The present invention relates generally to methods and devices for delivering and deploying a medical endoprosthesis, and more particularly to a delivery system for a self-expanding endoprosthesis.
Medical endoprostheses, commonly referred to as stents, are known in the prior art for maintaining the patency of a diseased or weakened vessel or other passageway. Stents have been implanted in various body passageways such as blood vessels, the urinary tract, the biliary tract, and other body lumens. These devices are inserted into the vessel, positioned across the treatment area and then expanded or allowed to self expand to keep the vessel or passageway open. Effectively, the stent overcomes the natural tendency of the weakened area to close. Stents used in the vascular system are generally implanted transluminally during or following percutaneous transluminal angioplasty.
Self expanding stents may be mechanically compressed springs which expand when released, and/or they may be constructed from shape-memory materials including shape memory polymers and metals such a nickel-titanium (Nitinol) alloys and the like which have shape-memory characteristics.
Delivery devices for self expanding stents have included a protective sheath to prevent premature expansion at body temperatures for heat induced shape memory devices or to contain mechanically restrained or stress induced shape memory devices. The sheath also enhances the delivery through the tortuous vessels of the vascular system. Such sheaths increase the profile of the delivery system, necessitating use of a delivery catheter with a large diameter. The large diameter of the delivery catheter may in turn increase the risk of complications at the patient access site.
The increased profile also detracts from the ability of the device to navigate through tortuous vessels or passageways. The increased cross-sectional profile of the delivery system may make it impossible to deliver a self expanding stent to the treatment area and may decrease the ability to deliver sufficient contrast material through the guide catheter for enabling precise positioning.
In addition to the large profile of the delivery system, another problem associated with self expanding stents is that the stent itself cannot be radially compressed to a low profile. Since most such stents are cut from a tubular member, they are limited to the radial size of the tube from which they were cut. As explained above, it is desirable to keep the profile of the stent as small as possible. Furthermore, deploying a self expanding stent requires manipulating the outer sheath while keeping the stent carrying shaft stationary in order to properly place the stent at the treatment site.
In the event that a distal protection device is being used during the vascular procedure, the present invention can be used for retrieving the distal protection device. Distal protection devices are delivered via a guidewire and are positioned distal of the treatment area where they are expanded across the vessel to capture emboli that may escape during the procedure or placement of the stent. These devices are often self expanding and thus deployed and retrieved with a sheath. The procedure can become very time consuming if the delivery system must be completely removed after the procedure and then the distal protection device sheath be reinserted to withdraw the catheter. Thus, it would be an advantage to use the delivery device as the retrieval device for the distal protection device. Therefore, what is needed is a delivery system that addresses the problem of compressing the self expanding stent to a lower profile than that achieved with conventional stent delivery systems. A stent delivery system that is easy to manipulate, has a low profile and can also accommodate a distal protection device is also needed.
The present invention is a delivery system for a self expanding stent that has catheter with an outer shaft moveable with respect to an inner shaft for releasing a stent. The stent is positioned on the inner shaft and restrained by the outer shaft until it is released at the treatment site. The catheter tip is mounted on the inner shaft and is tapered to provide a smooth transition from the catheter outer shaft to the guidewire extending distally of the delivery system. A handle is located on the proximal end for one-handed operation when deploying the stent.
The system may include a valve relief that is selectively coupled to the catheter. By coupling the valve relief to the hemostatic valve or tuohy-borst coupler, the catheter can be moved within the hemostatic valve while reducing back bleed.
The catheter may deploy a stent retained in one of two configurations. In the first configuration, all the stent segments are compressed together and have the same radial position about the inner shaft. In the second configuration, certain crowns of the stent segments are positioned within the other crowns of the stent segments such that some have a first radial position and some have a second radial position. The second position is achieved by pressing certain crowns of segments inward after the first stent roll down to the first position when all the segments have the same radial position.
In alternative embodiments of the delivery system, the catheter outer shaft may extend past the inner shaft. This creates an area within the delivery system for retrieving a distal protection device. Alternatively, the inner shaft can be withdrawn sufficiently within the outer shaft to create an area to accommodate a distal protection device for retrieval with the delivery system catheter.
For a more complete understanding of the features, aspects, and advantages of the present invention, reference is now made to the following description, appended claims, and accompanying drawings wherein:
The present invention is a system for delivering a self expanding stent. Stent delivery system, designated 10 in
Turning now to
As shown in
Strain relief 22 includes a raised ring 54 approximate its distal end 56. Annular valve relief 58 is positioned around the outer shaft 26 and has an inner groove 60 for receiving raised ring 54 therein for releasably securing valve relief 58 to strain relief 22. Valve relief 58 allows the practitioner to selectively close the hemostatic valve or tuohy-borst coupler (together with an introducer collectively represented by the dashed line element 27) about valve relief 58, reducing back bleed while permitting free movement of the delivery system 10 during the procedure.
The inner shaft 24 includes an elongated tubular channel spacer 62 and a tubular spacer 64 and extends from the delivery system distal portion 32 through hypotube shaft 48 in handle 14 to secure at luer fitting 52. Channel spacer 62 extends coaxial along the length of inner shaft 24 from a proximal marker band 66 to approximately strain relief 22. Eight channels, 68A-68H, are spaced about its circumference as shown in
Catheter tip 72 is coupled to distal end 74 of inner shaft 24 approximate distal marker band 76. Tip 72 increases in diameter from inner shaft 24 to approximate the diameter of the outer shaft 26 at an intermediate section 78. Tip 72 then tapers in diameter to match guide wire port 80 at distal end of delivery system 10. This results in an atraumatic soft tip for smoothing the transition between guide wire 82, outer shaft 26 and guide wire port 80. Adjacent tip 72 is the stent receiving area 84 defined by the two marker bands, proximal marker band 66 and distal marker band 76. Inner shaft 24 may have a reduced cross section (not shown) to accommodate the stent in order to maintain a low profile for delivery system 10. Marker bands may also form a portion of a stop for the retained stent, such that the stent will remain in position on the inner shaft during the procedure as the outer shaft 26 is retracted during deployment. As seen in
Stent 28 is a self expanding stent. A self expanding stent cut from a single Nickel-Titanium alloy hypodermic tube in a modular configuration such as that shown in
To load the stent 28 into delivery system 10, stent 28 is radially reduced in size as known in the art by rolling the stent 28 into a reduced diameter and then placing the outer shaft 26 over stent 28. More particularly, as shown in the schematic of
If it is desired to reduce stent 110 into a smaller diameter, the following procedure may be used. Secondary roll down fixture 118 (
In an alternative embodiment shown in
A further embodiment is shown in
When the knob 146 is released from the luer fitting 144 and moved proximally, inner shaft 142 will move proximally with respect to the outer shaft.
In use, the lumens of delivery system 10 are flushed via the luer fitting 44 with saline. An indwelling guide wire is inserted through the lumen of inner shaft 24. The catheter is inserted through the indwelling introducer or guiding catheter (or coupling member) (an outline of such a coupling member connected to an introducer is shown by the dashed lines 27). Valve relief 58 may be detached from the strain relief 22 and is positioned in the hemostatic valve or tuohy-borst coupler (not shown) which is then is tightened down around the valve relief 58. The stent 28 is advanced through the vessel and is positioned at the treatment site. Knob 18 is slowly slid with the operator's thumb or finger in a proximal direction along the slot 16 of handle 14 which the operator is holding. This causes outer shaft 26 to pull backwards in a proximal direction, slowly releasing the stent 28 in the vessel. The delivery system 10 is then removed from the vessel by holding the guide wire 82 in place and pulling back on the delivery system 10 in a proximal direction.
In the event that a distal protection device is being used during the vascular procedure, the present invention can be used for retrieving the distal protection device with the embodiments shown in
The foregoing embodiments and examples are illustrative and are in no way intended to limit the scope of the claims set forth herein. For example. These and other alternatives are within the scope of the invention.
This application is a divisional of and claims priority from U.S. patent application Ser. No. 09/691,650 filed Oct. 17, 2000, now U.S. Patent No. 6,786,918, issued on Sep. 7, 2004.
Number | Name | Date | Kind |
---|---|---|---|
4665918 | Garza et al. | May 1987 | A |
4705517 | DiPisa, Jr. | Nov 1987 | A |
5284475 | Mackal | Feb 1994 | A |
5328469 | Coletti | Jul 1994 | A |
5344426 | Lau et al. | Sep 1994 | A |
5391172 | Williams et al. | Feb 1995 | A |
5466230 | Davila | Nov 1995 | A |
5484444 | Braunschweiler et al. | Jan 1996 | A |
5593394 | Kanesaka et al. | Jan 1997 | A |
5645559 | Hachtman et al. | Jul 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5688234 | Frisbie | Nov 1997 | A |
5782855 | Lau et al. | Jul 1998 | A |
5843090 | Schuetz | Dec 1998 | A |
5957929 | Brenneman | Sep 1999 | A |
5980533 | Holman | Nov 1999 | A |
6001123 | Lau | Dec 1999 | A |
6036682 | Lange et al. | Mar 2000 | A |
6071287 | Verbeek | Jun 2000 | A |
6146416 | Andersen et al. | Nov 2000 | A |
6221057 | Schwartz et al. | Apr 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6395017 | Dwyer et al. | May 2002 | B1 |
Number | Date | Country |
---|---|---|
1025813 | Aug 2000 | EP |
WO9807390 | Feb 1998 | WO |
WO 9949808 | Oct 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20050027306 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09691650 | Oct 2000 | US |
Child | 10903757 | US |