The present invention relates generally to medical device and methods. More particularly, it relates to delivery systems for implanting prostheses within hollow body organs and vessels or other luminal anatomy.
Implants such as stents and occlusive coils have been used in patients for a wide variety of reasons. One of the most common “stenting” procedures is carried out in connection with the treatment of atherosclerosis, a disease which result in a narrowing and stenosis of body lumens, such as the coronary arteries. At the site of the narrowing (i.e., the site of a lesion) a balloon is typically dilatated in an angioplasty procedure to open the vessel. A stent is set in apposition to the interior surface of the lumen in order to help maintain an open passageway. This result may be effected by means of scaffolding support alone or by virtue of the presence of one or more drugs carried by the stent aiding in the prevention of restenosis.
Various stent designs. have been developed and used clinically, but self-expandable and balloon-expandable stent systems and their related deployment techniques are now predominant. Examples of self-expandable stents currently in use are the Magic WALLSTENT® stents and Radius stents (Boston Scientific). A commonly used balloon-expandable stent is the Cypher® stent (Cordis Corporation). Additional self-expanding stent background is presented in: “An Overview of Superelastic Stent Design,” Min. Invas Ther & Allied Technol 2002: 9(3/4) 235-246, “A Survey of Stent Designs,” Min. Invas Ther & Allied Technol 2002: 11(4) 137-147, and “Coronary Artery Stents: Design and Biologic Considerations,” Cardiology Special Edition, 2003: 9(2) 9-14, “Clinical and Angiographic Efficacy of a Self-Expanding Stent” Am Heart J 2003: 145(5) 868-874.
Because self-expanding prosthetic devices need not be set over a balloon (as with balloon-expandable designs), self-expanding stent delivery systems can be designed to a relatively smaller outer diameter than their balloon-expandable counterparts. As such, self-expanding stents may be better suited to reach the smallest vasculature or achieve access in more difficult cases.
To realize such benefits, however, there continues to be a need in developing improved delivery systems. Problems encountered with known systems include drawbacks ranging from failure to provide means to enable precise placement of the subject prosthetic, to a lack of space efficiency in delivery system design. Poor placement hampers stent efficacy. Space inefficiency in system design prohibits scaling the systems to sizes as small as necessary to enable difficult access or small-vessel procedures (i.e., in tortuous vasculature or vessels having a diameter less than 3 mm, even less than 2 mm).
One known stent delivery system comprises a simple sheath set over a pusher in abutment with a stent. An example of such a system is disclosed in U.S. Pat. No. 4,580,568. Though elegant in design, the system fails to offer desired functional characteristics. Particularly, such a system is prone to misuse when a physician who in not intimately familiar with the hardware retracts or pushes the wrong one of the stent-abutting member or the sheath in an effort to free the stent. Dedicated handle systems have been developed to address this problem. Examples are provide in WO 99/04728, WO 00/18330, WO 98/23241, EP-A-747021, DE-A-44 20142 and U.S. Pat. No. 5,433,723.
Even when not misused, simple sheath system present issues with precise stent placement stemming from the fact that the sheath cannot be locked-down at the proximal end of an access catheter (e.g., at a hemostatic valve) while deploying the stent. As a result, it is difficult to prevent inadvertent axial movement of the stent. Because the sheath cannot be held onto, stent deployment requires that a user hold the pusher member (or handle attached thereto) steady while withdrawing the sheath in order to avoid pushing the stent forward within the vessel thereby complicating stent placement or producing “skid-marks” and even vessel perforation.
The system described in U.S. Pat. No. 5,534,007 assigned to SciMed Life Systems, Inc. offers an alternative to a simple-sheath type system for deploying self-expandable stents. The proximal end of the noted system can be locked-down, without the stent moving axially upon withdrawing its restraint. Yet, the system requires a collapsible, bellows-type sheath portioned between the stationary proximal sleeve and the moveable distal restraint. Furthermore, the system is deployed over a guidewire. Because of the large “over-the-guidewire size” and increasing size of the device resulting by compression of the bellows, the device is not able access or to be withdrawn from the smallest and/or most tortuous anatomy.
Accordingly, there exists a need for a system to better enable precise stent placement than a simple sheath system, but offering improved space efficiency over other know self-expanding stent delivery systems such as that in the '007 patent. Those with skill in the art may also appreciate further advantages or benefits of the invention.
The present invention offers a stent delivery system in which a restraint holding a stent in position for deployment is adapted to collapse radially upon withdrawal from the stent. This diameter adaptive restraint enables the system to operate in a highly space efficient manner. Furthermore, it opens possibilities for efficient design and construction—these considerations potentially benefiting unit cost. Still further, the diameter adaptive restraints may be incorporated into delivery systems offering different functional characteristics. Though the invention may have broader applicability, the exemplary variations of the invention described herein employ a stationary outer tube or sleeve and an interior wire (whether it is a corewire or another member) to actuate the restraint to draw it off of the stent to release the same upon achieving intended positioning at a target site.
Such a system includes a stent and a delivery guide for carrying the stent to a treatment site and releasing the stent at that point. In use, a physician is able to conveniently lock-down the delivery guide within the hemostatic valve of a catheter (e.g., a microcatheter or balloon catheter) if desired, and deliver a stent thus set in place.
The inner member may be a core member (i.e., filling the center of or being coaxial with the sleeve) or one of a number of inner members.
By actuating the interior member (e.g., by withdrawing the same or by a physical shortening, such as by a heat-activated shape memory plastic or alloy wire). Simple withdrawal of the inner member will deploy the stent. Yet, a more user-friendly handle could be provided. In any case, the inventive system preferably offers a simple and space efficient proximal shaft that consists of an outer tubular sleeve member and a corewire therein. Such a system is easily fit to a manipulator and/or directly manipulated by a surgeon.
Regardless of the overall delivery guide construction (an concomitant actuation), it is noted that in the inventive system the restraint only covers the implant or the implant and some distal portion of the delivery device proximal to the stent, as opposed to a system in which a simple full-length sheath is employed. The length of the restraint may be selected according to the teachings of U.S. Patent Application Attorney Docket No. CRMD-007, entitled “Sliding Restraint Stent Delivery Systems” filed on even date herewith and incorporated by reference in its entirety.
The stent or other such implant as may be employed is preferably self-expanding upon release of the restraint. Thus, full or complete placement of the stent can be achieved upon its release from the delivery device.
One embodiment of the invention operates such that a distal tip and restraint move in unison, relative to the proximal tubular member in releasing the stent from its collapsed configuration. This operation is the result of the restraint (or an intermediate connector) being attached to a core member that runs the entire length of the delivery guide, over which the stent is collapsed. Because this system is so elegant in design, it can easily be made extremely small. The device optionally includes an atraumatic tip at an end of the core member.
Another embodiment of the invention is provided in which the restraint is actuated independently of a distal tip or end of the device. In which case, the tip can be fixed relative to the sleeve and stent (axially), or it may be adjustable relative to each.
In the first instance, this result may be effected by a fixed extension section connected to the sleeve. Such devices are further detailed in U.S. Patent Application Attorney Docket No. CRMD-005, entitled “Corewire Actuated Delivery System with Distal Stent-Carrying Extension” filed on even date and incorporated by reference herein in its entirety. Alternatively, two members may be provided within the sleeve that extent proximally to the user interface. A first one of these members is in connection with the distal tip; the second one is for actuating the restraint.
Depending on the nature of the stent stop or blocker member provided to abut the stent hold it from moving axially upon withdrawal of the restraint, this two-member variation of the invention may be employed in providing the adjustable tip variation of the invention noted above. Regarding this variation of the invention, it employs a stent stop that either floats on the core wire (is slidingly received upon the wire) and interfaces with a distal end of the sleeve or that is provided by the end of the sleeve alone.
The stop may alternatively be provided by a band, shoulder or the like associated with the stent-carrying member (whether it is an extension connected to the sleeve, or a corewire extending beyond the sleeve). Still further, the stent stop or blocker may be a feature of the outer tubular member or it may be a discrete member. Alternatively, the stop member may be a multi-piece construction, include bearings, or may itself offer some form of a bearing (planar, roller, fluidic, etc.).
Generally speaking, the stent stop is adapted to allow the restraint (or a member attached thereto) to pass interior to the outer tubular member/sleeve, but not allow the stent to pass or become lodged in the moving system components.
In instances where the restraint is to be cut apart or to have portions physically separated in order facilitate drawing down from a larger outer diameter (outside the stent) to a smaller inner diameter (inside the proximal tubular member), the stop member may include separating means in the form of blades, wedges, etc. to facilitate such action Alternatively, the restraint may have an elastic or compliant quality such that it collapses to a smaller diameter when it is allowed or forced to do so. In which case, the blocker will not typically include separating means. Rather, it will simply abut the stent and provided a transition member facilitating drawing the restraint inside of the proximal tubular member.
Delivery systems and guides according to the present invention are amenable to scaling to sizes not previously achieved. Consequently, the systems may be used in lieu of a guidewire, such as in a “guidewireless” delivery approach. Still further, rather than providing an “over-the-wire” delivery system as referenced above, the present systems may be regarded as “on-the-wire” delivery systems, since—in effect—delivery is accomplished by a system in which the stent is carried by a delivery guide occupying a catheter lumen that would commonly otherwise be used to accommodate a guidewire.
Whether used in such a manner or otherwise (such as by configuring the subject systems for treating larger peripheral vessels), the present invention includes systems comprising any combination of the features described herein. Methodology described in association with the devices disclosed also forms part of the invention. Such methodology may include that associated with completing an angioplasty, bridging an aneurysm, deploying radially-expandable anchors for pacing leads or an embolic filter, or placement of a prosthesis within neurovasculature, an organ selected from the kidney and liver, within reproductive anatomy such as selected vasdeferens and fallopian tubes or other applications.
The term “stent” as used herein refers to any coronary artery stent, other vascular prosthesis, or other radially expanding or expandable prosthesis or scaffold-type implant suitable for the noted treatments or otherwise. Exemplary structures include wire mesh or lattice patterns and coils, though others may be employed in the present invention.
A “self expanding” stent is a scaffold-type structure (serving any of a number of purposes) that expands by its own action from a reduced-diameter configuration to an increased-diameter configuration. The “diameter” need not be circular—it may be of any open configuration. Self-expanding materials may be so by virtue of simple elastic behavior, superelastic behavior, a shape memory effect (i.e., heat-activated transformation from martinsite to austenite) or some other manner. Since the stents will remain in the subject's body, the material should be biocompatible or at least be amenable to biocompatible coating. As such, suitable self expanding stent materials for use in the subject invention include Nickel-Titanium (i.e., NiTi) alloy (e.g., NITINOL) and various other alloys or polymers.
A “wire” as used herein generally comprises a common metallic member. However, the wire may be coated or covered by a polymeric material (e.g., with a lubricious material such as TEFLON®) or otherwise. Still further, the “wire” may be a hybrid structure with metal and a polymeric material (e.g. Vectra™, Spectra™, Nylon, etc.) or composite material (e.g., carbon fiber in a polymer matrix). The wire may be a filament, bundle of filaments, cable, ribbon or in some other form. It is generally not hollow.
A “core” wire as referred to herein is a member internal to an outer member, such as a tubular member. As a core wire, the member, fills or at least substantially fills all of the interior space of the tubular member.
A “hypotube” or “hypotubing” as referred to herein means small diameter tubing in the size range discussed below, generally with a thin wall. The hypotube may specifically be hypodermic needle tubing. Alternatively, it may be wound or braided cable tubing, such as provided by Asahi Intec Co., Ltd or otherwise. As with the “wire” discussed above, the material defining the hypotube may be metallic, polymeric or a hybrid of metallic and polymeric or composite material.
A “sleeve” as referred to herein may be made of such hypotubing or otherwise. The sleeve may be a tubular member, or it may have longitudinal opening(s). It is an outer member, able to slidingly receive and hold at least a portion an inner member.
An “atraumatic tip” may comprise a plurality of spring coils attached to a tapered wire section. At a distal end the coils typically terminate with a bulb or ball that is often made of solder. In such a construction, the coils and/or solder is often platinum alloy or another radiopaque material. The coils may also be platinum, or be of another material. In the present invention, the wire section to which the coils are attached may be tapered, but need not be tapered. In addition, alternate structures are possible. For instance, molding or dip-coating with a polymer may be employed. In one example, the atraumatic tip may comprise a molded tantalum-loaded 35 durometer Pebax™ tip. However constructed, the atraumatic tip may be straight or curved, the latter configuration possibly assisting in directing or steering the delivery guide to a desired intravascular location.
To “connect” or to have or make a “connection” between parts refers to fusing, bonding, welding (by resistance, laser, chemically, ultrasonically, etc), gluing, pinning, crimping, clamping or otherwise mechanically or physically joining, attaching or holding components together (permanently or temporarily).
Each of the figures diagrammatically illustrates aspects of the invention. Of these:
FIGS. 5 show general aspects of a diameter adaptive restraint according to the present invention;
Variation of the invention from the embodiments pictured is, of course, contemplated.
Before the present invention is described in detail, it is to be understood that this invention is not limited to particular variations set forth and may, of course, vary. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s), to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.
Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events. Furthermore, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.
All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail). The referenced items are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such material by virtue of prior invention.
Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use, of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
Turning now to
Features of the present invention are uniquely suited for a system able to reach small vessels (though use of the subject systems s not limited to such a setting.) By “small” coronary vessels, it is meant vessels having a inside diameter between about 1.5 or 2 and about 3 mm in diameter. These vessels include, but are not limited to, the Posterior Descending Artery (PDA), Obtuse Marginal (OM) and small diagonals. Conditions such as diffuse stenosis and diabetes produce conditions that represent other access and delivery challenges which can be addressed with a delivery system according to the present invention. Other extended treatment areas addressable with the subject systems include vessel bifurcations, chronic total occlusions (CTOs), and prevention procedures (such as in stenting vulnerable plaque).
Assuming a means of delivering one or more appropriately-sized stents, it may be preferred to use a drug eluting stent in such an application to aid in preventing restenosis. However, bare-metal stents may be employed in the present invention. The present invention is advantageously employed with self-expanding stents. However, the teachings herein may be adapted for application in the context of balloon-expandable stents.
In any case, features of the present invention are provided in order to hold an implant (e.g., a stent) to be delivered in an access or deployment configuration, after which, the implant assumes its deployed or expanded configuration. Hold-down features may restrain a stent under compressive forces, whereupon release, the stent “springs” open. Alternatively, the stent (or other implant) may simply be secured to the delivery member, where some other mechanism is used to open the stent (e.g., ceasing a flow of chilled saline, thereby allowing a shape memory devices (e.g., NiTi) to warm in order that a material phase change from martinsite to austenite will cause the stent to open).
While some might argue that the particular role and optimal usage of self expanding stents has yet to be defined, they offer an inherent advantage over balloon expandable stents. The latter type of devices produce “skid mark” trauma (at least when delivered uncovered upon a balloon) and are associated with a higher risk of end dissection or barotraumas caused at least in part by high balloon pressures and related forces when deforming a balloon-expandable stent for deployment.
Yet, with an appropriate deployment system, self-expanding stents may offer one or more of the following advantages over balloon-expandable models: 1) greater accessibility to distal, tortuous and small vessel anatomy—by virtue of decreasing crossing diameter and increasing compliance relative to a system requiring a deployment balloon, 2) sequentially controlled or “gentle” device deployment, 3) use with low balloon pre-dilatation (if desirable) to reduce barotraumas, 4) strut thickness reduction in some cases reducing the amount of “foreign body” material in a vessel or other body conduit, 5) opportunity to treat neurovasculature—due to smaller crossing diameters and/or gentle delivery options, 6) the ability to easily scale-up a successful treatment system to treat larger vessels or vice versa, 7) a decrease in system complexity, offering potential advantages both in terms of reliability and system cost, 8) reducing intimal hyperplasia, and 9) conforming to tapering anatomy—without imparting complimentary geometry to the stent (though this option exists as well).
At least some of these noted advantages may be realized using a stent 10 as shown in
In use, the stent will be sized so that it is not fully expanded when fully deployed against the wall of a vessel in order that it will provide a measure of radial force thereto. The force will secure the stent and offer potential benefits in reducing intimal hyperplasia and vessel collapse or even pinning dissected tissue in apposition.
The stent employed in connection with the subject delivery system preferably comprises NiTi that is superelastic at room temperature and above. Also, it is preferably electropolished. The stent may be a drug eluting stent (DES). Such drug can be directly applied to the stent surface(s), or introduced into an appropriate matrix.
In a 0.014 inch delivery system (one in which the maximum nominal outer diameter of the stent/coating and guide member/restraint have a diameter that does not exceed 0.014 inch), the thickness of the NiTi is about 0.0025 inch (0.64 mm) for a stent adapted to expand to 3.5 mm. Such a stent is designed for use in a 3 mm vessel or other body conduit, thereby providing the desired radial force in the manner noted above. Further information regarding radial force parameters in coronary stents may be noted in the article, “Radial Force of Coronary Stents: A Comparative Analysis,” Catheterization and Cardiovascular Interventions 46: 380-391 (1999), incorporated by reference herein in its entirety.
As for the stent that may be employed, an optional expanded stent cut pattern 10 is shown in
Regarding the finer details of the subject stent, necked down bridge or junction sections 12 are provided between adjacent struts 14, wherein the struts define a lattice of closed cells 16. The ends 18 of the cells are preferably rounded-off so as to be atraumatic. To increase stent conformability to tortuous anatomy, the bridge sections can be strategically separated or opened as indicated by broken line. To facilitate such tuning of the stent, the bridge sections are sufficiently long so that fully rounded ends 18 may be formed internally to the lattice just as shown on the outside of the stent if the connection(s) is/are severed to separate adjacent cells 16.
The advantage of the double-concave profile of each strut bridge or junction section 12 is that it reduces material width (relative to what would otherwise be presented by a parallel side profile) to improve trackability and conformability of the stent within the subject anatomy while still maintaining the option for separating/breaking the cells apart.
Further optional features of stent 10 are employed in the cell end regions 18 of the design. Specifically, strut ends 20 increase in width relative to medial strut portions 22. Such a configuration results in a majority of bending (during collapse of the stent) occurring along the length of the struts rather than at the corners of the cells. Longer struts to allow for lower stresses within the stent (and, hence, possibility for higher compression ratios). Shorter struts allow for greater radial force (and concomitant resistance to a radially applied load) upon deployment.
In order to provide a stent that collapses as much as possible (to solid or near-solid structure, such as shown in the fully-loaded systems of the figures) accommodation is made for the stiffer strut ends 20 provided in the design shown in
By utilizing a design that minimizes strain, very high compression ratios of the stent may be achieved. Compression ratios (from a fully expanded outside diameter to compressed outside diameter—expressed in those terms used by physicians) of as much as 3.5 mm: 0.014 inch (about 10×) are possible—with or without a drug coating and/or restraint used. Compression ratios of 3.0 mm: 0.014 inch (about 8.5×), 3.5 mm: 0.018 inch (about 7.5×), 3.0 mm: 0.018 inch (about 6.5×), 2.5 mm: 0.014 inch (about 7×), 2.5 mm: 0.018 inch (about 5.5×), 2.0 mm: 0.014 inch (about 5.5×), 2.0 mm: 0.018 inch (about 4.5×) offer utility not heretofore possible with existing systems as well.
These selected sizings (and expansion ratios) correspond to treating 1.5 to 3.0 mm vessels by way of delivery systems adapted to pass through existing balloon catheter and microcatheter guidewire lumen. In other words, the 0.014 inch and 0.018 inch systems are designed to corresponding common guidewire sizes. The system may also be scaled to other common guidewire sizes (e.g., 0.22 inch/0.56 mm or 0.025 inch/0.64 mm) while offering advantages over known systems.
While designing the delivery systems to have a crossing profile corresponding to common guidewire sizes, especially for full-custom systems, intermediate sizes may be employed. Still further, it is contemplated that the system sizing may be set to correspond to French (FR) sizing. In that case, system sizes contemplated range at least from 1 to 1.5 FR, whereas the smallest know balloon-expandable stent delivery systems are in the size range of about 3 to about 4 FR.
At least when produced at the smallest sizes (whether in a even/standard guidewire or FR size, or otherwise), the system enables a substantially new mode of stent deployment in which delivery is achieved through an angioplasty balloon catheter or small microcatheter lumen. Further discussion and details of “through the lumen” delivery is presented in the above-referenced “Balloon Catheter Lumen Based Stent Delivery Systems” patent application.
In “small vessel” cases or applications (where the vessel to be treated has a diameter up to about 3.0 mm), it may also be advantageous to employ a stent delivery system sized at between about 0.022 to about 0.025 inch in diameter. Such a system can be used with catheters compatible with 0.022 inch diameter guidewires.
While such a system may not be suitable for reaching the very smallest vessels, in reaching the larger of the small vessels (i.e., those having a diameter of about 2.5 mm or larger), even this variation of the invention is quite advantageous in comparison to known systems. By way of comparison, the smallest known over-the-guidewire delivery system (the “Pixel” system—produced by Guidant) that is adapted to treat vessels between 2 and 2.5 mm has a crossing profile of 0.036 inch (0.91 mm). A system described in U.S. Patent Publication No. 2002/0147491 for treating small vessels is purported to be capable of being made as small as 0.026 inch (0.66 mm) in diameter.
With respect to the Pixel and '491 systems, however, it must be appreciated that a further decrease in stent size may be practically impossible in view of materials limitations and functional parameters of the stent. Instead, the present invention offers a different paradigm for delivery devices and stents that are scalable to the sizes noted herein.
By virtue of the approaches taught herein, it is feasible to design system diameters to match (or at least nearly match) common guidewire size diameters (i.e., 0.014, 0.018 and 0.022 inch) for small vessel delivery applications. As noted above, doing so facilitates use with compatible catheters and opens the possibility for methodology employing the same as elaborated upon below and in the above-referenced “Balloon Catheter Lumen Based Stent Delivery Systems” patent application.
Of further note, it may be desired to design a variation of the subject system for use in deploying stents in larger, peripheral vessels, bilary ducts or other hollow body organs. Such applications involve a stent being emplaced in a region having a diameter from about 3.5 to about 13 mm (0.5 inch). In this regard, the scalability of the present system, again, allows for creating a system adapted for such use that is designed around a common wire size. Namely, a 0.035 to 0.039 inch (3 FR) diameter crossing profile system is advantageously provided in which the stent expands (unconstrained) to a size between about roughly 0.5 mm and about 1.0 mm greater than the vessel or hollow body organ to be treated. Sufficient stent expansion is easily achieved with the exemplary stent pattern shown in
Again, as a matter of comparison, the smallest delivery systems known to applicants for stent delivery in treating such larger-diameter vessels or biliary ducts is a 6 FR system (nominal 0.084 inch outer diameter), which is suited for use in an 8 FR guiding catheter. Thus, even in the larger sizes, the present invention affords opportunities not heretofore possible in achieving delivery systems in the size range of a commonly used guidewire, with the concomitant advantages discussed herein.
Several known stent delivery systems are compatible with (i.e., may be delivered over) common-sized guides wires ranging from 0.014 inch to 0.035 inch (0.89 mm). Yet, none of the delivery systems are themselves known to be so-sized.
As for the manner of using the inventive system as optionally configured,
Turning to
As illustrated in
Next, the balloon is at least partially deflated and passed forward, beyond the dilate segment 32′ as shown in
However, it should be appreciated that such an exchange need not occur. Rather, the original guidewire device inside the balloon catheter (or any other catheter used) may be that of item 50, instead of the standard guidewire 40 shown in
Once placement of the stent across from dilated segment 32′ is accomplished, stent deployment commences. The manner of deployment is elaborated upon below. Upon deployment, stent 52 assumes an at least partially expanded shape in apposition to the compressed plaque as shown in
Naturally, the balloon need not be reintroduced for postdilatation, but it may be preferred. Regardless, once the delivery device 50 and balloon catheter 42 are withdrawn as in
In the above description, a 300 cm extendable delivery system is envisioned. Alternatively, the system can be 190 cm to accommodate a rabid exchange of monorail type of balloon catheter as is commonly known in the art. Of course, other approaches may be employed as well.
Furthermore, other endpoints may be desired such as implanting an anchoring stent in a hollow tubular body organ, closing off an aneurysm, delivering a plurality of stents, etc. In performing any of a variety of these or other procedures, suitable modification will be made in the subject methodology. The procedure shown is depicted merely because it illustrates a preferred mode of practicing the subject invention, despite its potential for broader applicability.
A more detailed overview of the subject delivery systems is provided in
Regarding the overall delivery guide, however, it preferably comprises an atraumatic distal tip 206 of one variety or another. On the other end of the delivery device, a custom handle 208 is preferably provided.
The handle shown is adapted for rotable actuation by holding body 210, and turning wheel 212. It may include a lock 214. Furthermore, a removable interface member 216 facilitates taking the handle off of the delivery system proximal end 218. The interface will be lockable with respect to the body and preferably includes internal features for disengaging the handle from the delivery guide. Once accomplished, it will be possible to attach or “doc” a secondary length of wire 220 on the delivery system proximal end, allowing the combination to serve as an “exchange length” guidewire, thereby facilitating changing-out the balloon catheter or performing another procedure. Alternatively, the wire may be an exchange-length wire.
Thus, the packaging may serve the purpose of providing a kit or panel of differently configured delivery devices. In the alternative, the packaging may be configured as a tray kit for a single one of the delivery systems. Either way, packaging may include one or more of an outer box 252 and one or more inner trays 254, 256 with peel-away coverings as is customary in packaging of disposable products provided for operating room use. Naturally, instructions for use can be provided therein. Such instructions may be printed product or be provided in connection with another readable (including computer-readable) medium. The instructions may include provision for basic operation of the subject devices and/or the selection methodology.
Regarding the specifics of the restraint employed in the delivery device, it is one in which at least a length of it is received within the body of the device after beginning at a larger diameter (possibly over the stent, or proximal thereto) and collapsing (by folding, overlapping, compressing or other means) to a smaller diameter to fit, for example, within the body of the delivery device.
One variation of the restraint is shown in
In short, the device releases the stent when restraint 302 is pulled back into sleeve 304 sufficiently to move off of the stent. Such action may be facilitated by using a pre-split restraint or restraint sections. Alternatively, the restraint may be separated (e.g. along a perforation line or lines). This may be facilitated by a wedge type member. Still further, the restraint may be cut into sections. Moreover, the restraint may itself be collapsible in nature.
The device in
As to the specific manner of operation, Section D-D is provided to help explain such operation. In this sectional view, restraint 302 is shown diving down from outside of the stent 202 to within the sleeve 304. The sections of the restraint are cut or separated into pass-through recesses 320.
In some variations of the invention (as detailed further below), the inner member that is actuated to withdraw the restraint may be an extension of the restraint itself, a tubular member connected thereto that runs the length of the system or it may be a core member 314. If it is a core member then (as stated above) it may be desirable to include an extension wire distal thereto.
In any case, various restraint actuation options are specifically illustrated in
Regardless, stent stop 306 is provided between a distal end of sleeve 304 and the stent 202. Various options for the stop are discussed further below.
In
Regarding the variations of the invention in
While both of the system actuation approaches in
While sharing the same mode of restraint actuation (namely via an extension section 326 from the restraint), the variation of the invention in
This elongate member may take the same form as the extension section 326 (i.e., it may be tubular, flat ribbon, a wire or wire-like). However, it offers additional material and constructional possibilities for the system, though the overlapped bonding section 336 may utilize valuable space. Yet, accommodation may be made for the same by way of variously undercutting and/or tapering core member 314.
The variation of the invention shown in
Connection options between the extension member and the sleeve are shown in Sections A-A. The sections show the connection sections (“C”), as well as the manner in which bridge sections 336 (in connection with the corewire 314 and restraint 302) pass by the same. Furthermore, blade or wedge sections 338 are provided for separating the restraint progressively (in a preferred embodiment) into bridge the bridge sections 336 upon withdrawal of the restraint to release the stent.
In addition, as noted above, other embodiments of the invention that advantageously employ the diameter adaptive restraint of the present invention are possible. The ability of the restraint to collapse in size and be hidden-away within the body of the delivery device (sometimes merely replacing the space where the stent was carried distally on the delivery device anyway) can be highly advantageous. The systems can be simple to construct and very space efficient and cost effective.
As for various options for the restraint, some are illustrated in
When in reducing the diameter of a section of the restraint from one diameter to a another diameter such that it is “substantially reduced”, the reduction in diameters is greater than that experienced in withdrawing a know sheath off of a stent (the amount is of reduction is greater than that due to the elasticity inherent to known systems). In this respect, the diameter reduction may be at least about 2% or 5%, between about 5% and about 10%, about 10% and a about 20%, about 20% and 30%, even up to about 50%. Such diameter reduction may occur by elastic recovery or deformation by an outer member, or even plastic deformation.
In one mode of the invention, the diameter change may be less than noted. However, the change will be effected by urging the restraint portion to a reduced diameter by a member external thereto.. The motivating member may take the form of the sleeve or the interface or stop member. Even a small reduction in diameter under such circumstances, can offer significant space-savings advantages, for example, as the restraint fills space left vacant by stent progressively as it is released.
In any case, where the material is not able to assume a reduced diameter by uniform elastic recovery or some form of deformation, the material may be cut apart so that portions will fold or overlap over each other (optionally in a concentric fashion). To facilitate such action, scoring or perforations 402 may be provided—such as by laser machining or another procedure. These sections will correspond to where the restraint is broken apart to provide ridge sections to pass by a connection C, such as in the variation of the device shown in
In order to facilitate such separation of members, as well as proximal connection, restraint 404 includes preformed bridge sections 336. In fact, the “legs” may extend so far back as to the proximal end of the device, thereby providing extensions 326 as discussed above. Restraint 404 may be of a similar construction to restraint 400.
However, restraint 406 in
In
The stop 506 variation in
In regard to any such system, it is to be understood that conventional materials and techniques may be employed in the system construction. In this regard, it will often be desired to provide a lubricious coating or cover between moving components to reduce internal system friction.
In addition, it is to be understood that various radiopaque markers or features may be employed in the system to 1) locate stent position and length, 2) indicated device actuation and stent delivery and/or 3) locate the distal end of the delivery guide. As such, various platinum (or other radiopaque material) bands or other markers (such as tantalum plugs) may be variously incorporated into the system. Alternatively, or additionally, the stent stop or blocker member may be made of radiopaque material. Especially where the stent employed may shorten somewhat upon deployment, it may also be desired to align radiopaque features with the expected location (relative to the body of the guide member) of the stent upon deployment. For example, it may be desired to incorporate radiopaque features into the restraint and/or bridge or connector sections so that the deployment motion of the device is visible under fluoroscopy. Exemplary markers that may be of use are shown at a proximal end of the stent in
Though the invention has been described in reference to several examples, optionally incorporating various features, the invention is not to be limited to that which is described or indicated as contemplated with respect to each embodiment or variation of the invention. The breadth of the present invention is to be limited only by the literal or equitable scope of the following claims. That being said, we claim: