The invention relates to a delivery system for delivery and deployment of a stent to a desired vascular location.
Vascular intervention is today undertaken to treat a large number of diseases that had heretofore been treated by surgery. Stents are used widely in a number of applications to provide structural support to vessels that are being treated.
Stents are commonly used in the repair of aneurysms, as liners for vessels, or to provide mechanical support to prevent the collapse of stenosed or occluded vessels. Stents are typically delivered in a compressed state to a specific location inside the lumen of a vessel or other tubular structure, and then deployed at that location in the lumen to an expanded state. A stent has a diameter in its expanded state which is several times larger that the diameter of the stent in its compressed state. Stents are also frequently deployed in the treatment of atherosclerotic stenosis in blood vessels, especially after percutaneous transluminal coronary angioplasty (PTCA) procedures, to improve the results of the procedure and to reduce the likelihood of restenosis.
Stent designs are broadly divided into two categories, balloon expandable stents and self-expanding stents. The invention relates particularly to the delivery and positioning of self-expanding stents. The term self-expanding refers to the inherent material properties of the stent which cause the expansion of the stent once an external constraint has been removed. The effect is most commonly achieved by using a shape memory metallic alloy such as nitinol.
Generally, stents are delivered to the desired location by means of a catheter, specifically referred to as a delivery catheter. Delivery catheters are threaded through a guiding catheter to the site of the disease and once the correct position has been established by means of fluoroscopic or other imaging method, the stent is deployed.
Delivery systems for self expanding stents generally comprise an inner component or core about which the stent is positioned in a retracted or reduced diameter and an outer sheath surrounding the stent. The stent is deployed by retracting the outer sheath relative to the inner component. This has the effect of removing the constraint on the stent which, on release, expands into an increased diameter deployed configuration. The procedure is controlled by a clinician by manipulating various components outside of the vasculature.
Conventional self expanding stent delivery systems suffer from the considerable disadvantage that they are difficult to use, even for a very skilled clinician. The clinician must hold some components steady whilst at the same time manipulating others. Even small irregular movements by the clinician may result in inaccurate deployment at the target site. Inaccurate deployment of a stent may diminish the effectiveness of supporting the vascular wall at the site of deployment.
There is therefore a need for an improved self expanding stent delivery system which will address these problems.
There are particular difficulties in navigating complex stent delivery systems through tortuous arterial passageways, especially a carotid artery, a superficial femoral artery or a renal artery.
One objective of the invention is to provide a stent delivery system that is capable of navigating significant tortuosity en route to a target location which can be a significant distance from the catheter entry location.
According to the invention there is provided a delivery system for delivery and deployment of a self expanding stent to a desired vascular location of a patient, the system comprising;
In one embodiment the inner core has an abutment which is engagable with the proximal end of the stent to deploy the stent. The inner core may have a reduced diameter distal portion extending distally of the abutment at least partially through the stent in the reduced diameter delivery configuration of the stent. The inner core may form a tubular member in the region of abutment. The inner core may have a high compressive stiffness. The inner core may of a composite, or a metallic construction.
In one embodiment the catheter shaft comprises a distal sheath and a stent is frictionally coupled to the distal sheath in the delivery configuration. The inner core may have an abutment which is engagable with the proximal end of the stent to decouple the stent and distal sheath to deploy the stent.
In another embodiment the catheter shaft comprises a distal sheath portion and a proximal shaft portion, the diameter of the proximal shaft portion being smaller than the diameter of the distal sheath portion. The stabiliser component may be disposed over the smaller diameter proximal shaft. The stabiliser may comprise a tube and the diameter of the stabiliser tube is not greater than the diameter of the distal sheath of the catheter shaft.
The catheter shaft may have a guidewire exit port which is located proximally of the distal end of the catheter shaft. The guidewire exit port may be located proximally of the stent and/or proximally of the delivery sheath.
In one case the guidewire exit port is located at a transition between the distal sheath and the reduced diameter proximal shaft portion. The guidewire exit port may be located distally of the stabiliser component.
In one embodiment the guidewire exit port is configured to exit along an axis that is substantially parallel to a longitudinal axis of the distal sheath.
In another embodiment the system comprises a guidewire and the sum of the diameter of the guidewire and the diameter of the proximal shaft is less than the diameter of the distal sheath.
In one case the sum of the diameter of the guidewire and the diameter of the stabiliser component is less than the diameter of the distal sheath.
In one embodiment the inner core comprises a large diameter distal segment, a reduced diameter proximal segment, and a transition segment between the distal and proximal segments. The transition segment may be proximal of the abutment region. The transition segment may be distal of the exit port.
In one embodiment the stent directly engages the distal sheath and is slidable relative to the sheath. The distal sheath may be a composite with a low friction inner surface. In one case the distal sheath is reinforced to withstand the radial stresses of the stent in its constrained reduced diameter configuration.
In one embodiment the inner core is fixed to a component of the delivery system.
The component of the system to which the inner core is fixed may comprise the handle.
In one case the stabiliser component is fixed to a procedural catheter. In this case a haemostasis gasket may be provided between the stabiliser component and the procedural catheter.
Alternatively the catheter is an introducer sheath. The introducer sheath may have an integral haemostasis gasket.
Alternatively the procedural catheter is a guide catheter which may have a haemostasis gasket attachment. The gasket may be adjustable by the operator. The gasket attachment may be a Touhy Borst.
In one embodiment the system comprises a procedural guidewire and the guidewire is fixed or fixable to the stabiliser component.
In another embodiment the stabiliser component is length adjustable. The stabiliser component may comprise at least two parts which are movable relative to one another.
The stabiliser component position may be adjustable. For example, the stabiliser component may be adjusted by rotation of a threaded element which provides a position control device.
In one embodiment an intermediate component is provided between the stabiliser component and the inner core. The intermediate component may comprise the handle. The intermediate component may comprise at least one bridging piece. The bridging piece may extend through the wall of the proximal shaft. The bridging piece may project laterally of the inner core and/or the stabiliser component. In one case the bridging piece projects radially between the inner core and the stabiliser component.
In another embodiment the stabiliser component and the inner core are directly mounted to one another. The stabiliser component may be melded to the inner core, for example, by a welding, gluing, joining, laminating, or bonding process.
In another embodiement the stabiliser component and the inner core are directly mounted to one another proximal of the distal outer sheath. The stabiliser component and the inner core may be directly mounted to one another proximal of the outer shaft.
In a further embodiment the system includes a guidewire and the guidewire extends at least the length of the catheter shaft. In one case, the inner core defines a guidewire lumen along the length thereof.
The system may include a lock for the guidewire. The lock may be located proximal of the handle.
In another embodiment the stabiliser component comprises a tubular element and the tubular element has a tapered distal end.
In a further embodiment the system includes a guidewire and the guidewire is located within the profile of the stabiliser component
The stabiliser component may have a proximal opening to allow backflow of blood.
In another embodiment the stabiliser component extends substantially the length of the catheter shaft.
In another aspect the system provides a delivery system for delivery and deployment of a self expanding stent to a desired vascular location of a patient, the system comprising:
In one embodiment the operator handle is a pull handle for pulling the catheter shaft proximally relative to the inner core to deploy the self expanding stent. The catheter shaft and the operating handle may be interconnected by a connector. The connector may extend proximally of the external mounting. The connector may extend through the external mounting. The connector may comprise an elongate member such as a pull wire.
In one embodiment the inner core is fixed internal of the external mounting. A guidewire exit port may be provided at the proximal end of the external mounting.
In another aspect the invention provides a method for delivery and deployment of a self expanding stent comprising the steps of:
In one embodiment the stent is deployed by sliding the outer sheath and stent proximally to engage the inner core with the proximal end of the stent, the inner core engagement frictionally decoupling the stent and the sheath to deploy the stent.
In one case the stent is frictionally coupled to the outer sheath in the delivery configuration.
The method may comprise:
In one embodiment the method is of the rapid exchange type.
In one case the method comprises the steps of:
The filter may be mounted on the guidewire or mountable to the guidewire.
In one embodiment the region of interest is a region of stenosis in an arterial vessel having a tortuous passageway leading thereto. The arterial vessel may typically be a carotid artery, a superficial femoral artery, or a renal artery.
In one embodiment the inner core is fixed relative to a component of the system. The component may be a guide catheter. The component may be a Touhy Borst.
In one embodiment the system comprises a stabiliser fixed at a proximal end to the handle and the method comprises fixing the stabiliser to a component of the system. In this case, the method may comprise fixing the distal end of the stabiliser to a guide catheter. The method may comprise fixing the distal end of the stabiliser to a Touhy Borst.
In a further aspect the invention provides a method for delivery and deployment of a self expanding stent comprising the steps of:
In one embodiment the operator handle is a pull handle and the catheter shaft is pulled proximally of the inner core to deploy the stent.
The invention will be more clearly understood from the following description thereof given by way of example only in which:
FIGS. 7(a) to 7(e) are diagrammatic side, partially cross sectional views illustrating various steps in using the stent delivery system of the invention;
FIGS. 8(a) to 8(g) are diagrammatic side, partially cross sectional view illustrating various steps in a method of the invention;
FIGS. 13(a) to 13(c) are side cross sectional views of a proximal end of the delivery system in different positions of use;
Referring to the drawings and initially to FIGS. 1 to 13 thereof there illustrated a delivery and deployment system for a self expanding stent 1. The system is in this case configured for use with a guidewire 2 of the rapid exchange type with a distal tip 3.
The system comprises an inner core 5 about which the stent 1 is located and a catheter shaft 9 having a distal sheath 6 which retains the stent 1 in a compressed configuration during delivery through the vasculature of a patient to a deployment site as illustrated for example in
The delivery system has a distal tip 8 with a guidewire lumen 8a. Marker bands 1a, 1b are provided for visualisation of the inner core 5 at the proximal and distal ends of the stent 1.
The inner core 5 is fixed to a larger diameter outer core 10, the difference in diameter providing a step or abutment 5a for engagement with the stent 1 for deployment. The inner and outer core 5, 10 are fixed to a handle 12 at the proximal end. The outer distal sheath 6 is connected to a catheter shaft 9 at the distal end and the catheter shaft 9 is connected at the proximal end to a deployment/actuating mechanism which in this case is operated by an actuator in this case in the form of a thumbscrew 11, rotation of the screw 11 being converted into linear movement of the sheath 6.
The stent 1 is frictionally coupled to the inside wall of the distal sheath 6 in the delivery configuration. In use, the inner core 5 abutment is engagable with the proximal end of the stent to decouple the stent 1 and the sheath 6 to enable the stent to be deployed. This, on sliding of the outer sheath 6 and stent 1 proximally the abutment of the inner core 5 is engaged with the stent 1 to frictionally decouple the stent 1 and sheath 6 to deploy the stent 1.
The catheter shaft 9 and the guidewire 2 in this case extend through a standard Touhy Borst fitting 20.
In the invention, the inner core 5 is locked relative to any suitable fixed location of the delivery system. In this case the delivery system comprises a stabiliser in the form of a stabiliser tube 25. The stabiliser 25 is clamped with an O-ring/seal 26 to the Tuohy Borst 20 which in turn is fixed to the handle 12. The stabiliser tube 25 is thereby fixed relative to the inner core 5 which controls the position of the stent 1 as it is deployed.
The stabilising tube 25 has sufficient hoop stiffness in the region at which it is clamped down by the Touhy Borst 20 so that it does not interfere with the outer sheath 6 or catheter shaft 9 as the stent 1 is deployed. In addition, the stabilising tube 25 has a bending stiffness so that it is flexible enough so that the handle 12 may be used at an angle to the Touhy Borst 20 but stiff enough so that the stent may be deployed even if the tube is in a bent configuration. The internal surface of the stabiliser tubing 25 has a low frictional surface to allow the outer sheath 6 to move relative to the stabilising tube 25 without affecting the deployment force of the stent 1. The external surface of the stabiliser tubing 25 may have sufficiently low friction so that the stent 1 may be repositioned without opening the Touhy Borst 20. However the tubing would not have so low a friction that the repositioning could happen unintentionally. The stabiliser tube 25 is of a low wall thickness, typically less than 0.008 inches, preferably less than 0.006 inches, and especially less than 0.003 inches. It may be manufactured from any suitable high performance material such as PEEK (Polyether ketane); polyamide, Nylons such as Nylon 6, Nylon 66, Nylon 610, polymide, PEK (Polyether ketane); reinforced polymeric system such as braided systems, covered spring. In rapid exchange systems the stabiliser may be of PEEK or the like. In over the wire systems the stabliliser may be of polyamide or the like.
The invention provides a delivery system which is stabilised to facilitate accurate deployment of a self expanding stent 1 at a desired location. The stabilisation is in this case achieved by fixing the inner core 5 to the Touhy Borst 20. The Touhy Borst 20 is connected to a guide catheter 30 which in turn is fixed to the patient's body. In the arrangement of FIGS. 1 to 6 the stabiliser 25 comprises a tube that is connected to the inner core 5 at the proximal end and extends over the outer sheath 9. This allows the tube 25 to be fixed relative to the guide catheter 30 by tightening the Touhy Borst 20. As the outer sheath 9 is retracted the inner core 5 remains fixed relative to the patient. The inner core 5 holds the stent 1 in the same position throughout the deployment and thus an accurate deployment is achieved.
In use, an artery is accessed using a standard Seldenger technique. A short introducer sheath 29 is inserted at the access point to protect the artery at the proximal end. A dilator is then used to open the entry and a guidewire is introduced. A guide catheter 30 is then introduced over the guidewire and a Touhy Borst 20 is attached to the proximal end of the guide catheter 30. A procedural guidewire which is typically a 14 thou wire is introduced in a rapid exchange mode with a typical length of 190 cm or, in on over the wire mode with a length of 320 cm. An embolic protection filter may be introduced over the procedural guidewire and deployed distal of a site of interest. In the case of a lesion, the site may be pre-dilated using a balloon technique. The stent delivery catheter of the invention is then introduced and tracked over the guidewire to the location of interest. The sheathed stent is positioned relative to the target site. The Touhy Borst 20 is then locked to the stabiliser tube 25. With the stent 1 locked to the guide catheter 30 stent deployment is initiated, for example by moving the sheath 6 proximally relative to the inner core 5. The stent 1 is accurately deployed and the delivery system is then removed leaving the stent 1 in place.
The delivery system may be used with an embolic protection filter 35 of the type described in our WO 99/23976, the entire contents of which are hereby incorporated by reference. The method involved is illustrated in FIGS. 8(a) to 8(g). In this case a filter 35 is deployed distal of the site of interest (such a region of stenosis). The filter 35 may be mounted on a guidewire or may be delivered over a pre-advanced guidewire. The filter 35 is delivered in a collapsed form using a delivery catheter. The filter 35, on exiting the delivery catheter 36 self-expands or is expandable into the expanded deployed configuration located distal of the site of interest. Any embolic material which is dislodged during subsequent procedures such as a balloon angioplasty or a stent deployment is captured in the filter 35. On completion of the procedure the filter (with any captured emboli) is retracted into an at least partially retracted configuration and withdrawn from the vasculature, for example using a retrieval catheter.
In the embodiments of the invention illustrated in FIGS. 1 to 13 a rapid exchange configuration is used. In this case the guidewire may be clamped between the stabiliser 26 and a Touhy Borst 20. The position of the guidewire is therefore fixed relative to the Touhy Borst 20 and the guide catheter 30.
Referring to FIGS. 14 to 16 the stabiliser 25 may also be used in association with an over the wire stent delivery system. In this case a locking mechanism 40 may be provided, for example at the proximal end of the handle 12 to lock the guidewire 41 position. The locking mechanism 40 may, for example, include a collet type arrangement.
The invention provides a stent delivery system that is of very low profile, excellent deliverability, and which can be used for very accurate placement of a self expanding stent in a tortuous arterial anatomy. It is suitable for deployment of a stent in a diseased vessel that may have a very significant reduction in lumen diameter. This reduction in lumen diameter may be as a result of atherosclerotic material on the vessel wall or it may be a hyperplasia response to injury. The stent may be deployed in vessels which have tortuous passageways leading thereto. Such vessels include a carotid artery, a superficial femoral artery or a renal artery.
Another rapid exchange system is shown in
Referring now to
Referring to
Deployment pin 66 is connected to catheter shaft 6. When the deployment pin 66 is moved proximally in the slot 65, the catheter shaft 6 slides proximally relative to the inner core 5. The inner core 5 engages the proximal end of the stent 1 and the stent 1 is restrained axially as the sheath is deployed.
In
Referring to
In
Referring to
In
Friction between the outer layer and the guide catheter and its fittings also hinder smooth deployment. In this embodiment of the invention a 3-layer delivery system is provided and the outer layer of the device which the user sees and holds remains in a fixed position relative to the guide catheter. The stent is deployed by operating a simple actuator (push/pull/trigger/rotate) 105 which retracts the middle sheath 102 relative to the outer layer 103 and inner core 101. In this case the stabiliser extends up to the sheath. This avoids the necessity for a lock at the proximal end. The stabiliser itself may have a distal region for a pod.
It will be noted that in this case the stabiliser component extends substantially the length of the catheter shaft. The stabiliser component can terminate a short distance (twice the length of the stent) from the distal end of the catheter shaft. The stabiliser is sufficiently long that it generates a lot of friction with the inner (such as a guide catheter and/or catheter shaft). Thus, the stabiliser component will stay substantially stationary, in use, during stent deployment.
Referring to
The stabiliser component used in the invention has an added advantage of creating an anti-backbleed feature. With the current set-up the Touhy Borst is required to be open so that the sheath can be retracted, this leads to the loss of blood through the Touhy Borst. This is prevented with the stabiliser as the Touhy Borst is tightened preventing the loss of blood. The blood is prevented from flowing down through the gap between the stabiliser and the catheter shaft because the gap between the tubes is very small and because the length of the stabiliser is long enough so that it resists the blood flow down the gap between the tubes.
The invention is not limited to the embodiments hereinbefore described which may by varied in detail.
Number | Date | Country | |
---|---|---|---|
60447314 | Feb 2003 | US |