaining structures on the deployment device helps maintain the prosthetic heart valve 100 in assembled relationship with the deployment device, minimizes longitudinal movement of the prosthetic heart valve relative to the deployment device during unsheathing or resheathing procedures, and helps prevent rotation of the prosthetic heart valve relative to the deployment device as the deployment device is advanced to the target location and during deployment.
The stent 102 may also include a plurality of commissure points 116 for mounting the commissures (not identified) where two leaflets 108 come together to the stent 102. As can be seen in
The prosthetic heart valve 100 includes a valve assembly 140 preferably positioned in the annulus section 104. The valve assembly 140 may be mounted to the stent 102 by suturing the commissures of the leaflets 108 to the commissure points 116 and suturing other portions of the valve assembly 140 to the stent 102, or by other methods known in the art. The valve assembly 140 may include a cuff 106 and a plurality of leaflets 108 which collectively function as a one-way valve by coapting with one another.
Although the cuff 106 is shown in
As is shown in
In operation, the embodiments of the prosthetic heart valve 100 described above may be used to replace a native heart valve, such as the aortic valve, a surgical heart valve or a heart valve that has undergone a surgical procedure. The prosthetic heart valve 100 may be delivered to the desired site (e.g., near a native aortic annulus) using any suitable delivery device. During delivery, the prosthetic heart valve 100 is disposed inside the delivery device in the collapsed condition. The delivery device may be introduced into a patient using any known procedures, such as a transfemoral, transapical or transseptal approach. Once the delivery device has reached the target site, the user may deploy the prosthetic heart valve 100. Upon deployment, the prosthetic heart valve 100 expands into secure engagement within the native aortic annulus. When the prosthetic heart valve 100 is properly positioned inside the heart, it works as a one-way valve, allowing blood to flow in one direction and preventing blood from flowing in the opposite direction.
In accordance with the various embodiments of the present disclosure, stent assemblies for use in a prosthetic heart valve incorporating multiple design concepts of a cuff feature for eliminating paravalvular leakage will be described. As to be described hereinafter in greater detail, one or more members may be coupled to a portion of the stent's cuff and to additional stent features such as the runners 114 to position the cuff about the abluminal surface of the stent upon deployment from a delivery device to seal in and around any calcific nodules. Prosthetic heart valves having such a cuff pursuant to the embodiments of the present disclosure decrease delivery system volume and profile of the prosthetic heart valve. The cuff sealing material being coupled to the members is positioned out of the area of most volume providing a low profile prosthetic heart valve. When deployed, the members, such as formed from shape memory materials, relax from their tensioned state and position the cuff sealing material in the sealing region of the prosthetic heart valve to reduce paravalvular leakage. Various embodiments of a prosthetic heart valve including a stent assembly having such a cuff pursuant to the present disclosure will now be described.
Referring to
The extended cuff portion 161 may be coupled to the stent 102 by a plurality of circumferentially arranged elongated members 166 positioned around the stent, and in particular, between the cuff and the stent to reduce stent volume or bulk. The distal end 168 of the members 166 may be attached to the runners 114 of the stent 102 between the cuff 106 and the stent frame using known suturing techniques. The proximal ends 170 of the members 166 and the proximal end 164 of the extended cuff portion 161 may be coupled to a ring shaped hollow tube 174 which defines a lumen 176. The hollow tube 174 can be constructed as a fabric tube from the same or different materials as the cuff 106 described above. The members 166 may be sutured to the hollow tube 174 using known suturing techniques, by way of example, using a single knotted stitch, followed by a double knot as known in the surgical field. On the other hand, the extended cuff portion 161 may be coupled to the hollow tube 174 using a running whip stitch as known in the surgical field.
The members 166, in accordance with the present disclosure, have dimensional and/or shape memory properties, which after being tensioned, will return to their original dimensions and/or shape after the tensioning force is removed, i.e., relaxed state. Suitable materials for the members 166 may comprise, by way of example, synthetic polymer material such as polypropylene and elastic silicones; natural rubber, super-elastic material, and elastic metals; and shape memory material and shape memory alloys such as Nitinol. The members 166 may be in accordance with one embodiment in the nature of an elongated rectangular strip such as an elastic band wherein the members may be placed under tension by elongating from their relaxed or original state. In other embodiments, the members 166 may be configured as elements which return to their original dimension and/or shape after a tension force is removed such as springs, e.g., coiled springs and the like. Upon release of the tension, the members will revert to their original length dimension and/or shape. In the embodiment described thus far with respect to
In the embodiment shown in
The members 166 as shown in
In the orientation disclosed in
Referring to
In
Referring to
To enhance the sealing effect of the cuff to prevent paravalvular leakage, the hollow tube 174 may contain an insert such as filler material or an elongated coiled member. By way of example, as shown in
As shown in
Referring now to
As shown in
Referring now to
As previously described, the members 166 may be constructed in the nature of elongated bands of elastic material. In the embodiment of
The distal end 214 of the panel of sealing material 212 is coupled to runners 114 about the circumference of the stent 102 using any suitable suturing technique as known in the art. The proximal end 216 of the panel of sealing material 212 terminates adjacent the proximal end 162 of the stent 102 and is not attached thereto. Rather, the proximal ends 170 of the members 166 are coupled on the abluminal side to the proximal end 216 of the panel of sealing material 212 using a single/double knot as is known in the surgical field. In addition, each of the members 166 is coupled to the panel of sealing material 212 using an alternating running stitch from the distal end 214 to the proximal end 216 of the sealing material along longitudinal axes of the stent 102 while the members are under tension by being elongated.
Referring to
Although certain embodiments of the prosthetic heart valve having a stent assembly as described herein may provide a single feature for reducing paravalvular leakage, it should be understood that multiple similar or dissimilar features may be utilized on a single prosthetic heart valve to reduce paravalvular leakage. Various embodiments of a low profile prosthetic heart valve have been described in accordance with the present disclosure. In certain embodiments, an extended cuff is coupled to the stent with a plurality of members in the nature of elongated shape memory material such as elastic members or shape memory members, or coiled members to provide a low profile prosthetic heart valve for catheter delivery. The members are initially placed under tension to maintain an extended cuff portion in a first orientation such as outwardly of the proximal end of the stent. Upon relaxing the tension in the members, the extended cuff portion is pulled towards the distal end of the stent over the abluminal surface to form a cuff seal at various locations along the stent in the annulus section. In some embodiments, the cuff seal is in the nature of a circumscribing expandable pocket, the height of which can be modified. Prosthetic heart valves with expandable pockets are described in greater detail in U.S. Patent Publication No. 2011/0098802, the disclosure of which is hereby incorporated by reference herein. In other embodiments of the present disclosure, a panel of sealing material may be placed circumferentially about the abluminal surface of the stent to which the members are coupled. In the various embodiments, the members remain coupled to the cuff material and stent as an integral component of the prosthetic heart valve when replacing native valves.
A prosthetic heart valve incorporating a stent assembly for replacing a native valve in accordance with one embodiment of the disclosure is constructed from a stent having a luminal surface and an abluminal surface extending between a distal end and a proximal end thereof; a valve may be disposed within the stent; a cuff coupled to the stent having a first orientation and a second orientation; and a plurality of members having a distal end coupled to the stent and a proximal end coupled to the cuff, the plurality of members having a first state when the cuff is arranged in the first orientation and a second state when the cuff is arranged in the second orientation.
In the aforesaid prosthetic heart valve, wherein the plurality of members have a distal end and a proximal end, and wherein the proximal ends of the plurality of members are coupled to the cuff at spaced apart circumferential locations around the stent; and/or wherein the stent includes a plurality of runners, and wherein the distal ends of the plurality of members are coupled to the runners; and/or wherein the cuff includes a distal end and a proximal end, and wherein the plurality of members include a distal end and a proximal end, and further including a hollow tube coupled to the proximal ends of the cuff and the plurality of members; and/or wherein the hollow tube defines a lumen, and further including an insert disposed within the lumen; and/or wherein the insert comprises at least one of a filler material or an elongated coiled member; and/or wherein the plurality of members are attached to the cuff circumferentially along spaced apart longitudinally extending axes of the stent; and/or wherein at least a portion of the cuff is at least partially positioned outward of the proximal end of the stent when arranged in the first orientation and at least partially disposed on the abluminal surface of the stent when arranged in the second orientation; and/or wherein the members comprise elastic members having a tensioned first state and a relaxed second state.
A prosthetic heart valve incorporating a stent assembly for replacing a native valve in accordance with one embodiment of the disclosure is constructed from a stent having a proximal end and an abluminal surface; a valve may be disposed within the stent; and a cuff coupled to the stent by a plurality of members having a relaxed state and a tensioned state for orienting at least a portion of the cuff at least partially disposed on the abluminal surface when the plurality of members are in a relaxed state.
In the aforesaid prosthetic heart valve, wherein at least a portion of the cuff is arranged at least partially outward of the proximal end of the stent when the plurality of members are in a tensioned state; and/or wherein the stent includes a plurality of runners, and wherein the plurality of members have a distal end and a proximal end, the distal end of the plurality of members is coupled to one of the runners and the proximal end of the plurality of members is coupled to a portion of the cuff; and/or wherein the cuff is at least partially disposed on the abluminal surface of the stent when the plurality of members are in the tensioned state and relaxed state; and/or wherein the plurality of members are attached to the cuff circumferentially along spaced apart longitudinally extending axes of the stent; and/or wherein the cuff includes a distal end and a proximal end, and wherein the plurality of members include a distal end and a proximal end, and further including a hollow tube coupled to the proximal ends of the cuff and the plurality of members, and an insert comprising at least one of a filler material or an elongated coiled member disposed within the hollow tube; and/or wherein the plurality of members comprise elastic members.
A prosthetic heart valve incorporating a stent assembly for replacing a native valve in accordance with one embodiment of the disclosure is constructed from a stent configured to have a collapsed condition and an expanded condition, the stent having a luminal surface and an abluminal surface extending between a distal end and a proximal end thereof; and a valve assembly may be disposed within the stent, the valve assembly including a plurality of leaflets and a cuff having a portion at least partially disposed on the luminal surface of the stent; at least a portion of the cuff having a first orientation extending outwardly of the proximal end of the stent or at least partially disposed on the abluminal surface of the stent, and a second orientation with a portion of the cuff at least partially disposed on the abluminal surface of the stent; and a plurality of elongated elastic members having a distal end coupled to the stent and a proximal end coupled to the cuff at circumferentially spaced apart locations, the plurality of elastic members having a tensioned state when the cuff is arranged in the first orientation and a relaxed state when the cuff is arranged in the second orientation.
In the aforesaid prosthetic heart valve, wherein the stent includes a plurality of runners, and wherein the distal ends of the plurality of elastic members are coupled to the runners; and/or wherein the cuff includes a distal end and a proximal end, and wherein the plurality of elastic members include a distal end and a proximal end, and further including a hollow tube coupled to the proximal end of the cuff and the plurality of elastic members, and an insert comprising at least one of a filler material or an elongated coiled member disposed within the hollow tube; and/or wherein at least a portion of the cuff is at least partially disposed on the abluminal surface of the stent when arranged in the second orientation and at least partially positioned outward of the proximal end of the stent when arranged in the first orientation; and/or wherein the cuff is at least partially disposed on the abluminal surface of the stent when the plurality of elastic members are in the first orientation and second orientation.
A stent assembly for use in replacing a native heart valve in accordance with one embodiment of the disclosure is constructed from a stent; a cuff coupled to the stent having a first orientation and a second orientation; and a plurality of members coupled between the stent and cuff, the members configured to arrange the cuff between the first and second orientations, wherein the members remain coupled to the stent and cuff after replacement of the native valve.
In the aforesaid prosthetic heart valve, wherein the stent defines a lumen, and wherein the cuff when arranged in the first orientation is disposed within the lumen, and wherein the cuff when arranged in the second orientation is disposed circumscribing the stent overlying an abluminal surface thereof forming a cuff seal; and/or wherein the inverting members comprise at least one of an elastic member and a coiled member having a tensioned first state and a relaxed second state; and/or wherein the inverting members are in a tensioned state when the cuff is in the first orientation and a relaxed state when the cuff is in the second orientation.
Although the disclosure herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present disclosure.
The present application is a continuation of U.S. patent application Ser. No. 15/649,964, filed Jul. 14, 2017, now U.S. Pat. No. 9,757,230, which is a continuation of U.S. patent application Ser. No. 14/713,399, filed May 15, 2015, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/994,187, filed May 16, 2014, the disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3657744 | Ersek | Apr 1972 | A |
4275469 | Gabbay | Jun 1981 | A |
4491986 | Gabbay | Jan 1985 | A |
4759758 | Gabbay | Jul 1988 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5411552 | Andersen et al. | May 1995 | A |
5415664 | Pinchuk | May 1995 | A |
5480423 | Ravenscroft et al. | Jan 1996 | A |
5843167 | Dwyer et al. | Dec 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5935163 | Gabbay | Aug 1999 | A |
5961549 | Nguyen et al. | Oct 1999 | A |
6045576 | Starr et al. | Apr 2000 | A |
6077297 | Robinson et al. | Jun 2000 | A |
6083257 | Taylor et al. | Jul 2000 | A |
6090140 | Gabbay | Jul 2000 | A |
6214036 | Letendre et al. | Apr 2001 | B1 |
6264691 | Gabbay | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6488702 | Besselink | Dec 2002 | B1 |
6517576 | Gabbay | Feb 2003 | B2 |
6533810 | Hankh et al. | Mar 2003 | B2 |
6582464 | Gabbay | Jun 2003 | B2 |
6610088 | Gabbay | Aug 2003 | B1 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6685625 | Gabbay | Feb 2004 | B2 |
6716244 | Klaco | Apr 2004 | B2 |
6719789 | Cox | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6783556 | Gabbay | Aug 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6814746 | Thompson et al. | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6869444 | Gabbay | Mar 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6951573 | Dilling | Oct 2005 | B1 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7025780 | Gabbay | Apr 2006 | B2 |
7137184 | Schreck | Nov 2006 | B2 |
7160322 | Gabbay | Jan 2007 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7247167 | Gabbay | Jul 2007 | B2 |
7267686 | DiMatteo et al. | Sep 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7311730 | Gabbay | Dec 2007 | B2 |
7320704 | Lashinski et al. | Jan 2008 | B2 |
7329278 | Seguin et al. | Feb 2008 | B2 |
7374573 | Gabbay | May 2008 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7381219 | Salahieh et al. | Jun 2008 | B2 |
7452371 | Pavcnik et al. | Nov 2008 | B2 |
7510572 | Gabbay | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7524331 | Birdsall | Apr 2009 | B2 |
7534261 | Friedman | May 2009 | B2 |
RE40816 | Taylor et al. | Jun 2009 | E |
7585321 | Cribier | Sep 2009 | B2 |
7628805 | Spenser et al. | Dec 2009 | B2 |
7682390 | Seguin | Mar 2010 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7731742 | Schlick et al. | Jun 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7780725 | Haug et al. | Aug 2010 | B2 |
7799069 | Bailey et al. | Sep 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7824442 | Salahieh et al. | Nov 2010 | B2 |
7837727 | Goetz et al. | Nov 2010 | B2 |
7846203 | Cribier | Dec 2010 | B2 |
7846204 | Letac et al. | Dec 2010 | B2 |
7857845 | Stacchino et al. | Dec 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
7959666 | Salahieh et al. | Jun 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7972378 | Tabor et al. | Jul 2011 | B2 |
7988724 | Salahieh et al. | Aug 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8016877 | Seguin et al. | Sep 2011 | B2 |
D648854 | Braido | Nov 2011 | S |
8048153 | Salahieh et al. | Nov 2011 | B2 |
8052741 | Bruszewski et al. | Nov 2011 | B2 |
8052749 | Salahieh et al. | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8075611 | Millwee et al. | Dec 2011 | B2 |
D652926 | Braido | Jan 2012 | S |
D652927 | Braido et al. | Jan 2012 | S |
D653341 | Braido et al. | Jan 2012 | S |
D653342 | Braido et al. | Jan 2012 | S |
D653343 | Ness et al. | Jan 2012 | S |
D654169 | Braido | Feb 2012 | S |
D654170 | Braido et al. | Feb 2012 | S |
8137398 | Tuval et al. | Mar 2012 | B2 |
8142497 | Friedman | Mar 2012 | B2 |
D660432 | Braido | May 2012 | S |
D660433 | Braido et al. | May 2012 | S |
D660967 | Braido et al. | May 2012 | S |
8182528 | Salahieh et al. | May 2012 | B2 |
8221493 | Boyle et al. | Jul 2012 | B2 |
8230717 | Matonick | Jul 2012 | B2 |
8231670 | Salahieh et al. | Jul 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8308798 | Pintor et al. | Nov 2012 | B2 |
8313525 | Tuval et al. | Nov 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8323336 | Hill et al. | Dec 2012 | B2 |
8343213 | Salahieh et al. | Jan 2013 | B2 |
8348995 | Tuval et al. | Jan 2013 | B2 |
8348996 | Tuval et al. | Jan 2013 | B2 |
8348998 | Pintor et al. | Jan 2013 | B2 |
8366769 | Huynh et al. | Feb 2013 | B2 |
8403983 | Quadri et al. | Mar 2013 | B2 |
8408214 | Spenser | Apr 2013 | B2 |
8414643 | Tuval et al. | Apr 2013 | B2 |
8425593 | Braido et al. | Apr 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8449604 | Moaddeb et al. | May 2013 | B2 |
D684692 | Braido | Jun 2013 | S |
8454686 | Alkhatib | Jun 2013 | B2 |
8500798 | Rowe et al. | Aug 2013 | B2 |
8568474 | Yeung et al. | Oct 2013 | B2 |
8579962 | Salahieh et al. | Nov 2013 | B2 |
8579966 | Seguin et al. | Nov 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8591575 | Cribier | Nov 2013 | B2 |
8597349 | Alkhatib | Dec 2013 | B2 |
8603159 | Seguin et al. | Dec 2013 | B2 |
8603160 | Salahieh et al. | Dec 2013 | B2 |
8613765 | Bonhoeffer et al. | Dec 2013 | B2 |
8623074 | Ryan | Jan 2014 | B2 |
8652204 | Quill et al. | Feb 2014 | B2 |
8663322 | Keranen | Mar 2014 | B2 |
8668733 | Haug et al. | Mar 2014 | B2 |
8685080 | White | Apr 2014 | B2 |
8728154 | Alkhatib | May 2014 | B2 |
8747459 | Nguyen et al. | Jun 2014 | B2 |
8764820 | Dehdashtian et al. | Jul 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8801776 | House et al. | Aug 2014 | B2 |
8808356 | Braido et al. | Aug 2014 | B2 |
8828078 | Salahieh et al. | Sep 2014 | B2 |
8834563 | Righini | Sep 2014 | B2 |
8840661 | Manasse | Sep 2014 | B2 |
8840663 | Salahieh et al. | Sep 2014 | B2 |
8876894 | Tuval et al. | Nov 2014 | B2 |
8876895 | Tuval et al. | Nov 2014 | B2 |
8940040 | Shahriari | Jan 2015 | B2 |
8945209 | Bonyuet et al. | Feb 2015 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8974523 | Thill et al. | Mar 2015 | B2 |
8974524 | Yeung et al. | Mar 2015 | B2 |
10195025 | Levi | Feb 2019 | B2 |
20020036220 | Gabbay | Mar 2002 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030130726 | Thorpe et al. | Jul 2003 | A1 |
20040049262 | Obermiller et al. | Mar 2004 | A1 |
20040093075 | Kuehne | May 2004 | A1 |
20040111111 | Lin | Jun 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050096726 | Sequin et al. | May 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050203605 | Dolan | Sep 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050256566 | Gabbay | Nov 2005 | A1 |
20060008497 | Gabbay | Jan 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060122692 | Gilad et al. | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060173532 | Flagle et al. | Aug 2006 | A1 |
20060178740 | Stacchino et al. | Aug 2006 | A1 |
20060195180 | Kheradvar et al. | Aug 2006 | A1 |
20060206202 | Bonhoeffer et al. | Sep 2006 | A1 |
20060241744 | Beith | Oct 2006 | A1 |
20060259120 | Vongphakdy et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060276813 | Greenberg | Dec 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070027534 | Bergheim et al. | Feb 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070055358 | Krolik et al. | Mar 2007 | A1 |
20070067029 | Gabbay | Mar 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070100435 | Case et al. | May 2007 | A1 |
20070118210 | Pinchuk | May 2007 | A1 |
20070198097 | Zegdi | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070233228 | Eberhardt et al. | Oct 2007 | A1 |
20070244545 | Birdsall et al. | Oct 2007 | A1 |
20070244552 | Salahieh et al. | Oct 2007 | A1 |
20070288087 | Fearnot et al. | Dec 2007 | A1 |
20080021552 | Gabbay | Jan 2008 | A1 |
20080039934 | Styrc | Feb 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082164 | Friedman | Apr 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080114452 | Gabbay | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080147183 | Styrc | Jun 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080243245 | Thambar et al. | Oct 2008 | A1 |
20080255662 | Stacchino et al. | Oct 2008 | A1 |
20080262602 | Wilk et al. | Oct 2008 | A1 |
20080269879 | Sathe et al. | Oct 2008 | A1 |
20090099653 | Suri et al. | Apr 2009 | A1 |
20090112309 | Jaramillo et al. | Apr 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090276027 | Glynn | Nov 2009 | A1 |
20100004740 | Seguin et al. | Jan 2010 | A1 |
20100036484 | Hariton et al. | Feb 2010 | A1 |
20100049306 | House et al. | Feb 2010 | A1 |
20100087907 | Lattouf | Apr 2010 | A1 |
20100131055 | Case et al. | May 2010 | A1 |
20100168778 | Braido | Jul 2010 | A1 |
20100168839 | Braido et al. | Jul 2010 | A1 |
20100168844 | Toomes et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100204785 | Alkhatib | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100234940 | Dolan | Sep 2010 | A1 |
20100249911 | Alkhatib | Sep 2010 | A1 |
20100249923 | Alkhatib et al. | Sep 2010 | A1 |
20100286768 | Alkhatib | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20110029072 | Gabbay | Feb 2011 | A1 |
20110054466 | Rothstein et al. | Mar 2011 | A1 |
20110098800 | Braido et al. | Apr 2011 | A1 |
20110098802 | Braido et al. | Apr 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110172765 | Nguyen et al. | Jul 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110264206 | Tabor | Oct 2011 | A1 |
20120035722 | Tuval | Feb 2012 | A1 |
20120078347 | Braido et al. | Mar 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120303116 | Gorman, III et al. | Nov 2012 | A1 |
20130274873 | Delaloye et al. | Oct 2013 | A1 |
20130331929 | Mitra et al. | Dec 2013 | A1 |
20140121763 | Duffy et al. | May 2014 | A1 |
20140155997 | Braido | Jun 2014 | A1 |
20140214159 | Vidlund et al. | Jul 2014 | A1 |
20140228946 | Chau et al. | Aug 2014 | A1 |
20140277417 | Schraut | Sep 2014 | A1 |
20140277419 | Garde | Sep 2014 | A1 |
20140303719 | Cox et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140343671 | Yohanan et al. | Nov 2014 | A1 |
20140350668 | Delaloye et al. | Nov 2014 | A1 |
20140350669 | Gillespie et al. | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
19857887 | Jul 2000 | DE |
10121210 | Nov 2005 | DE |
102005003632 | Aug 2006 | DE |
202008009610 | Dec 2008 | DE |
0850607 | Jul 1998 | EP |
1000590 | May 2000 | EP |
1584306 | Oct 2005 | EP |
1598031 | Nov 2005 | EP |
1360942 | Dec 2005 | EP |
1758523 | Mar 2007 | EP |
1926455 | Jun 2008 | EP |
2537487 | Dec 2012 | EP |
2850008 | Jul 2004 | FR |
2847800 | Oct 2005 | FR |
9117720 | Nov 1991 | WO |
9716133 | May 1997 | WO |
9832412 | Jul 1998 | WO |
9913801 | Mar 1999 | WO |
01028459 | Apr 2001 | WO |
2001049213 | Jul 2001 | WO |
0154625 | Aug 2001 | WO |
01056500 | Aug 2001 | WO |
0176510 | Oct 2001 | WO |
2002036048 | May 2002 | WO |
0247575 | Jun 2002 | WO |
02067782 | Sep 2002 | WO |
03047468 | Jun 2003 | WO |
2005070343 | Aug 2005 | WO |
06073626 | Jul 2006 | WO |
07071436 | Jun 2007 | WO |
08070797 | Jun 2008 | WO |
10008548 | Jan 2010 | WO |
2010008549 | Jan 2010 | WO |
2010096176 | Aug 2010 | WO |
2010098857 | Sep 2010 | WO |
2013028387 | Feb 2013 | WO |
2013059743 | Apr 2013 | WO |
2014164149 | Oct 2014 | WO |
2015077274 | May 2015 | WO |
Entry |
---|
“Catheter-Implanted Prosthetic Heart Valves: Transluminal Catheter Implantation of a New Expandable Artificial Heart Valve in the Descending Thoracic Aorta in Isolated Vessels and Closed Chest Pigs”, Knudsen et al., The International Journal of Artificial Organs, vol. 16, No. 5, May 1993, pp. 253-262. |
“Closed Heart Surgery: Back to the Future”, Samuel V. Lichtenstein, The Journal of Thoracic and Cardiovascular Surgery, vol. 131, No. 5, May 2006, pp. 941-943. |
“Direct-Access Valve Replacement”, Christoph H. Huber, et al., Journal of the American College of Cardiology, vol. 46, No. 2, (Jul. 19, 2005). |
“Minimally invasive cardiac surgery”, M. J. Mack, Surgical Endoscopy, 2006, 20:S488-S492, DOI: 10.1007/s00464-006-0110-8 (presented Mar. 23, 2006). |
“Percutaneous Aortic Valve Implantation Retrograde From the Femoral Artery”, John G. Webb et al., Circulation, 2006; 113:842-850 (Feb. 2, 2006). |
“Percutaneous Aortic Valve Replacement: Resection Before Implantation”, Quaden, Rene et al., European J. of Cardio-Thoracic Surgery, vol. 27, No. 5, May 2005, pp. 836-840. |
“Transapical aortic valve implantation: an animal feasibility study”; Todd M. Dewey et al., The annals of thoracic surgery 2006; 82: 110-6 (Feb. 13, 2006). |
“Transapical Approach for Sutureless Stent-Fixed Aortic Valve Implantation: Experimental Results”, Th. Walther et al., European Journal of Cardio-Thoracic Surgery, vol. 29, No. 5, May 2006, pp. 703-708. |
“Transapical Transcatheter Aortic Valve Implantation in Humans”, Samuel V. Lichtenstein et al., Circulation. 2006; 114: 591-596 (Jul. 31, 2006). |
“Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks”, Hourihan et al., Journal of the American College of Cardiology, vol. 20, No. 6, Nov. 1992, pp. 1371-1377. |
“Transluminal Aortic Valve Placement. A Feasability Study with a Newly Designed Collapsible Aortic Valve”, Moazami et al., ASAIO Journal, vol. 42, No. 5, 1996, pp. M381-M385. |
“Transluminal Catheter Implanted Prosthetic Heart Valves”, Andersen, H. R., International Journal of Angiology, vol. 7, No. 2, Mar. 1998, pp. 102-106. |
“Transluminal Implantation of Artificial Heart Valves”, Andersen, H. R., et al., European Heart Journal, vol. 13, No. 5, May 1992, pp. 704-708. |
Braido, et al., U.S. Appl. No. 29/375,243, filed Sep. 20, 2010, titled “Surgical Stent Assembly”. |
Buellesfeld et al., “Treatment of Paravalvular Leaks Through Inverventional Techniques”, Multimedia Manual of Cardithoracic Surgery, Department of Cardiology, Ben University Hospital, Jan. 2011. |
De Cicco, et al., “Aortic Valve Periprosthetic Leakage: Anatomic Observations and Surgical Results”, The Annals of Thoracic Surgery, vol. 79, No. 5, May 2005, pp. 1480-1485. |
Gössl and Rihal, “Percutaneous Treatment of Aortic and Mitral Valve Paravalvular Regurgitation”, Current Cardiology Reports, vol. 15, No. 8, Aug. 2013, pp. 1-8. |
Heat Advisor, “Heart repairs without surgery. Minimally invasive procedures aim to correct valve leakage”, Sep. 2004, PubMed ID 15586429. |
Is it Reasonable to Treat All Calcified Stenotic Aortic Valves With a Valved Stent?, 579-584, Zegdi, Rachid, MD, PhD et al., J. of the American College of Cardiology, vol. 51, No. 5, Feb. 5, 2008. |
Mu{umlaut over (n)}oz, Daniel Rodriguez, Carla Lázaro Rivera, and Jose Luis Zamorano Gómez, “Guidance of Treatment of Perivalvular Prosthetic Leaks”, Current Cardiology Reports, vol. 16, No. 1, Nov. 2013, pp. 1-6. |
Rohde, I., Masch, J.-M., Theisen-Kunde, D., Marczynski-Bühlow, M., Bombien Quaden, R., Lutter, G. and Brinkmann, R., “Resection of Calcified Aortic Heart Leaflets in Vitro by Q-Switched 2?μm Microsecond Laser Radiation”, Journal of Cardiac Surgery, vol. 30, No. 2, Feb. 2015, pp. 157-162. doi: 10.1111/jocs.12481. |
Ruiz, Carlos, Overview of PRE-CE Mark Transcatheter Aortic Valve Technologies, Euro PCR, dated May 25, 2010. |
Swiatkiewicz et al., “Percutaneous Closure of Mitral Perivalvular Leak”, Kardiologia Polska, vol. 67, No. 7, 2009, pp. 762-764. |
Transcatheter Valve Repair, Hijazi et al., CRC Press, Jan. 2006, pp. 165-186. |
Buellesfeld, et al., “Treatment of paravalvular leaks through inverventional techniques,” Multimed Man Cardiothorac Surg., Department of Cardiology, Ben University Hospital, pp. 1-8, Jan. 2011. |
De Cicco, et al., “Aortic valve periprosthetic leakage: anatomic observations and surgical results,” The Annals of thoracic surgery, vol. 79, No. 5, pp. 1480-1485, May 2005. |
European Search Report for Application No. EP17177736, dated Nov. 22, 2017. |
Gö{umlaut over (s)}sl, et al., “Percutaneous treatment of aortic and mitral valve paravalvular regurgitation,” Current Cardiology Reports, vol. 15, No. 8., pp. 1-8, Aug. 2013. |
Heat Advisor, “Heart repairs without surgery, Minimally invasive procedures aim to correct valve leakage”, Technology Frontier, Sep. 2004, PubMed ID 15586429. |
Hourihan, et al., “Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks,” Journal of the American College of Cardiology, vol. 20, No. 6, pp. 1371-1377, Nov. 1992. |
International Search Report and Written Opinion for Application No. PCT/US2015/030945 dated Jul. 31, 2015. |
Muñoz, et al., “Guidance of treatment of perivalvular prosthetic leaks.”, Current cardiology reports, 16.430, 6 pages, Jan. 2014. |
Rohde,et al., “Resection of Calcified Aortic Heart Leaflets in Vitro by Q-Switched 2 μm Microsecond Laser Radiation”, Journal of Cardiac Surgery, 30(2): 157-62. Feb. 2015. |
Swiatkiewicz, et al., “Percutaneous closure of mitral perivalvular leak,” Kardiologia Polska, vol. 67, No. 7, pp. 762-764, Jul. 2009. |
Number | Date | Country | |
---|---|---|---|
20200008939 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
61994187 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15649964 | Jul 2017 | US |
Child | 16571688 | US | |
Parent | 14713399 | May 2015 | US |
Child | 15649964 | US |