This invention relates generally to stent fixtures, and more particularly, but not exclusively, provides a stent mandrel having spherical support structures and method for use thereof that reduce coating defects on stents.
Blood vessel occlusions are commonly treated by mechanically enhancing blood flow in the affected vessels, such as by employing a stent. Stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of affected vessels. Typically stents are capable of being compressed, so that they can be inserted through small lumens via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in the patent literature disclosing stents include U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor.
Stents are used not only for mechanical intervention but also as vehicles for providing biological therapy. Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. Local delivery of a therapeutic substance is a preferred method of treatment because the substance is concentrated at a specific site and thus smaller total levels of medication can be administered in comparison to systemic dosages that often produce adverse or even toxic side effects for the patient.
One method of medicating a stent involves the use of a polymeric carrier coated onto the surface of the stent. A composition including a solvent, a polymer dissolved in the solvent, and a therapeutic substance dispersed in the blend is applied to the stent by immersing the stent in the composition or by spraying the composition onto the stent. The solvent is allowed to evaporate, leaving on the stent strut surfaces a coating of the polymer and the therapeutic substance impregnated in the polymer.
A shortcoming of the above-described method of medicating a stent is the potential for coating defects. While some coating defects can be minimized by adjusting the coating parameters, other defects occur due to the nature of the interface between the stent and the apparatus on which the stent is supported during the coating process. A high degree of surface contact between the stent and the supporting apparatus can provide regions in which the liquid composition can flow, wick, and collect as the composition is applied. As the solvent evaporates, the excess composition hardens to form excess coating at and around the contact points between the stent and the supporting apparatus. Upon the removal of the coated stent from the supporting apparatus, the excess coating may stick to the apparatus, thereby removing some of the coating from the stent and leaving bare areas. Alternatively, the excess coating may stick to the stent, thereby leaving excess coating as clumps or pools on the struts or webbing between the struts.
Accordingly, a new stent and method of use are needed to minimize coating defects.
A stent fixture for supporting a stent during a coating process is provided comprising a member for being inserted at least partially into a longitudinal bore of a stent, the member having at least one spherical component for making contact with the stent. The fixture can additionally comprise a second member coupled to one end of the member and a third member coupled to the other end of the member. The second and third members can be in constant contact with the stent during the coating process. In some embodiments, the second and third member can be in interim contact with the stent during the coating process. In some embodiments, the stent is capable of moving back and forth between the second and third members during the coating process.
In some embodiments, the spherical component penetrates through a gap between struts of the stent such that a surface of the spherical component project out from an outer surface of the stent. In some embodiments, the spherical component penetrates at least minimally through a gap between struts of the stent such that the surface of the spherical component does not project out from an outer surface of the stent. The spherical component can prevent the member from making contact with the stent. The spherical component can be moved incrementally with respect to the member for repositioning of the spherical component on the member.
In accordance with another aspect of the invention, methods of coating a stent using the above-described fixtures are provided.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
The following description is provided to enable any person having ordinary skill in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles, features and teachings disclosed herein.
The outer diameter of the mandrel 24 can be smaller than the inner diameter of the stent 10 so as to prevent the outer surface of the mandrel 24 from making contact with the inner surface of the stent 10. A sufficient clearance between the outer surface of the mandrel 24 and the inner surface of the stent 10 should be provided to prevent the mandrel 24 from obstructing the pattern of the stent body during the coating process. By way of example, the outer diameter of the mandrel 24 can be from about 0.010 inches (0.254 mm) to about 0.017 inches (0.432 mm) when the stent 10 has an inner diameter of between about 0.025 inches (0.635 mm) and about 0.035 inches (0.889 mm) when mounted on the fixture 20. The mandrel 24 should be longer than the stent 10 mounted thereon.
The mandrel 24 has at least one sphere 48 disposed thereon (e.g., at the middle of the stent 10) so as to prevent or minimize stent/mandrel contact. In an embodiment of the invention, the mandrel 24 has two spheres 48, each located adjacent to an end region of the mandrel 24. In some embodiments, the spheres 48 and the mandrel 24 are concentered about the same axis of rotation such that a longitudinal center axis of the mandrel 24 runs through the center of the spheres 48. Alternatively, the spheres 48 can be shifted with respect to the mandrel 24 such that the center axis of rotation of the mandrel 24 is off-set from the axis of rotation of the spheres 48.
In an embodiment of the invention, the spheres 48 can have a diameter up to about 90% of the stent 10 inner diameter, e.g., up to about 0.0225 inches for a stent having an inner diameter of 0.025 inches when mounted on the fixture 20. In some embodiments the diameter of the spheres 48 is large enough such that a surface of the spheres 48 does not extend out from an outer surface of the stent 10 through the gap regions 16. Accordingly, a segment of the spheres 48 will be placed inset the gapped region 16, without protruding out from the surface of the stent 10. In some embodiments, the diameter of the spheres 48 is small enough that at least a portion of the spheres 48 extends out through the gap 16 and above an outer surface of the stent 10. In either embodiment, the spheres 48 should function in part to prevent or minimize stent/mandrel contact.
The spheres 48 can be integral with the mandrel 24, e.g., the mandrel 24 and the spheres 48 could be formed from a single mold, or the spheres 48 can be coupled to the mandrel 24. In some embodiments, the positioning of the spheres 48 is adjustable with respect to the mandrel 24. In some embodiments, the spheres 48 can be incrementally moved with respect to the mandrel 24. Accordingly, the mandrel 24 and sphere 48 combination should include means for allowing the spheres 48 to be moved incrementally with respect to the mandrel 24 such as a thread/screw type assembly, a teeth/lock engagement or the like.
The lock member 26 includes a slanted end 42 having a slanted angle φ2. Angle φ2 can be the same as or different than the above-described angle φ1. As best illustrated by the figures, the slanted end 42 can slant in an opposing direction to the slanted end 36. As a result, when the surface of the slanted end 36 is facing a spray nozzle or a gas nozzle, the surface of the slanted end 42 is facing away from the nozzle. Should the spacing between the slanted ends 36 and 42 be larger than the length of the stent, spray or gas applications bouncing off of the slanted ends 36 and 42 can cause the movement of the stent back and forth as the fixture 20 rotates. In some embodiments, the stent 10 can be securely pinched between the slanted ends 36 and 42 so as to be in constant contact with the stent during the coating process.
A second end 44 of the mandrel 24 can be permanently affixed to the lock member 26 if the end 40 is disengagable from the support member 22. Alternatively, in accordance with another embodiment, the mandrel 24 can have a threaded second end 44 for screwing into a bore 46 of the lock member 26. The bore 46 can be of any suitable depth that would allow the lock member 26 to be incrementally moved closer to the support member 22. The bore 46 can also extend completely through the lock member 26. Accordingly, the stents 10 of any length can be securely pinched between the support and the lock members 22 and 26. In accordance with yet another embodiment, a non-threaded second end 44 and the bore 46 combination is employed such that the second end 44 can be press-fitted or friction-fitted within the bore 46 to prevent movement of the stent 10 on the stent mandrel fixture 20.
During a spray coating process, the stent 10 rests on the spheres 48, which prevent the stent 10 from contacting the mandrel 24. Further, as the mandrel 24 rotates, the stent 10 also rotates, but not at 1:1 ratio since the stent 10 is not coupled to the spheres 48. As such, the point of contact between the inner diameter of the stent 10 and the spheres 48 constantly changes. Due to the constantly changing points of contact, the collection of excess coating at a single point is prevented, thereby minimizing the formation of clumps, which can lead to further defects, such as tears and rough surfaces, when the stent 10 is removed from the fixture 20. In addition, coating and/or air deflected from the slanted ends 36 and 42 cause translational motion of the stent 10 relative to the mandrel 24, thereby limiting contact of the stent 10 with the ends 36 and 42. In an embodiment of the invention, the slanted ends 36 and 42 are slanted in opposite directions such that the coating and/or the air is only deflected off on one of the ends 36 and 42 at a time.
In order to further reduce coating defects, the spheres 48 may be coated with one or more materials such as polymeric material having less adhesive force with the coating substance than with the spheres 48. Examples of a suitable materials include poly (tetrafluor ethylene) (e.g., TEFLON), fluorinated ethylene propylene (“FEP”), poly (vinylidene fluoride) (“PVDF”), poly (para-xylyene), polyamide (Nylon), polyolefins (e.g., high density poly (ethylene) and poly (propylene)), and polyacetal (DELRIN). In an alternative embodiment of the invention, the spheres 48 may be made of one or more of the non-stick polymeric materials.
The components of the coating substance or composition can include a solvent or a solvent system comprising multiple solvents, a polymer or a combination of polymers, a therapeutic substance or a drug or a combination of drugs. In some embodiments, the coating substance can be exclusively a polymer or a combination of polymers (e.g., for application of a primer layer or topcoat layer). In some embodiments, the coating substance can be a drug that is polymer free. Polymers can be biostable, bioabsorbable, biodegradable, or bioerodable. Biostable refers to polymers that are not biodegradable. The terms biodegradable, bioabsorbable, and bioerodable are used interchangeably and refer to polymers that are capable of being completely degraded and/or eroded when exposed to bodily fluids such as blood and can be gradually resorbed, absorbed, and/or eliminated by the body. The polymers can also be of the type that can be easily excreted from the body. The processes of breaking down and eventual absorption and elimination of the polymer can be caused by, for example, hydrolysis, metabolic processes, bulk or surface erosion, and the like.
Representative examples of polymers that may be used include, but are not limited to, poly(N-acetylglucosamine) (Chitin), Chitoson, poly(hydroxyvalerate), poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolide), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactic acid), poly(D,L-lactide), poly(D-lactic acid), poly(D-lactide), poly(caprolactone), poly(trimethylene carbonate), polyester amide, poly(glycolic acid-co-trimethylene carbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers other than polyacrylates, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), acrylonitrile-styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides, polyethers, polyurethanes, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose. Representative examples of polymers that may be especially well suited for use include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(butyl methacrylate), poly(vinylidene fluoride-co-hexafluororpropene) (e.g., SOLEF 21508, available from Solvay Solexis PVDF, Thorofare, N.J.), polyvinylidene fluoride (otherwise known as KYNAR, available from ATOFINA Chemicals, Philadelphia, Pa.), ethylene-vinyl acetate copolymers, and polyethylene glycol.
“Solvent” is defined as a liquid substance or composition that is compatible with the polymer and/or drug and is capable of dissolving the polymer and/or drug at the concentration desired in the composition. Examples of solvents include, but are not limited to, dimethylsulfoxide, chloroform, acetone, water (buffered saline), xylene, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, isopropanol admixed with water, N-methylpyrrolidinone, toluene, and mixtures and combinations thereof.
The therapeutic substance or drug can include any substance capable of exerting a therapeutic or prophylactic effect. Examples of active agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The bioactive agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel, (e.g., TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g., Taxotere®, from Aventis S. A., Frankfurt, Germany), methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g., Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g., Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include aspirin, sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g., Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g., Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.), calcium channel blockers (such as nifedipine), colchicine, proteins, peptides, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate agents include cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, carboplatin, alpha-interferon, genetically engineered epithelial cells, steroidal anti-inflammatory agents, non-steroidal anti-inflammatory agents, antivirals, anticancer drugs, anticoagulant agents, free radical scavengers, estradiol, antibiotics, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, ABT-578, clobetasol, cytostatic agents, prodrugs thereof, co-drugs thereof, and a combination thereof. Other therapeutic substances or agents may include rapamycin and structural derivatives or functional analogs thereof, such as 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin.
It will be appreciated by one of ordinary skill in the art that the support member 22 and the lock member 26 can have different shapes. For example, the support member 22 and the lock member 26 can each have flat or tapered shapes. Further, the support member 26 and the lock member 26 do not need to have identical shapes.
Accordingly, as compared to conventional mandrels, embodiments of the invention reduce loading/unloading coating damage as the spheres 48 enable simple, smoother geometry that facilitates loading and unloading, thereby decreasing the likelihood of damaging coating on the stent 10 as compared to mandrels having coils thereon. Further, embodiments of the invention reduce coating damage during spray coating as the spheres 48 reduce the likelihood of coating accumulation and scraping of the inner stent 10 surface because of the spheres' 48 smooth surfaces. The mandrel 24 also enables tumbling of the stent 10 during a coating process, thereby enabling a more even distribution of coating on surfaces as compared to conventional mandrels.
The foregoing description of the illustrated embodiments of the present invention is by way of example only, and other variations and modifications of the above-described embodiments and methods are possible in light of the foregoing teaching. For example, the cylinders 56 may also be coated with a non-stick polymeric material having less adhesive force with the coating substance than with the members.
Number | Name | Date | Kind |
---|---|---|---|
2072303 | Hermann et al. | Mar 1937 | A |
2386454 | Frosch et al. | Oct 1945 | A |
2845346 | Scanlon et al. | Jul 1958 | A |
3016875 | Ballentine, Jr. et al. | Jan 1962 | A |
3773737 | Goodman et al. | Nov 1973 | A |
3827139 | Norteman | Aug 1974 | A |
3849514 | Gray, Jr. et al. | Nov 1974 | A |
3882816 | Rooz et al. | May 1975 | A |
3995075 | Cernauskas et al. | Nov 1976 | A |
4011388 | Murphy et al. | Mar 1977 | A |
4082212 | Headrick et al. | Apr 1978 | A |
4201149 | Koester et al. | May 1980 | A |
4226243 | Shalaby et al. | Oct 1980 | A |
4269713 | Yamashita et al. | May 1981 | A |
4290383 | Pfender | Sep 1981 | A |
4329383 | Joh | May 1982 | A |
4343931 | Barrows | Aug 1982 | A |
4459252 | MacGregor | Jul 1984 | A |
4489670 | Mosser et al. | Dec 1984 | A |
4529792 | Barrows | Jul 1985 | A |
4560374 | Hammerslag | Dec 1985 | A |
4611051 | Hayes et al. | Sep 1986 | A |
4616593 | Kawamura et al. | Oct 1986 | A |
4629563 | Wrasidlo | Dec 1986 | A |
4640846 | Kuo | Feb 1987 | A |
4656242 | Swan et al. | Apr 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4798585 | Inoue et al. | Jan 1989 | A |
4800882 | Gianturco | Jan 1989 | A |
4822535 | Ekman et al. | Apr 1989 | A |
4839055 | Ishizaki et al. | Jun 1989 | A |
4846791 | Hattler et al. | Jul 1989 | A |
4865879 | Finlay | Sep 1989 | A |
4882168 | Casey et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4893623 | Rosenbluth | Jan 1990 | A |
4906423 | Frisch | Mar 1990 | A |
4931287 | Bae et al. | Jun 1990 | A |
4941870 | Okada et al. | Jul 1990 | A |
4955899 | Della Corna et al. | Sep 1990 | A |
4976736 | White et al. | Dec 1990 | A |
4977901 | Ofstead | Dec 1990 | A |
4992312 | Frisch | Feb 1991 | A |
5017420 | Marikar | May 1991 | A |
5019096 | Fox, Jr. et al. | May 1991 | A |
5033405 | Yamada et al. | Jul 1991 | A |
5037392 | Hillstead | Aug 1991 | A |
5037427 | Harada et al. | Aug 1991 | A |
5059211 | Stack et al. | Oct 1991 | A |
5095848 | Ikeno | Mar 1992 | A |
5100992 | Cohn et al. | Mar 1992 | A |
5112457 | Marchant | May 1992 | A |
5133742 | Pinchuk | Jul 1992 | A |
5163952 | Froix | Nov 1992 | A |
5165919 | Sasaki et al. | Nov 1992 | A |
5171445 | Zepf | Dec 1992 | A |
5188734 | Zepf | Feb 1993 | A |
5201314 | Bosley et al. | Apr 1993 | A |
5219980 | Swidler | Jun 1993 | A |
5229045 | Soldani | Jul 1993 | A |
5234457 | Andersen | Aug 1993 | A |
5242399 | Lau et al. | Sep 1993 | A |
5258020 | Froix | Nov 1993 | A |
5264246 | Ikeno | Nov 1993 | A |
5272012 | Opolski | Dec 1993 | A |
5292516 | Viegas et al. | Mar 1994 | A |
5298260 | Viegas et al. | Mar 1994 | A |
5300295 | Viegas et al. | Apr 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5306501 | Viegas et al. | Apr 1994 | A |
5306786 | Moens et al. | Apr 1994 | A |
5308338 | Helfrich | May 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5330768 | Park et al. | Jul 1994 | A |
5342621 | Eury | Aug 1994 | A |
5358740 | Bornside et al. | Oct 1994 | A |
5370684 | Vallana et al. | Dec 1994 | A |
5378511 | Cardinali et al. | Jan 1995 | A |
5380299 | Fearnot et al. | Jan 1995 | A |
5417981 | Endo et al. | May 1995 | A |
5421955 | Lau et al. | Jun 1995 | A |
5443496 | Schwartz et al. | Aug 1995 | A |
5447724 | Helmus et al. | Sep 1995 | A |
5455040 | Marchant | Oct 1995 | A |
5458683 | Taylor et al. | Oct 1995 | A |
5462990 | Hubbell et al. | Oct 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5485496 | Lee et al. | Jan 1996 | A |
5514154 | Lau et al. | May 1996 | A |
5516560 | Harayama et al. | May 1996 | A |
5516881 | Lee et al. | May 1996 | A |
5527337 | Stack et al. | Jun 1996 | A |
5537729 | Kolobow | Jul 1996 | A |
5538493 | Gerken et al. | Jul 1996 | A |
5558900 | Fan et al. | Sep 1996 | A |
5569295 | Lam | Oct 1996 | A |
5569463 | Helmus et al. | Oct 1996 | A |
5578048 | Pasqualucci et al. | Nov 1996 | A |
5578073 | Haimovich et al. | Nov 1996 | A |
5584877 | Miyake et al. | Dec 1996 | A |
5603721 | Lau et al. | Feb 1997 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607442 | Fischell et al. | Mar 1997 | A |
5607467 | Froix | Mar 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5610241 | Lee et al. | Mar 1997 | A |
5611775 | Machold et al. | Mar 1997 | A |
5616338 | Fox, Jr. et al. | Apr 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5628786 | Banas et al. | May 1997 | A |
5637113 | Tartaglia et al. | Jun 1997 | A |
5643580 | Subramaniam | Jul 1997 | A |
5644020 | Timmermann et al. | Jul 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5656082 | Takatsuki et al. | Aug 1997 | A |
5658995 | Kohn et al. | Aug 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5670558 | Onishi et al. | Sep 1997 | A |
5674242 | Phan et al. | Oct 1997 | A |
5679400 | Tuch | Oct 1997 | A |
5687906 | Nakagawa | Nov 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5702754 | Zhong | Dec 1997 | A |
5707385 | Williams | Jan 1998 | A |
5711958 | Cohn et al. | Jan 1998 | A |
5713949 | Jayaraman | Feb 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5721131 | Rudolph et al. | Feb 1998 | A |
5723219 | Kolluri et al. | Mar 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5741554 | Tisone | Apr 1998 | A |
5746998 | Torchilin et al. | May 1998 | A |
5756553 | Iguchi et al. | May 1998 | A |
5759205 | Valentini | Jun 1998 | A |
5766710 | Turnlund et al. | Jun 1998 | A |
5769883 | Buscemi et al. | Jun 1998 | A |
5772864 | Møller et al. | Jun 1998 | A |
5776184 | Tuch | Jul 1998 | A |
5783657 | Pavlin et al. | Jul 1998 | A |
5788626 | Thompson | Aug 1998 | A |
5788979 | Alt et al. | Aug 1998 | A |
5800392 | Racchini | Sep 1998 | A |
5820917 | Tuch | Oct 1998 | A |
5823996 | Sparks | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5833659 | Kranys | Nov 1998 | A |
5836965 | Jendersee et al. | Nov 1998 | A |
5837008 | Berg et al. | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5843172 | Yan | Dec 1998 | A |
5849859 | Acemoglu | Dec 1998 | A |
5851508 | Greff et al. | Dec 1998 | A |
5854376 | Higashi | Dec 1998 | A |
5855598 | Pinchuk | Jan 1999 | A |
5855600 | Alt | Jan 1999 | A |
5855684 | Bergmann | Jan 1999 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5869127 | Zhong | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5876433 | Lunn | Mar 1999 | A |
5877224 | Brocchini et al. | Mar 1999 | A |
5879713 | Roth et al. | Mar 1999 | A |
5891108 | Leone et al. | Apr 1999 | A |
5891507 | Jayaraman | Apr 1999 | A |
5895407 | Jayaraman | Apr 1999 | A |
5897911 | Loeffler | Apr 1999 | A |
5902631 | Wang et al. | May 1999 | A |
5902875 | Roby et al. | May 1999 | A |
5905168 | Dos Santos et al. | May 1999 | A |
5910564 | Gruning et al. | Jun 1999 | A |
5911752 | Dustrude et al. | Jun 1999 | A |
5914387 | Roby et al. | Jun 1999 | A |
5919893 | Roby et al. | Jul 1999 | A |
5922393 | Jayaraman | Jul 1999 | A |
5925720 | Kataoka et al. | Jul 1999 | A |
5928279 | Shannon et al. | Jul 1999 | A |
5932299 | Katoot | Aug 1999 | A |
5935135 | Bramfitt et al. | Aug 1999 | A |
5948018 | Dereume et al. | Sep 1999 | A |
5955509 | Webber et al. | Sep 1999 | A |
5958385 | Tondeur et al. | Sep 1999 | A |
5962138 | Kolluri et al. | Oct 1999 | A |
5968091 | Pinchuk et al. | Oct 1999 | A |
5971954 | Conway et al. | Oct 1999 | A |
5972027 | Johnson | Oct 1999 | A |
5980928 | Terry | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5984449 | Tajika et al. | Nov 1999 | A |
5997517 | Whitbourne | Dec 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6010573 | Bowlin | Jan 2000 | A |
6011125 | Lohmeijer et al. | Jan 2000 | A |
6013099 | Dinh et al. | Jan 2000 | A |
6015541 | Greff et al. | Jan 2000 | A |
6030371 | Pursley | Feb 2000 | A |
6033582 | Lee et al. | Mar 2000 | A |
6034204 | Mohr et al. | Mar 2000 | A |
6042875 | Ding et al. | Mar 2000 | A |
6045899 | Wang et al. | Apr 2000 | A |
6051576 | Ashton et al. | Apr 2000 | A |
6051648 | Rhee et al. | Apr 2000 | A |
6054553 | Groth et al. | Apr 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6059714 | Armini et al. | May 2000 | A |
6060451 | DiMaio et al. | May 2000 | A |
6060518 | Kabanov et al. | May 2000 | A |
6068202 | Hynes et al. | May 2000 | A |
6071305 | Brown et al. | Jun 2000 | A |
6080488 | Hostettler et al. | Jun 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6106889 | Jayaraman | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6110483 | Whitbourne et al. | Aug 2000 | A |
6113629 | Ken | Sep 2000 | A |
6120491 | Kohn et al. | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120788 | Barrows | Sep 2000 | A |
6120847 | Yang et al. | Sep 2000 | A |
6120904 | Hostettler et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6126686 | Badylak et al. | Oct 2000 | A |
6129755 | Mathis et al. | Oct 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6136333 | Cohn et al. | Oct 2000 | A |
6140127 | Sprague | Oct 2000 | A |
6140431 | Kinker et al. | Oct 2000 | A |
6143354 | Koulik et al. | Nov 2000 | A |
6143370 | Panagiotou et al. | Nov 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6156373 | Zhong et al. | Dec 2000 | A |
6159978 | Myers et al. | Dec 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6165267 | Torczynski | Dec 2000 | A |
6171334 | Cox | Jan 2001 | B1 |
6172167 | Stapert et al. | Jan 2001 | B1 |
6174329 | Callol et al. | Jan 2001 | B1 |
6177523 | Reich et al. | Jan 2001 | B1 |
6180632 | Myers et al. | Jan 2001 | B1 |
6194034 | Nishi et al. | Feb 2001 | B1 |
6197013 | Reed et al. | Mar 2001 | B1 |
6203551 | Wu | Mar 2001 | B1 |
6203569 | Wijay | Mar 2001 | B1 |
6206915 | Fagan et al. | Mar 2001 | B1 |
6211249 | Cohn et al. | Apr 2001 | B1 |
6214115 | Taylor et al. | Apr 2001 | B1 |
6214901 | Chudzik et al. | Apr 2001 | B1 |
6228072 | Omaleki et al. | May 2001 | B1 |
6231600 | Zhong | May 2001 | B1 |
6235340 | Lee et al. | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6244575 | Vaartstra et al. | Jun 2001 | B1 |
6245099 | Edwin et al. | Jun 2001 | B1 |
6245753 | Byun et al. | Jun 2001 | B1 |
6245760 | He et al. | Jun 2001 | B1 |
6248129 | Froix | Jun 2001 | B1 |
6248398 | Talieh et al. | Jun 2001 | B1 |
6251136 | Guruwaiya et al. | Jun 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6258121 | Yang et al. | Jul 2001 | B1 |
6258371 | Koulik et al. | Jul 2001 | B1 |
6261320 | Tam et al. | Jul 2001 | B1 |
6262034 | Mathiowitz et al. | Jul 2001 | B1 |
6270504 | Lorentzen Cornelius et al. | Aug 2001 | B1 |
6270788 | Koulik et al. | Aug 2001 | B1 |
6273878 | Muni | Aug 2001 | B1 |
6273908 | Ndondo-Lay | Aug 2001 | B1 |
6273910 | Limon | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6277449 | Kolluri et al. | Aug 2001 | B1 |
6279368 | Escano et al. | Aug 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6283949 | Roorda | Sep 2001 | B1 |
6284305 | Ding et al. | Sep 2001 | B1 |
6287249 | Tam et al. | Sep 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6306165 | Patnaik et al. | Oct 2001 | B1 |
6306176 | Whitbourne | Oct 2001 | B1 |
6322847 | Zhong et al. | Nov 2001 | B1 |
6331191 | Chobotov | Dec 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
4733665 | Palmaz | Jan 2002 | C2 |
6335029 | Kamath et al. | Jan 2002 | B1 |
6344035 | Chudzik et al. | Feb 2002 | B1 |
6346110 | Wu | Feb 2002 | B2 |
6358556 | Ding et al. | Mar 2002 | B1 |
6358567 | Pham et al. | Mar 2002 | B2 |
6364903 | Tseng et al. | Apr 2002 | B2 |
6368658 | Schwarz et al. | Apr 2002 | B1 |
6372283 | Shim et al. | Apr 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6383215 | Sass | May 2002 | B1 |
6387118 | Hanson | May 2002 | B1 |
6387379 | Goldberg et al. | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6407009 | You et al. | Jun 2002 | B1 |
6416543 | Hilaire et al. | Jul 2002 | B1 |
6419692 | Yang et al. | Jul 2002 | B1 |
6435798 | Satoh | Aug 2002 | B1 |
6440221 | Shamouilian et al. | Aug 2002 | B2 |
6451373 | Hossainy et al. | Sep 2002 | B1 |
6475779 | Mathiowitz et al. | Nov 2002 | B2 |
6482834 | Spada et al. | Nov 2002 | B2 |
6494862 | Ray et al. | Dec 2002 | B1 |
6503538 | Chu et al. | Jan 2003 | B1 |
6503556 | Harish et al. | Jan 2003 | B2 |
6503954 | Bhat et al. | Jan 2003 | B1 |
6506437 | Harish et al. | Jan 2003 | B1 |
6517534 | McGovern et al. | Feb 2003 | B1 |
6517889 | Jayaraman | Feb 2003 | B1 |
6521284 | Parsons et al. | Feb 2003 | B1 |
6524347 | Myers et al. | Feb 2003 | B1 |
6527801 | Dutta | Mar 2003 | B1 |
6527863 | Pacetti et al. | Mar 2003 | B1 |
6528526 | Myers et al. | Mar 2003 | B1 |
6530950 | Alvarado et al. | Mar 2003 | B1 |
6530951 | Bates et al. | Mar 2003 | B1 |
6534112 | Bouchier et al. | Mar 2003 | B1 |
6540776 | Sanders Millare et al. | Apr 2003 | B2 |
6544223 | Kokish | Apr 2003 | B1 |
6544543 | Mandrusov et al. | Apr 2003 | B1 |
6544582 | Yoe | Apr 2003 | B1 |
6555157 | Hossainy | Apr 2003 | B1 |
6558733 | Hossainy et al. | May 2003 | B1 |
6562136 | Chappa et al. | May 2003 | B1 |
6565659 | Pacetti et al. | May 2003 | B1 |
6572644 | Moein | Jun 2003 | B1 |
6572651 | De Scheerder et al. | Jun 2003 | B1 |
6575933 | Wittenberger et al. | Jun 2003 | B1 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6585765 | Hossainy et al. | Jul 2003 | B1 |
6585926 | Mirzaee | Jul 2003 | B1 |
6605154 | Villareal | Aug 2003 | B1 |
6610087 | Zarbatany et al. | Aug 2003 | B1 |
6613432 | Zamora et al. | Sep 2003 | B2 |
6616765 | Hossaony et al. | Sep 2003 | B1 |
6620617 | Mathiowitz et al. | Sep 2003 | B2 |
6623448 | Slater | Sep 2003 | B2 |
6625486 | Lundkvist et al. | Sep 2003 | B2 |
6641611 | Jayaraman | Nov 2003 | B2 |
6645135 | Bhat | Nov 2003 | B1 |
6645195 | Bhat et al. | Nov 2003 | B1 |
6656216 | Hossainy et al. | Dec 2003 | B1 |
6656506 | Wu et al. | Dec 2003 | B1 |
6660034 | Mandrusov et al. | Dec 2003 | B1 |
6663662 | Pacetti et al. | Dec 2003 | B2 |
6663880 | Roorda et al. | Dec 2003 | B1 |
6666880 | Chiu et al. | Dec 2003 | B1 |
6673154 | Pacetti et al. | Jan 2004 | B1 |
6673385 | Ding et al. | Jan 2004 | B1 |
6676700 | Jacobs et al. | Jan 2004 | B1 |
6682771 | Zhong et al. | Jan 2004 | B2 |
6689099 | Mirzaee | Feb 2004 | B2 |
6689350 | Uhrich | Feb 2004 | B2 |
6695920 | Pacetti et al. | Feb 2004 | B1 |
6706013 | Bhat et al. | Mar 2004 | B1 |
6709514 | Hossainy | Mar 2004 | B1 |
6712845 | Hossainy | Mar 2004 | B2 |
6713119 | Hossainy et al. | Mar 2004 | B2 |
6716444 | Castro et al. | Apr 2004 | B1 |
6723120 | Yan | Apr 2004 | B2 |
6723373 | Narayanan et al. | Apr 2004 | B1 |
6730064 | Ragheb et al. | May 2004 | B2 |
6733768 | Hossainy et al. | May 2004 | B2 |
6740040 | Mandrusov et al. | May 2004 | B1 |
6743462 | Pacetti | Jun 2004 | B1 |
6746773 | Llanos et al. | Jun 2004 | B2 |
6749626 | Bhat et al. | Jun 2004 | B1 |
6753071 | Pacetti | Jun 2004 | B1 |
6758859 | Dang et al. | Jul 2004 | B1 |
6759054 | Chen et al. | Jul 2004 | B2 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
6776796 | Falotico et al. | Aug 2004 | B2 |
6780424 | Claude | Aug 2004 | B2 |
6790228 | Hossainy et al. | Sep 2004 | B2 |
6818063 | Kerrigan | Nov 2004 | B1 |
6824559 | Michal | Nov 2004 | B2 |
6860946 | Hossainy et al. | Mar 2005 | B2 |
6887510 | Villareal | May 2005 | B2 |
6890583 | Chudzik et al. | May 2005 | B2 |
6955723 | Pacetti et al. | Oct 2005 | B2 |
6972054 | Kerrigan | Dec 2005 | B2 |
7074276 | Van Sciver et al. | Jul 2006 | B1 |
7175874 | Pacetti | Feb 2007 | B1 |
7323209 | Esbeck et al. | Jan 2008 | B1 |
7335265 | Hossainy | Feb 2008 | B1 |
7335391 | Pacetti | Feb 2008 | B1 |
7354480 | Kokish et al. | Apr 2008 | B1 |
7404979 | Pacetti | Jul 2008 | B1 |
20010007083 | Roorda | Jul 2001 | A1 |
20010029351 | Falotico et al. | Oct 2001 | A1 |
20010037145 | Guruwaiya et al. | Nov 2001 | A1 |
20020005206 | Falotico et al. | Jan 2002 | A1 |
20020007213 | Falotico et al. | Jan 2002 | A1 |
20020007214 | Falotico | Jan 2002 | A1 |
20020007215 | Falotico et al. | Jan 2002 | A1 |
20020050220 | Schueller et al. | May 2002 | A1 |
20020051730 | Bodnar et al. | May 2002 | A1 |
20020065548 | Birdsall et al. | May 2002 | A1 |
20020077693 | Barclay et al. | Jun 2002 | A1 |
20020082679 | Sirhan et al. | Jun 2002 | A1 |
20020087123 | Hossainy et al. | Jul 2002 | A1 |
20020091433 | Ding et al. | Jul 2002 | A1 |
20020111590 | Davila et al. | Aug 2002 | A1 |
20020165608 | Llanos et al. | Nov 2002 | A1 |
20020176849 | Slepian | Nov 2002 | A1 |
20020183581 | Yoe et al. | Dec 2002 | A1 |
20020188037 | Chudzik et al. | Dec 2002 | A1 |
20020188277 | Roorda et al. | Dec 2002 | A1 |
20030004141 | Brown | Jan 2003 | A1 |
20030028243 | Bates et al. | Feb 2003 | A1 |
20030028244 | Bates et al. | Feb 2003 | A1 |
20030031780 | Chudzik et al. | Feb 2003 | A1 |
20030032767 | Tada et al. | Feb 2003 | A1 |
20030036794 | Ragheb et al. | Feb 2003 | A1 |
20030039689 | Chen et al. | Feb 2003 | A1 |
20030040712 | Ray et al. | Feb 2003 | A1 |
20030040790 | Furst | Feb 2003 | A1 |
20030059520 | Chen et al. | Mar 2003 | A1 |
20030060877 | Falotico et al. | Mar 2003 | A1 |
20030065377 | Davila et al. | Apr 2003 | A1 |
20030072868 | Harish et al. | Apr 2003 | A1 |
20030073961 | Happ | Apr 2003 | A1 |
20030083646 | Sirhan et al. | May 2003 | A1 |
20030083739 | Cafferata | May 2003 | A1 |
20030088307 | Shulze et al. | May 2003 | A1 |
20030097088 | Pacetti | May 2003 | A1 |
20030097173 | Dutta | May 2003 | A1 |
20030105518 | Dutta | Jun 2003 | A1 |
20030113439 | Pacetti et al. | Jun 2003 | A1 |
20030150380 | Yoe | Aug 2003 | A1 |
20030158517 | Kokish | Aug 2003 | A1 |
20030190406 | Hossainy et al. | Oct 2003 | A1 |
20030211230 | Pacetti et al. | Nov 2003 | A1 |
20030215564 | Heller et al. | Nov 2003 | A1 |
20040018296 | Castro et al. | Jan 2004 | A1 |
20040029952 | Chen et al. | Feb 2004 | A1 |
20040047978 | Hossainy et al. | Mar 2004 | A1 |
20040047980 | Pacetti et al. | Mar 2004 | A1 |
20040052858 | Wu et al. | Mar 2004 | A1 |
20040052859 | Wu et al. | Mar 2004 | A1 |
20040054104 | Pacetti | Mar 2004 | A1 |
20040060508 | Pacetti et al. | Apr 2004 | A1 |
20040062853 | Pacetti et al. | Apr 2004 | A1 |
20040063805 | Pacetti et al. | Apr 2004 | A1 |
20040071861 | Mandrusov et al. | Apr 2004 | A1 |
20040072922 | Hossainy et al. | Apr 2004 | A1 |
20040073298 | Hossainy | Apr 2004 | A1 |
20040086542 | Hossainy et al. | May 2004 | A1 |
20040086550 | Roorda et al. | May 2004 | A1 |
20040096504 | Michal | May 2004 | A1 |
20040098117 | Hossainy et al. | May 2004 | A1 |
20040182312 | Pacetti | Sep 2004 | A1 |
20040191405 | Kerrigan | Sep 2004 | A1 |
20040213893 | Boulais | Oct 2004 | A1 |
20050069630 | Fox et al. | Mar 2005 | A1 |
20050074544 | Pacetti et al. | Apr 2005 | A1 |
20050261764 | Pacetti et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
42 24 401 | Jan 1994 | DE |
0 301 856 | Feb 1989 | EP |
0 396 429 | Nov 1990 | EP |
0 514 406 | Nov 1992 | EP |
0 604 022 | Jun 1994 | EP |
0 623 354 | Nov 1994 | EP |
0 627 226 | Dec 1994 | EP |
0 665 023 | Aug 1995 | EP |
0 701 802 | Mar 1996 | EP |
0 716 836 | Jun 1996 | EP |
0 850 651 | Jul 1996 | EP |
0 809 999 | Dec 1997 | EP |
0 832 655 | Apr 1998 | EP |
0 875 218 | Nov 1998 | EP |
0 879 595 | Nov 1998 | EP |
0 897 701 | Feb 1999 | EP |
0 910 584 | Apr 1999 | EP |
0 923 953 | Jun 1999 | EP |
0 953 320 | Nov 1999 | EP |
0 970 711 | Jan 2000 | EP |
0 982 041 | Mar 2000 | EP |
1 023 879 | Aug 2000 | EP |
1 192 957 | Apr 2002 | EP |
1 273 314 | Jan 2003 | EP |
05009726 | Jan 1993 | JP |
11299901 | Nov 1999 | JP |
2001-190687 | Jul 2001 | JP |
872531 | Oct 1981 | SU |
876663 | Oct 1981 | SU |
905228 | Feb 1982 | SU |
790725 | Feb 1983 | SU |
1016314 | May 1983 | SU |
811750 | Sep 1983 | SU |
1293518 | Feb 1987 | SU |
WO 9001969 | Mar 1990 | WO |
WO 9112846 | Sep 1991 | WO |
WO 9409760 | May 1994 | WO |
WO 9510989 | Apr 1995 | WO |
WO 9524929 | Sep 1995 | WO |
WO 9640174 | Dec 1996 | WO |
WO 9710011 | Mar 1997 | WO |
WO 9745105 | Dec 1997 | WO |
WO 9746590 | Dec 1997 | WO |
WO 9808463 | Mar 1998 | WO |
WO 9817331 | Apr 1998 | WO |
WO 9823228 | Jun 1998 | WO |
WO 9832398 | Jun 1998 | WO |
WO 9836784 | Aug 1998 | WO |
WO 9901118 | Jan 1999 | WO |
WO 9916386 | Apr 1999 | WO |
WO 9938546 | Aug 1999 | WO |
WO 9963981 | Dec 1999 | WO |
WO 0002599 | Jan 2000 | WO |
WO 0012147 | Mar 2000 | WO |
WO 0018446 | Apr 2000 | WO |
WO 0064506 | Nov 2000 | WO |
WO 0100112 | Jan 2001 | WO |
WO 0101890 | Jan 2001 | WO |
WO 0115751 | Mar 2001 | WO |
WO 0117577 | Mar 2001 | WO |
WO 0145763 | Jun 2001 | WO |
WO 0149338 | Jul 2001 | WO |
WO 0151027 | Jul 2001 | WO |
WO 0152772 | Jul 2001 | WO |
WO 0174414 | Oct 2001 | WO |
WO 0191918 | Dec 2001 | WO |
WO 0203890 | Jan 2002 | WO |
WO 0226162 | Apr 2002 | WO |
WO 0234311 | May 2002 | WO |
WO 02056790 | Jul 2002 | WO |
WO 02058753 | Aug 2002 | WO |
WO 02102283 | Dec 2002 | WO |
WO 03000308 | Jan 2003 | WO |
WO 03022323 | Mar 2003 | WO |
WO 03028780 | Apr 2003 | WO |
WO 03037223 | May 2003 | WO |
WO 03039612 | May 2003 | WO |
WO 03080147 | Oct 2003 | WO |
WO 03082368 | Oct 2003 | WO |
WO 04000383 | Dec 2003 | WO |
WO 2004009145 | Jan 2004 | WO |