The instant system relates generally to medical devices, including surgical and medical delivery systems. More particularly, the instant system relates to stents, catheters, and stent stabilizer and pusher mechanisms.
Within the art, currently disposed stent devices include, but are not limited to, elongated devices used in many capacities, including but not limited to support an intraluminal wall. Stenosis is an abnormal narrowing in a blood vessel or other tubular organ or structure. This vessel narrowing prevents the valve from opening fully, which obstructs blood flow from the heart and onward to the rest of the body.
There concurrently exist a wide variety of stents used for different purposes depending on the type of narrowing of a vessel in the body required. As used herein, the term “stent” is a shorthand reference referring to the wide varieties of stents, both covered and uncovered.
Stents are typically implanted within the vascular system to reinforce collapsing, partially occluded, weakened or under dilated sections of vessel and valves. Stents have also been successfully implanted in urinary tracts and bile ducts to reinforce those body vessels. This invention is applicable in all of these situations.
In general, the typical procedure for implanting a self-expanding stent is to first open the region of the vessel with a balloon catheter and then place the stent in a position bridging the weakened portion of the vessel. Positioning of the stent may be followed by the technique known as the “Swiss Kiss” in which a separate balloon catheter is positioned within the stent and expanded to radially expand the stent for implantation.
The instant apparatus and system, as illustrated herein, is clearly not anticipated, rendered obvious, or even present in any of the prior art mechanisms, either alone or in any combination thereof. A versatile system, method and series of apparatuses for creating and utilizing a stent stabilizer and pusher mechanism as part of a stent delivery device and other like systems is disclosed.
The present system pertains to improved medical devices providing enhanced precision, strength and utilization properties. Accordingly, an illustrative but non-limiting example of the present system may be found in a medical device such as a stent delivery system that is designed to work in conjunction with s Micro Medical Solutions™, device, which in one system features a (3) French (common abbreviations include: F, Fg, Ga, FR, CH or Ch) stent and delivery system.
In accordance with this invention, there is provided a stent delivery system comprising a stent stabilizer and pusher mechanism, which is designed to be an integral portion of the Micro Medical Solutions™ 3 F stent and delivery system.
The stent delivery system comprises a stent, a guidewire lumen, a hub, a marker band, a stabilizer and pusher shaft, and a braided mesh sock attached to the outer diameter of the stabilizer and pusher shaft and also engaged to the stent.
The stent stabilizer and pusher mechanism further comprises a reinforced polymer shaft, which is constructed to have a low friction lumen. The low friction lumen may be guide wire compatible. At the proximal end of the shaft (“proximal” meaning closer to an entry location outside the body), a hub may also be disclosed. At the distal end of the shaft, there is a braided mesh sock, which is constrained at one end beneath a marker band on the outer diameter of the reinforced shaft. The marker band provides a visual reference for a medical staff user when the stent has been released from the 3 F guide delivery system and the sock no longer has the stent constrained.
The unconstrained end of the braided sock hangs over the distal end of the shaft and has an unconstrained diameter, which is slightly larger than the diameter of the stent it will capture. The stent is held butted against the inside of the sock (See
In addition, the shaft may comprise any number of polymeric materials and may have any reinforcement material, coil or braid, which will provide sufficient shaft column support as the stent is being advanced or retracted inside the 3 F Guide.
Furthermore, the mesh sock may comprise any braiding configuration or material. The sock needs to be able to collapse uniformly and offer sufficient securement of the stent as it is being loaded inside the 3 F guide. Any number of wires and/or diameters of wires may be used to construct the sock, as long as it does not inhibit loading the stent or contribute to higher friction as the stent stabilizer and pusher design mechanism is advanced or retraced inside the 3 F Guide lumen.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification. All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The drawings, which are not necessarily to scale, depict illustrative embodiments of the claimed system.
A typical prior art stent placement mechanism is shown in
To position and deploy the stent 114, delivery system 10 is directed through the body lumen to the patient's desired and needed location for stent deployment and vessel repair. Outer sheath 112 is then retracted, and stabilizer 116 acts as a stabilizer to keep stent 114 from retracting with the sheath. As outer sheath 112 retracts, stent 114 is exposed and expands into place in the patient's body.
Additionally, the shaft 8 comprises an inner diameter 2 and an outer diameter 4, wherein the inner diameter 2 of the shaft is approximately 0.021″ and the outer diameter 4 of the shaft is approximately 0.030″. Furthermore, the mesh sock 14 includes a diameter which is a heat set diameter and is approximately 0.5 mm. In one embodiment, it is preferable that the heat set diameter be approximately 0.5-1.0 mm larger than the stent captured by the braided mesh sock 14.
In this embodiment, the braided mesh sock 14 is attached to the outer diameter 4 of the stent stabilizer and pusher mechanism 24, within the catheter 22. Furthermore, the braided mesh sock 14 is bonded to the marker band 12, and the bond is terminated beneath the marker band 12.
Additionally, the braided mesh sock 14 is also engaged with the braided stent 28. In one embodiment, the stabilizer and pusher mechanism 24 may accept a guide wire (not shown) through the lumen 16, which assists with the tracking of the stent delivery system 10. At the proximal end 34A of the catheter 22 there may be a catheter hub 18.
At the distal end 34B of the catheter 22 the braided mesh sock 14 is collapsed and secured around the braided stent 28. In one embodiment, the stent mechanism 28 is held butted against an inside of the mesh sock 14. As seen, the mesh sock comprises a constrained end 30A and an unconstrained end 30B. Further, the retraction of the stent stabilizer and pusher mechanism 24 pulls the braided stent 28 inside the catheter 22 toward the hub 18 as depicted by a directional arrow 25. In this embodiment the braided stent 28 is pulled toward the proximal end 34A of the catheter 22.
In conclusion, herein is presented a stent delivery system utilizing a stent stabilizer and pusher mechanism. The system is illustrated by example in the drawing figures, and throughout the written description. It should be understood that numerous variations are possible, while adhering to the inventive concept. Such variations are contemplated as being a part of the present system.
This application takes priority from and claims the benefit of U.S. Provisional Patent Application Ser. No. 62/154,316 filed on Apr. 29, 2015, U.S. Provisional Patent Application Ser. No. 62/165,914 filed on May 23, 2015, and U.S. Provisional Patent Application Ser. No. 62/253,839 filed on Nov. 11, 2015, the contents of which are herein incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US16/30180 | 4/29/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62154316 | Apr 2015 | US | |
62165914 | May 2015 | US | |
62253839 | Nov 2015 | US |