Stent for prosthetic heart valves

Information

  • Patent Grant
  • 10758343
  • Patent Number
    10,758,343
  • Date Filed
    Thursday, April 14, 2016
    8 years ago
  • Date Issued
    Tuesday, September 1, 2020
    4 years ago
Abstract
A stented valve including a stent structure including a generally tubular body portion having a first end, a second end, an interior area, a longitudinal axis, and a plurality of vertical wires extending generally parallel to the longitudinal axis around a periphery of the body portion, wherein the plurality of vertical wires includes multiple commissure wires and at least one structural wire positioned between adjacent commissure wires, and a plurality of V-shaped wire structures having a first end, a second end, and a peak between the first and second ends, wherein a first end of each V-shaped structure extends from a first vertical wire and a second end of each V-shaped structure extends from a second vertical wire that is adjacent to the first vertical wire, wherein each V-shaped structure is oriented so that its peak is facing in the same direction relative to the first and second ends of the body portion, and a valve structure including a plurality of leaflets attached to the stent structure within the tubular body portion.
Description
TECHNICAL FIELD

The present invention relates to prosthetic heart valves. More particularly, it relates to devices, methods, and delivery systems for percutaneously implanting prosthetic heart valves.


BACKGROUND

Diseased or otherwise deficient heart valves can be repaired or replaced using a variety of different types of heart valve surgeries. Typical heart valve surgeries involve an open-heart surgical procedure that is conducted under general anesthesia, during which the heart is stopped while blood flow is controlled by a heart-lung bypass machine. This type of valve surgery is highly invasive and exposes the patient to a number of potentially serious risks, such as infection, stroke, renal failure, and adverse effects associated with use of the heart-lung machine, for example.


Recently, there has been increasing interest in minimally invasive and percutaneous replacement of cardiac valves. Such surgical techniques involve making a very small opening in the skin of the patient into which a valve assembly is inserted in the body and delivered to the heart via a delivery device similar to a catheter. This technique is often preferable to more invasive forms of surgery, such as the open-heart surgical procedure described above. In the context of pulmonary valve replacement, U.S. Patent Application Publication Nos. 2003/0199971 A1 and 2003/0199963 A1, both filed by Tower, et al., describe a valved segment of bovine jugular vein, mounted within an expandable stent, for use as a replacement pulmonary valve. The replacement valve is mounted on a balloon catheter and delivered percutaneously via the vascular system to the location of the failed pulmonary valve and expanded by the balloon to compress the valve leaflets against the right ventricular outflow tract, anchoring and sealing the replacement valve. As described in the articles: “Percutaneous Insertion of the Pulmonary Valve”, Bonhoeffer, et al., Journal of the American College of Cardiology 2002; 39: 1664-1669 and “Transcatheter Replacement of a Bovine Valve in Pulmonary Position”, Bonhoeffer, et al., Circulation 2000; 102: 813-816, the replacement pulmonary valve may be implanted to replace native pulmonary valves or prosthetic pulmonary valves located in valved conduits.


Various types and configurations of prosthetic heart valves are used in percutaneous valve procedures to replace diseased natural human heart valves. The actual shape and configuration of any particular prosthetic heart valve is dependent to some extent upon the valve being replaced (i.e., mitral valve, tricuspid valve, aortic valve, or pulmonary valve). In general, the prosthetic heart valve designs attempt to replicate the function of the valve being replaced and thus will include valve leaflet-like structures used with either bioprostheses or mechanical heart valve prostheses. In other words, the replacement valves may include a valved vein segment that is mounted in some manner within an expandable stent to make a stented valve. In order to prepare such a valve for percutaneous implantation, the stented valve can be initially provided in an expanded or uncrimped condition, then crimped or compressed around the balloon portion of a catheter until it is as close to the diameter of the catheter as possible.


Other percutaneously-delivered prosthetic heart valves have been suggested having a generally similar configuration, such as by Bonhoeffer, P. et al., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position.” Circulation, 2002; 102:813-816, and by Cribier, A. et al. “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis.” Circulation, 2002; 106:3006-3008, the disclosures of which are incorporated herein by reference. These techniques rely at least partially upon a frictional type of engagement between the expanded support structure and the native tissue to maintain a position of the delivered prosthesis, although the stents can also become at least partially embedded in the surrounding tissue in response to the radial force provided by the stent and balloons that are sometimes used to expand the stent. Thus, with these transcatheter techniques, conventional sewing of the prosthetic heart valve to the patient's native tissue is not necessary. Similarly, in an article by Bonhoeffer, P. et al. titled “Percutaneous Insertion of the Pulmonary Valve.” J Am Coll Cardiol, 2002; 39:1664-1669, the disclosure of which is incorporated herein by reference, percutaneous delivery of a biological valve is described. The valve is sutured to an expandable stent within a previously implanted valved or non-valved conduit, or a previously implanted valve. Again, radial expansion of the secondary valve stent is used for placing and maintaining the replacement valve.


Although there have been advances in percutaneous valve replacement techniques and devices, there is a continued desire to provide different designs of cardiac valves that can be implanted in a minimally invasive and percutaneous manner.


SUMMARY

The replacement heart valves of the invention each include a stent to which a valve structure is attached. The stents of the invention include a wide variety of structures and features that can be used alone or in combination with features of other stents of the invention. In particular, these stents provide a number of different docking and/or anchoring structures that are conducive to percutaneous delivery thereof. Many of the structures are thus compressible to a relatively small diameter for percutaneous delivery to the heart of the patient, and then are expandable either via removal of external compressive forces (e.g., self-expanding stents), or through application of an outward radial force (e.g., balloon expandable stents). The devices delivered by the delivery systems described herein can be used to deliver stents, valved stents, or other interventional devices such as ASD (atrial septal defect) closure devices, VSD (ventricular septal defect) closure devices, or PFO (patent foramen ovale) occluders.


Methods for insertion of the replacement heart valves of the invention include delivery systems that can maintain the stent structures in their compressed state during their insertion and allow or cause the stent structures to expand once they are in their desired location. In addition, delivery methods of the invention can include features that allow the stents to be retrieved for removal or relocation thereof after they have been deployed or partially deployed from the stent delivery systems. The methods may include implantation of the stent structures using either an antegrade or retrograde approach. Further, in many of the delivery approaches of the invention, the stent structure is rotatable in vive to allow the stent structure to be positioned in a desired orientation.


One embodiment of a stent of the invention comprises a tubular wire structure including multiple longitudinal wires that extend generally parallel to the longitudinal axis of the stent. The wires are spaced from each other around the periphery of the stent. The stent further includes tissue attachment features, such as commissure attachment posts. In one embodiment, the stent includes three commissure attachment posts, where each of the posts is used as a connection location for one of the commissures of a tri-leaflet valve that will be attached thereto. Alternatively, more or less than three posts can be provided for a valve having more or less than three leaflets, respectively. The stent further includes multiple V-shaped wire structures between a pair of wires and/or between a wire and an adjacent attachment post. In one embodiment, the stent includes three V-shaped wires that are longitudinally spaced from each other along the height of the stent between each adjacent pair of wires or between a wire and an adjacent post. There may alternatively be more or less than three V-shaped wires spaced longitudinally from each other.


A first end of each V-shaped wire extends from a first end of an attachment post or wire, and a second end of wire extends from the first end of an adjacent wire or attachment post. In this way, a peak of each V-shaped wire will be positioned generally in the center of the space between adjacent longitudinal wires, and will be directed toward a second or inlet end of the stent. All or some of the wires can be flared at least slightly outward relative to the outer tubular shape of the stent, thereby creating integrated flange structures that can be used to capture the native leaflets when the stent is implanted in a patient. Each wire is spaced longitudinally from a corresponding wire, and each wire is spaced longitudinally from a corresponding wire.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be further explained with reference to the appended Figures, wherein like structure is referred to by like numerals throughout the several views, and wherein:



FIG. 1 is a perspective view of an embodiment of a stent in accordance with the invention;



FIG. 2 is a front view of the stent of FIG. 1;



FIG. 3 is a top view of the stent of FIG. 1;



FIG. 4 is a top view of a cutting pattern for the stent of FIG. 1;



FIG. 5 is a perspective view of an embodiment of a stent in accordance with the invention;



FIG. 6 is a front view of the stent of FIG. 5;



FIG. 7 is a top view of the stent of FIG. 5;



FIG. 8 is a top view a cutting pattern for the stent of FIG. 5;



FIG. 9 is a perspective view of an embodiment of a stent in accordance with the invention;



FIG. 10 is a front view of the stent of FIG. 9;



FIG. 11 is a perspective view of a “ladder” mechanism used for attachment of tissue to a stent;



FIG. 12 is a top view of two ladder mechanisms of FIG. 11 positioned relative to leaflets and a stent;



FIG. 13 is a perspective view of the ladder mechanisms, tissue, and portion of a stent illustrated in FIG. 12;



FIG. 14 is a top schematic view of the stent arrangement of FIGS. 12 and 13;



FIG. 15 is a perspective view of a “slot bar” mechanism used for attachment of tissue to a stent;



FIG. 16 is a top view of a slot bar mechanism of FIG. 15 positioned relative to leaflets and a stent;



FIG. 17 is perspective view of the slot bar mechanism, tissue, and portion of a stent illustrated in FIG. 16;



FIG. 18 is a top view of a “padded slot bar” mechanism positioned relative to leaflets and a stent;



FIG. 19 is a perspective view of the padded slot bar mechanism, tissue, and portion of a stent illustrated in FIG. 18;



FIG. 20 is a perspective view of a “buckle” mechanism positioned relative to leaflets and a stent;



FIG. 21 is a top view of the portion of a stent, leaflets, and buckle mechanism illustrated in FIG. 20;



FIG. 22 is another perspective view of the portion of a stent illustrated in FIG. 20;



FIG. 23 is a perspective view of a “padded buckle” mechanism positioned relative to leaflets and a stent;



FIG. 24 is a top view of the portion of a stent, leaflets, and padded buckle mechanism illustrated in FIG. 23;



FIG. 25 is another perspective view of the portion of a stent illustrated in FIG. 23; and



FIG. 26 is a perspective view of another stent embodiment of the invention.





DETAILED DESCRIPTION

As referred to herein, the prosthetic heart valves used in accordance with the various devices and methods of heart valve delivery may include a wide variety of different configurations, such as a prosthetic heart valve having tissue leaflets or a synthetic heart valve having polymeric, metallic, or tissue-engineered leaflets, and can be specifically configured for replacing any heart valve. That is, while much of the description herein refers to replacement of aortic valves, the prosthetic heart valves of the invention can also generally be used for replacement of native mitral, pulmonic, or tricuspid valves, for use as a venous valve, or to replace a failed bioprosthesis, such as in the area of an aortic valve or mitral valve, for example.


Although each of the valves used with the delivery devices and methods described herein would typically include leaflets attached within an interior area of a stent, the leaflets are not shown in many of the illustrated embodiments for clarity purposes. In general, the stents described herein include a support structure comprising a number of strut or wire portions arranged relative to each other to provide a desired compressibility, strength, and leaflet attachment zone(s) to the heart valve. Other details on particular configurations of the stents of the invention are also described below; however, in general terms, stents of the invention are generally tubular support structures, and leaflets will be secured within the inner portion of the support structure to provide a valved stent. The leaflets can be formed from a variety of materials, such as autologous tissue, xenograph material, or synthetics as are known in the art. The leaflets may be provided as a homogenous, biological valve structure, such as a porcine, bovine, or equine valve. Alternatively, the leaflets can be provided independent of one another (e.g., bovine or equine pericardial leaflets) and subsequently assembled to the support structure of the stent. In another alternative, the stent and leaflets can be fabricated at the same time, such as may be accomplished using high strength nano-manufactured NiTi films of the type produced at Advanced Bio Prosthetic Surfaces Ltd. (ABPS) of San Antonio, Tex., for example. The support structures are generally configured to accommodate three leaflets; however, the replacement prosthetic heart valves of the invention can be configured to incorporate more or less than three leaflets.


In more general terms, the combination of a support structure with one or more leaflets can assume a variety of other configurations that differ from those shown and described, including any known prosthetic heart valve design. In certain embodiments of the invention, the support structure with leaflets utilize certain features of known expandable prosthetic heart valve configuration, whether balloon expandable, self-expanding, or unfurling (as described, for example, in U.S. Pat. Nos. 3,671,979; 4,056,854; 4,994,077; 5,332,402; 5,370,685; 5,397,351; 5,554,185; 5,855,601; and 6,168,614; U.S. Patent Application Publication No. 2004/0034411; Bonhoeffer P., et al., “Percutaneous Insertion of the Pulmonary Valve”, Pediatric Cardiology, 2002; 39:1664-1669; Anderson H R, et al., “Transluminal Implantation of Artificial Heart Valves”, EUR Heart J., 1992; 13:704-708; Anderson, J. R., et al., “Transluminal Catheter Implantation of New Expandable Artificial Cardiac Valve”, BUR Heart J., 1990, 11: (Suppl) 224a; Hilbert S. L., “Evaluation of Explanted Polyurethane Trileaflet Cardiac Valve Prosthesis”, J Thorac Cardiovascular Surgery, 1989; 94:419-29; Block P C, “Clinical and Hemodyamic Follow-Up After Percutaneous Aortic Valvuloplasty in the Elderly”, The American Journal of Cardiology, Vol. 62, Oct. 1, 1998; Boudjemline, Y., “Steps Toward Percutaneous Aortic Valve Replacement”, Circulation, 2002; 105:775-558; Bonhoeffer, P., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position, a Lamb Study”, Circulation, 2000:102:813-816; Boudjemline, Y., “Percutaneous Implantation of a Valve in the Descending Aorta In Lambs”, EUR Heart J, 2002; 23:1045-1049; Kulkinski, D., “Future Horizons in Surgical Aortic Valve Replacement: Lessons Learned During the Early Stages of Developing a Transluminal Implantation Technique”, ASAIO J, 2004; 50:364-68; the teachings of which are all incorporated herein by reference).


Orientation and positioning of the stents of the invention may be accomplished either by self-orientation of the stents (such as by interference between features of the stent and a previously implanted stent or valve structure) or by manual orientation of the stent to align its features with anatomical or previous bioprosthetic features, such as can be accomplished using fluoroscopic visualization techniques, for example. For example, when aligning the stents of the invention with native anatomical structures, they should be aligned so as to not block the coronary arteries, and native mitral or tricuspid valves should be aligned relative to the anterior leaflet and/or the trigones/commissures.


Some embodiments of the support structures of the stents described herein can be a series of wires or wire segments arranged so that they are capable of transitioning from a collapsed state to an expanded state. In some embodiments, a number of individual wires comprising the support structure can be formed of a metal or other material. These wires are arranged in such a way that a support structure allows for folding or compressing to a contracted state in which its internal diameter is greatly reduced from its internal diameter when it is in an expanded state. In its collapsed state, such a support structure with attached valves or leaflets can be mounted over a delivery device, such as a balloon catheter, for example. The support structure is configured so that it can be changed to its expanded state when desired, such as by the expansion of a balloon catheter. The delivery systems used for such a stent should be provided with degrees of rotational and axial orientation capabilities in order to properly position the stent at its desired location within the patient.


The wires of the support structure of the stents in other embodiments can alternatively be formed from a shape memory material such as a nickel titanium alloy (e.g., Nitinol). With this material, the support structure is self-expandable from a contracted state to an expanded state, such as by the application of heat, energy, and the like, or by the removal of external forces (e.g., compressive forces). This support structure can also be repeatedly compressed and re-expanded without damaging the structure of the stent. In addition, the support structure of such an embodiment may be laser cut from a single piece of material or may be assembled from a number of different components. For these types of stent structures, one example of a delivery system that can be used includes a catheter with a retractable sheath that covers the stent until it is to be deployed, at which point the sheath can be retracted to allow the stent to expand.


Referring now to the Figures, wherein the components are labeled with like numerals throughout the several Figures, and initially to FIGS. 1-4, an exemplary embodiment of a stent 10 is illustrated. Stent 10 may be referred to as a sub-coronary stent for use in replacement of the aortic valve in that it is preferably relatively short to enable stent placement below the coronaries. Stent 10 may be made of a self-expanding material, such as Nitinol, for example. In one embodiment, the stent 10 is generally tubular in shape and can be approximately 25 mm long, for example, although it can be longer or shorter than 25 mm, depending on the anatomy of the patient, the preferences of the surgeon, and other factors. The stent 10 includes multiple longitudinal or vertical wires 12 that extend generally parallel to a longitudinal axis 14 of the stent. The wires 12 are spaced from each other around the periphery of the generally tubular shape of the stent 10. Stent 10 further includes features to which tissue can be attached to make the stent into a valve, such as commissure attachment posts 16 that can be approximately 18 mm long, for example. The commissure attachment posts 16 each include two longitudinal wires that are spaced closer to each other than the spacing of the wires 12 from each other.


In this embodiment, stent 10 includes three commissure attachment posts 16, where each of the posts 16 is used as a connection location for one of the commissures of a tri-leaflet valve that will be attached thereto. Alternatively, more or less than three posts 16 can be provided for a valve having more or less than three leaflets, respectively. In addition to providing the structure for attachment of commissures, the posts 16 also provide additional stability to the stent 10. The wires 12 and posts 16 are preferably spaced at generally the same distance from each other around the periphery of the stent 10, although it is contemplated that some of the wires 12 and/or posts 16 can be spaced at different distances from each other around the periphery of the stent 10. Further, the specific illustrated embodiment of stent 10 includes two wires 12 positioned between two commissure attachment posts 16, although an alternate embodiment may include more or less wires 12 between adjacent commissure posts 16. However, the specific embodiment of stent 10 illustrated in FIGS. 1-4 comprises nine longitudinal structures around its periphery, including six longitudinal wires 12 and three commissure attachment posts 16.


Stent 10 further includes multiple V-shaped wire structures between a pair of wires 12 and/or between a wire 12 and an adjacent attachment post 16. As shown, the stent 10 includes three wires 18, 20, 22 that are longitudinally spaced from each other along the height of the stent 10 between each adjacent pair of wires 12 or between a wire 12 and an adjacent post 16. The size and shape of the wires 18, 20, 22 determines the spacing between adjacent longitudinal structures of the stent 10, which is generally uniform around the periphery of the stent, as discussed above. Although the stent 10 includes three of these V-shaped wires 18, 20, 22 that are spaced longitudinally from each other between adjacent vertical wire structures, there may be more or less than three V-shaped wires spaced longitudinally from each other.


Wires 18 are positioned at a first or outlet end 24 of the stent 10. A first end of each wire 18 extends from a first end 26 of an attachment post 16 or wire 12, and a second end of wire 18 extends from the first end 26 of an adjacent wire 12 or attachment post 16. In this way, a peak 28 of each wire 18 will be positioned generally in the center of the space between adjacent longitudinal wires, and will be directed toward a second or inlet end 30 of the stent 10. All or some of the wires 18 can be flared at least slightly outward relative to the outer tubular shape of the stent 10, thereby creating integrated flange structures that can be used to capture the native leaflets when the stent is implanted in a patient. Each wire 20 is spaced longitudinally from a corresponding wire 18, and each wire 22 is spaced longitudinally from a corresponding wire 20.


Additional wire structures 32 are positioned at the second end 30 of the stent 10 to correspond with each set of wires 18, 20, 22. In particular, each wire structure 32 is generally V-shaped, where the peak of each of the “V” structures is oriented in generally the same direction as the peaks of the wires 18, 20, 22. A first end of each wire structure 32 extends from a second end 34 of an attachment post 16 or wire 12, and a second end of wire structure 32 extends from the second end 34 of an adjacent wire 12 or attachment post 16. All or some of the wire structures 32 are flared at least slightly outward relative to the outer tubular shape of the stent 10. The amount and angle at which the wire structures extend relative to the tubular outer shape of the stent can be selected for capturing native patient anatomical features. In addition, this flare of the wire structures 32 can help to prevent or minimize leakage between the implant and the native annulus and/or to provide a physical and/or visual docking feature to secure the stent 10 against a wall of an opening in the heart to prevent migration of the stent, for example.


The stent 10 has a relatively high-density strut pattern to contain leaflets within the inner stent area during crimping of the stent. That is, while the exact number of longitudinal wires and V-shaped wires can vary somewhat from that illustrated in the Figures, it is preferable that the number of wires provided is sufficient to keep the leaflet material from becoming compressed and potentially damaged between the stent struts during the crimping process or from protruding beyond the periphery of the stent when it is in a crimped condition.


The first end 26 of all or some of the wires 12 and posts 16 can further include a loop or eyelet 36 that can be used for attachment to a delivery system and/or tissue valve, for example. The eyelets 36 can be in the same general plane as the outer tubular shape of the stent 10, or they can be directed at least slightly inward toward the central area of the stent or at least slightly outward relative to the outer tubular surface of the stent. The single-sided eyelet attachment end can be used in a resheathable delivery system for both antegrade and retrograde procedures, for example. Attachment end crown reducers can optionally be added to the stent to reduce the attachment crown number, although the stent would be lengthened at least slightly by such a modification.



FIG. 4 illustrates an exemplary laser cutting pattern that can be used to form the stent 10 out of a tube or single sheet of material. The stent 10 can alternatively be made from multiple components that are attached to each other and formed into a tubular shape. However, if the stent will be cut from a tube or single sheet of material as shown, the various structures will be designed so that they do not interfere with each other in the pattern.



FIG. 26 illustrates another exemplary embodiment of a stent 50 positioned for clarity on a mandrel, which also may be referred to as a sub-coronary stent in that it is preferably relatively short (e.g., 25 mm long) to enable stent placement below the coronary arteries in the aorta. This stent includes a number of the same features as the stent of FIGS. 1-4, although this stent 50 does not include the integrated petals shown and described above relative to stent 10. Rather, the V-shaped structures 52 at the outlet end of the stent 50 are generally in the same plane as the tubular outer shape of the stent 50 (i.e., the structures 52 are not flared outwardly). The stent 50 also includes eyelets 54 at the outlet end of the stent, which can be in the same general plane as the outer tubular shape of the stent 50, or they can be directed at least slightly inward or at least slightly outward relative to the outer tubular shape of the stent 50.



FIGS. 5-8 illustrate another exemplary embodiment of a stent 60, which is similar in structure to the stent 10 described above, including a wire structure with multiple commissure attachment posts 62. These posts 62 include two vertical struts that are spaced at least slightly from each other. These posts 62 further include multiple horizontal members 64 that are spaced from each other along the length or height of each post 62. The spaces or openings 66 that are created between the horizontal members 64 provide locations through which suture material, needles, and/or other fastening materials can be inserted for attachment of leaflet or valve material to the stent at the commissure posts. In addition, the horizontal members 64 can be used as defined anchoring points for the fastening materials. For example, a suture material can be inserted through a first opening 66 and then through another opening 66 in a predetermined pattern to stitch valve material to the commissure attachment posts 62. The horizontal members 64 can further be used as anchoring structures that keep sutures or other attachment mechanisms from moving vertically past a certain position along the attachment posts 62.


Another embodiment of a stent 80 is illustrated in FIGS. 9 and 10, which has a similar structure to stent structures described above relative to tubular stent constructions. Stent 80 further includes a scaling skirt 82 at its inlet end 84. The sealing skirt 82 can provide for improved sealing between the stent 80 and the anatomy in which the stent 80 is placed, such as the annulus of a valve, for example. The sealing skirt 82 can be configured to unfurl away from the inlet end 84 of the valve and into the delivery system that was used to deliver the stent 80, if desired. In this way, the material used to make the sealing skirt 82 does not increase the overall size of the stent 80 when it is crimped or compressed. The sealing skirt 82 can further be provided with radiopaque, echogenic properties or other visually detectable properties so that an operator can assess the proper positioning of the stent 80 in the patient's anatomy prior to releasing it from the delivery system.


A number of systems, components, and devices are described below for attachment of valve material (e.g., tissue leaflets) within the interior area of a stent structure. It is understood that the systems that are shown and described herein for this purpose can be used with stent configurations described above and/or other stent constructions.


In one exemplary embodiment, a tubular stent structure includes at least one commissure post, along with a first leaflet and a second leaflet. Leaflets are attached or sewn to the post using suture material. In this embodiment, a tissue “cushion” is provided on both sides of the commissure attachment post to help absorb and distribute stress away from the stitch points and to minimize tissue abrasion that can be caused without such protection. In this configuration, the leaflets 104, 106 can flex along the tissue and the leaflet/tissue seam line and the tissue cushion distributes stress from flexing during opening and closing of leaflets away from the suture points where leaflets are attached into the attachment post.


Another configuration and device that can be used in the attachment of valve material to a stent structure is shown and described relative to FIGS. 11-14. In particular, a relatively rigid “ladder” member 120 is provided to support the leaflet commissure area and transfer the line or point about which the leaflets 140 flex or bend to a location that is spaced from the suture line. In this way, the stresses can be more evenly distributed and durability of the valve improved. Ladder member 120 includes a relatively flat elongated plate 122 having multiple holes or openings 124 along its length. In order to minimize or prevent damage to the tissue of the valve, the corners and edges of the ladder member 120 are preferably rounded or smoothed. The holes 124 are preferably spaced from each other by a distance that corresponds with a desired stitching pattern that will be used to both secure the member 120 to the stent structure and attach the leaflets. It is further contemplated that the ladder member 120 is configured to match specific commissure features of the stent.



FIGS. 12 and 13 illustrate two ladder members 120 positioned relative to a portion of a stent 126 and portions of two leaflets. In particular, portions 128, 129 of adjacent leaflet commissures are secured in the space between two ladder members 120. The ladder members 120 are spaced from each other by a distance that allows the components to be securely fastened to each other, but that accommodates the thickness of the leaflets that are positioned between them. Additional material from the leaflets extends around the ends of the ladder members 120 between the edge of the ladder members 120 and the stent 126, then along the outwardly facing sides of the ladder members 120, such as is indicated by the reference number 130. This additional material provides for improved security in tissue attachment and also provides additional attachment locations.


Sutures 132 can be inserted through the tissue material to secure it to the ladder members 120, where one exemplary stitching pattern is illustrated in FIG. 15. An appropriate number of stitches should be made through the tissue material and ladder member 120 to securely attach the ladder members 120 to the leaflets. The same or a different suture material can be used to attach or position adjacent ladder members 120 relative to each other. Additional sutures or an extension of the sewing pattern can also be used to connect the ladder members 120 to the stent 126. The suture pattern can follow the holes in the ladder member 120 such that the ladder member 120 provides a template for sewing the leaflet tissue to the ladder members 120, or an alternate stitching pattern can be used. The leaflets can then flex against a long vertical edge 134 of each of the ladder members 120, thereby transferring the stress away from the attachment suture line.



FIG. 14 illustrates another tissue attachment arrangement that includes the use of two ladder members 120, as described above, along with additional protective layers 136. Each protective layer 136 can provide supplemental padding between a ladder and the adjacent leaflet material, and can also provide additional strength at the attachment sites. The protective layers 136 can be made of a material such as cloth, tissue, polymeric sheets, or the like. As shown, one protective layer 136 is used for each of the ladder members 120, with the protective layer 136 being positioned between each ladder member 120 and its corresponding leaflet 128, 129. Each protective layer 136 can wrap around at least a portion of the periphery of its corresponding ladder member 120, and in one embodiment will wrap around almost the entire periphery of the ladder members 120, as shown. Further, each protective layer 136 can extend along the entire length or height of its corresponding ladder 120, or it may extend along only a portion of the length of the ladder member 120. An exemplary pattern of stitching the components to each other and to the stent 126 is illustrated with the sutures 132 (shown as broken lines), although a different stitching pattern can instead be used.


Another configuration and device that can be used in the attachment of valve material to a stent structure is shown and described relative to FIGS. 15-17. In particular, a relatively rigid “slot bar” member 150 is provided to support the leaflet commissure area and transfer the line or point about which the leaflets flex or bend to a location that is spaced from the suture line. In this way, the stresses can be more evenly distributed. Slot bar member 150 includes a relatively flat elongated plate 152 having a longitudinal slot 156 extending along a portion of its length, and multiple holes or openings 154 along the length of the member 150 on both sides of the slot 156. Alternatively, one or both ends could be open and/or two separate portions can make up the slot bar member. In order to minimize or prevent damage to the tissue of the valve, the corners and edges of the slot bar member 150 are preferably rounded or smoothed. The holes 154 are preferably spaced from each other by a distance that corresponds with a desired stitching pattern that will be used to both secure the member 150 to the stent structure and the tissue to the slot bar. It is further contemplated that the slot bar member 150 is configured to match specific commissure features of the stent to which it will be attached. In addition, the width of the slot 156 is preferably selected based on the thickness of the leaflets that will be inserted through the slot 156. Thus, the slot 156 should be wide enough to accommodate two thicknesses of leaflet material; however, the slot 156 may be designed for more layers of material or for an optimized compression fit, if desired. In order to provide secure positioning of the tissue layers within the slot 156 and to minimize the potential for the tissue to be pulled from the slot 156, the slot should not be substantially wider than the thickness of the materials that will be positioned within it.



FIGS. 16-17 illustrate slot bar member 150 positioned relative to a portion of a stent 158 and portions of two leaflets 160, 162. In particular, the end portions of adjacent leaflet commissures 160, 162 are pulled through the slot 156 by a sufficient distance that the free edge of each of the leaflets extends at least slightly past the holes 154 on the flat side of the plate 152. This end portion of the leaflets 160, 162 will thereby be positioned between the slot bar member 150 and the stent to which they will be attached. In this way, the leaflets 160, 162 can be securely fastened to the slot bar member 150 and the stent 158. Sutures 164 can then be inserted through the tissue material to secure it to the slot bar member 150, where one exemplary stitching pattern is illustrated in FIGS. 16 and 17. The stitching pattern can follow the holes 154 in the slot bar member 150 such that the slot bar member 150 provides the template for sewing the leaflet tissue to the slot bar member 150, or an alternate stitching pattern can be used. The sutures 164 can thereby connect the slot bar member 150 to the leaflets 160, 162. Additional sutures or the same sutures can also be used to connect the slot bar member 150 to the stent 158. The leaflets 160, 162 can then flex over a long vertical edge 166 on each side of the slot bar member 150 during valve leaflet opening and closing, thereby transferring the stress away from the attachment suture line and increasing the durability of the valve.



FIGS. 18 and 19 illustrate another tissue attachment arrangement that includes the use of a slot bar member 150 of the type described above, along with additional protective members 170, 172. Protective members 170, 172 are positioned on opposite sides of the slot 156 of the slot bar member 150 so that each of the members 170, 172 can protect one of the leaflets 160, 162. Each protective member 170, 172 can provide additional padding or cushioning between one of the leaflets 160, 162 and the slot bar member 150 during opening and closing of the leaflets. The protective members 170, 172 can be made of a material such as cloth, tissue, polymeric sheets, or the like. Further, each protective member 170, 172 can extend along the entire length of its corresponding slot bar member 150, or it may extend along only a portion of the length of the slot bar member 150. An exemplary pattern of stitching the components to each other and to the stent 158 is illustrated with the schematic representation of a suture 164, although a different stitching pattern can instead be used. The suture material can be used to attach the excess tissue material to only the slot bar member 150, if desired. Alternatively, the protective members on the leaflet side of the slot bar member could be extended circumferentially beyond the slot bar member and attached to the stent (not shown). In this way, the leaflet would be prevented from contacting the suture material during opening of the valve reducing the potential for leaflet abrasion and tearing. In order to accommodate the thickness of the extra layers provided by the protective members 170, 172, the slot 156 should have an appropriate width.


Another configuration and device that can be used in the attachment of valve material to a stent structure is shown and described relative to FIGS. 20-22. In particular, a relatively rigid “buckle” member 180 is provided to support the leaflet commissure area and transfer the line or point about which the leaflets flex or bend to a location that is spaced away from the suture line. In this way, the stresses can be more evenly distributed increasing the durability of the valve. Buckle member 180 includes a relatively flat elongated plate 182 having a longitudinal slot 184 extending along a portion of its length. The slot could alternatively be open at either one or both ends of the plate. In order to minimize or prevent damage to the tissue of the valve, the corners and edges of the buckle member 180 are preferably rounded or smoothed. The width of the slot 184 is preferably selected based on the thickness of the layers of material that will be inserted through the slot 184. Thus, the slot 184 should be wide enough to accommodate the two thicknesses of leaflet material that will extend through it, as described below; however, the slot 184 may be designed for more layers of material or for an optimized compression fit, if desired. In order to provide secure positioning of the tissue layers within the slot 184 and to minimize the potential for the tissue to be pulled from the slot 184, the slot should not be substantially wider than the width of the material that will be positioned within it.


As shown in the Figures, the buckle member 180 is positioned on the opposite side of a stent 194 than the other embodiments discussed above (i.e., on the outer side of the stent structure rather than on the inner side of the stent structure). In this embodiment, the stent 194 has a vertical slot 186 in its commissure post that generally corresponds to the slot 184 in the buckle member 180. The end portions of two leaflets 190, 192 are pulled through the slot 186 in the stent commissure post, then through the slot 184 in the buckle member 180. The ends of the leaflets are then wrapped around the back side of the buckle member 180 and pulled back through the slot 186 in the commissure post in the opposite direction than the first insertion of the leaflets through this slot 186. The leaflets 190, 192 should continue to be pulled through the slot 186 by a sufficient distance that the free edge of each of the leaflets 190, 192 extends at least slightly past the structure of the stent in the internal area of the stent. With this arrangement, the leaflets 190, 192 will flex generally along a vertical line 196, which is the tissue that covers a vertical edge of the stent. In this embodiment, no sutures are required for attachment of the leaflets 190, 192 to the stent and/or the buckle member 180. Rather, the force on the commissure caused by the closing of the leaflets 190, 192 will cause the buckle member 180 to be pressed toward the stent, thereby compressing and locking the excess tissue material between the buckle member and the stent. This secures the commissure and prevents the tissue material of the leaflets from pulling out of the assembly.



FIGS. 23-25 illustrate another configuration and device for the attachment of valve material to a stent structure that includes the use of a buckle member 200 that is similar in design and operation to the buckle member 180 discussed above. In this embodiment, however, the buckle member 200 includes two longitudinal slots 202, 204 that are spaced from each other across the width of the buckle member 200, rather than a single, central slot. In this way, a first leaflet 206 can be pulled through a longitudinal slot 210 in the stent and through longitudinal slot 202 of the buckle member 200, and a second leaflet 208 can be pulled through a longitudinal slot 210 in the stent and through longitudinal slot 204 of the buckle member 200. The leaflets 206, 208 can then be wrapped around the back side of the buckle member 200, pulled back through the longitudinal slot 210 in the commissure post, and pulled through the slot by a sufficient distance that the leaflets can be secured to the stent without stitching, similar to the arrangement that uses the buckle member 180.


It is noted that in many of the stent embodiments shown and described herein, the aspect ratio of certain portions of the stent can be somewhat different from that shown. Further, stent embodiments described herein may be modified to include additional structure for attachment of tissue for the valve, such as the vertical stent posts described in many of the embodiments.


Delivering any balloon-expandable stents of the invention to the implantation location can be performed percutaneously. In general terms, this includes providing a transcatheter assembly, including a delivery catheter, a balloon catheter, and a guide wire. Some delivery catheters of this type are known in the art, and define a lumen within which the balloon catheter is received. The balloon catheter, in turn, defines a lumen within which the guide wire is slideably disposed. Further, the balloon catheter includes a balloon that is fluidly connected to an inflation source. It is noted that if the stent being implanted is the self-expanding type of stent, the balloon would not be needed and a sheath or other restraining means would be used for maintaining the stent in its compressed state until deployment of the stent, as described herein. In any case, for a balloon-expandable stent, the transcatheter assembly is appropriately sized for a desired percutaneous approach to the implantation location. For example, the transcatheter assembly can be sized for delivery to the heart valve via an opening at a carotid artery, a jugular vein, a sub-clavian vein, femoral artery or vein, or the like. Essentially, any percutaneous intercostals penetration can be made to facilitate use of the transcatheter assembly.


Prior to delivery, the stent is mounted over the balloon in a contracted state to be as small as possible without causing permanent deformation of the stent structure. As compared to the expanded state, the support structure is compressed onto itself and the balloon, thus defining a decreased inner diameter as compared to an inner diameter in the expanded state. While this description is related to the delivery of a balloon-expandable stent, the same basic procedures can also be applicable to a self-expanding stent, where the delivery system would not include a balloon, but would preferably include a sheath or some other type of configuration for maintaining the stent in a compressed condition until its deployment.


With the stent mounted to the balloon, the transcatheter assembly is delivered through a percutaneous opening (not shown) in the patient via the delivery catheter. The implantation location is located by inserting the guide wire into the patient, which guide wire extends from a distal end of the delivery catheter, with the balloon catheter otherwise retracted within the delivery catheter. The balloon catheter is then advanced distally from the delivery catheter along the guide wire, with the balloon and stent positioned relative to the implantation location. In an alternative embodiment, the stent is delivered to an implantation location via a minimally invasive surgical incision (i.e., non-percutaneously). In another alternative embodiment, the stent is delivered via open heart/chest surgery. In one embodiment of the stents of the invention, the stent includes a radiopaque, echogenic, or MRI visible material to facilitate visual confirmation of proper placement of the stent. Alternatively, other known surgical visual aids can be incorporated into the stent. The techniques described relative to placement of the stent within the heart can be used both to monitor and correct the placement of the stent in a longitudinal direction relative to the length of the anatomical structure in which it is positioned.


Once the stent is properly positioned, the balloon catheter is operated to inflate the balloon, thus transitioning the stent to an expanded state. Alternatively, where the support structure is formed of a shape memory material, the stent can self-expand to its expanded state.


The present invention has now been described with reference to several embodiments thereof. The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the invention. Thus, the scope of the present invention should not be limited to the structures described herein.

Claims
  • 1. A prosthetic valve comprising: a valve support structure including a first end, a second end, an interior area, a longitudinal axis, and a plurality of longitudinal wires extending generally parallel to the longitudinal axis around a periphery of the valve support structure, wherein the plurality of longitudinal wires includes multiple commissure support structures and at least one structural wire positioned between adjacent commissure support structures, wherein the plurality of longitudinal wires each extend from the first end to the second end of the valve support structure, and at least three rows of V-shaped wire structures having a first end, a second end, and a peak between the first and second ends, wherein a first end of each V-shaped structure extends from a first longitudinal wire and a second end of each V-shaped structure extends from a second longitudinal wire that is adjacent to the first longitudinal wire, wherein one of the at least three rows of V-shaped wire structures is attached to a proximal-most first end of each of the longitudinal wires; anda valve structure attached to the valve support structure within the interior area of the valve support structure, the valve structure comprising a plurality of leaflets, a first end of each of the plurality of leaflets directly attached to a respective one of the multiple commissure support structures and a second end of each leaflet directly_attached to a respective different one of the multiple commissure support structures.
  • 2. The prosthetic valve of claim 1, further comprising an outer member attached to the first end of the valve support structure, wherein an inner surface of the outer member is spaced radially from an outer surface of the valve support structure.
  • 3. The prosthetic valve of claim 2, wherein the outer member includes a first end attached to the first end of the valve support structure and a second end that is unattached to the valve support structure.
  • 4. The prosthetic valve of claim 2, wherein the outer member is a sealing skirt.
  • 5. The prosthetic valve of claim 1, wherein the at least three rows of V-shaped wire structures comprises four rows of V-shaped wire structures, and wherein a second row of the four rows of V-shaped wire structures is attached to a distal-most second end of each of the longitudinal wires.
  • 6. The prosthetic valve of claim 1, wherein each of the multiple commissure support structures includes a first strut parallel to the longitudinal axis and a second strut parallel to the longitudinal axis, wherein the first strut and the second strut are spaced circumferentially from each other to form a longitudinal gap between the first strut and the second strut.
  • 7. The prosthetic valve of claim 6, further comprising a plurality of transverse members extending across the longitudinal gap between the first strut and the second strut of respective multiple commissure support structures, wherein the plurality of transverse members are spaced longitudinally such that the longitudinal gap is separated into a plurality of longitudinal gaps.
  • 8. The prosthetic valve of claim 6, wherein the commissure support structures are radially aligned with the structural wires.
  • 9. The prosthetic valve of claim 1, wherein the peaks of the V-shaped members are all oriented in the same direction.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of and claims priority to U.S. patent application Ser. No. 14/087,990, filed Nov. 22, 2013, now allowed, which is a continuation of and claims priority to U.S. patent application Ser. No. 12/358,980, filed Jan. 23, 2009, now U.S. Pat. No. 8,628,566, which claims priority to U.S. Provisional Application No. 61/062,207, filed Jan. 24, 2008, the entire contents of which are incorporated herein by reference in their entirety.

US Referenced Citations (777)
Number Name Date Kind
3334629 Cohn Aug 1967 A
3409013 Berry Nov 1968 A
3540431 Mobin-Uddin Nov 1970 A
3587115 Shiley Jun 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3642004 Osthagen et al. Feb 1972 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3795246 Sturgeon Mar 1974 A
3839741 Haller Oct 1974 A
3868956 Alfidi et al. Mar 1975 A
3874388 King et al. Apr 1975 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4233690 Akins Nov 1980 A
4265694 Boretos May 1981 A
4291420 Reul Sep 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4425908 Simon Jan 1984 A
4470157 Love Sep 1984 A
4501030 Lane Feb 1985 A
4506394 Debard Mar 1985 A
4574803 Storz Mar 1986 A
4580568 Gianturco Apr 1986 A
4592340 Boyles Jun 1986 A
4610688 Silvestrini et al. Sep 1986 A
4647283 Carpentier et al. Mar 1987 A
4648881 Carpentier et al. Mar 1987 A
4655771 Wallsten Apr 1987 A
4662885 DiPisa, Jr. May 1987 A
4665906 Jervis May 1987 A
4681908 Broderick et al. Jul 1987 A
4710192 Liotta et al. Dec 1987 A
4733665 Palmaz Mar 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4796629 Grayzel Jan 1989 A
4797901 Goerne et al. Jan 1989 A
4819751 Shimada et al. Apr 1989 A
4834755 Silvestrini et al. May 1989 A
4856516 Hillstead Aug 1989 A
4872874 Taheri Oct 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4909252 Goldberger Mar 1990 A
4913141 Hillstead Apr 1990 A
4917102 Miller et al. Apr 1990 A
4922905 Strecker May 1990 A
4954126 Wallsten Sep 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5002559 Tower Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5161547 Tower Nov 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5217483 Tower Jun 1993 A
5232445 Bonzel Aug 1993 A
5272909 Nguyen et al. Dec 1993 A
5295958 Shturman Mar 1994 A
5327774 Nguyen et al. Jul 1994 A
5332402 Teitelbaum et al. Jul 1994 A
5350398 Pavcnik et al. Sep 1994 A
5370685 Stevens Dec 1994 A
5389106 Tower Feb 1995 A
5397351 Pavcnik et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5415633 Lazarus et al. May 1995 A
5431676 Dubrul et al. Jul 1995 A
5433723 Lindenberg et al. Jul 1995 A
5443446 Shturman Aug 1995 A
5443500 Sigwart Aug 1995 A
5449384 Johnson Sep 1995 A
5480424 Cox Jan 1996 A
5489294 McVenes et al. Feb 1996 A
5489297 Duran Feb 1996 A
5496346 Horzewski et al. Mar 1996 A
5500014 Quijano et al. Mar 1996 A
5507767 Maeda et al. Apr 1996 A
5545209 Roberts et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5575818 Pinchuk Nov 1996 A
5580922 Park et al. Dec 1996 A
5591195 Taheri et al. Jan 1997 A
5609626 Quijano et al. Mar 1997 A
5645559 Hachtman et al. Jul 1997 A
5665115 Cragg Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5674277 Freitag Oct 1997 A
5693083 Baker et al. Dec 1997 A
5695498 Tower Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5716417 Girard et al. Feb 1998 A
5746709 Rom et al. May 1998 A
5749890 Shaknovich May 1998 A
5749921 Lenker et al. May 1998 A
5766151 Valley et al. Jun 1998 A
5776142 Gunderson Jul 1998 A
5782809 Umeno et al. Jul 1998 A
5800455 Palarmo et al. Sep 1998 A
5800456 Maeda et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5807405 Vanney et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824041 Lenker Oct 1998 A
5824043 Cottone, Jr. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5824061 Quijano et al. Oct 1998 A
5824064 Taheri Oct 1998 A
5840081 Anderson et al. Nov 1998 A
5843158 Lenker et al. Dec 1998 A
5851232 Lois Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5860996 Tower Jan 1999 A
5861028 Angell Jan 1999 A
5868783 Tower Feb 1999 A
5876448 Thompson et al. Mar 1999 A
5891191 Stinson Apr 1999 A
5906619 Olson et al. May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5913842 Boyd et al. Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5944750 Tanner et al. Aug 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
5997573 Quijano et al. Dec 1999 A
6022370 Tower Feb 2000 A
6027525 Suh et al. Feb 2000 A
6029671 Stevens et al. Feb 2000 A
6042589 Marianne Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6042607 Williamson, IV Mar 2000 A
6051104 Jang Apr 2000 A
6059809 Amor et al. May 2000 A
6110201 Quijano et al. Aug 2000 A
6146366 Schachar Nov 2000 A
6159239 Greenhalgh Dec 2000 A
6162208 Hipps Dec 2000 A
6162245 Jayaraman Dec 2000 A
6168614 Anderson et al. Jan 2001 B1
6168616 Brown, III Jan 2001 B1
6168618 Frantzen Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6203550 Olson Mar 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6214036 Letendre et al. Apr 2001 B1
6218662 Tchakarov et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6241757 An et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6248116 Chevilon Jun 2001 B1
6258114 Konya et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6277555 Duran et al. Aug 2001 B1
6299637 Shaolia et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6309382 Garrison et al. Oct 2001 B1
6309417 Spence et al. Oct 2001 B1
6338735 Stevens Jan 2002 B1
6346118 Baker et al. Feb 2002 B1
6348063 Yassour et al. Feb 2002 B1
6350277 Kocur Feb 2002 B1
6352708 Duran et al. Mar 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371979 Beyar et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6380457 Yurek et al. Apr 2002 B1
6398807 Chouinard et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6475239 Campbell et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6508833 Pavcnik et al. Jan 2003 B2
6517548 Lorentzen et al. Feb 2003 B2
6527800 McGuckin, Jr. et al. Mar 2003 B1
6530949 Konya et al. Mar 2003 B2
6530952 Vesely Mar 2003 B2
RE38091 Strecker Apr 2003 E
6562031 Chandrasekaran et al. May 2003 B2
6562058 Seguin et al. May 2003 B2
6569196 Vesely May 2003 B1
6582460 Cryer Jun 2003 B1
6585758 Chouinard et al. Jul 2003 B1
6592546 Barbut et al. Jul 2003 B1
6605112 Moll et al. Aug 2003 B1
6613077 Gilligan et al. Sep 2003 B2
6622604 Chouinard et al. Sep 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6652571 White et al. Nov 2003 B1
6652578 Bailey et al. Nov 2003 B2
6656213 Solem Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6666881 Richter et al. Dec 2003 B1
6669724 Park et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6673109 Cox Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6689144 Gerberding Feb 2004 B2
6689164 Seguin Feb 2004 B1
6692512 Jang Feb 2004 B2
6692513 Streeter et al. Feb 2004 B2
6695878 McGuckin, Jr. et al. Feb 2004 B2
6702851 Chinn et al. Mar 2004 B1
6719789 Cox Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730377 Wang May 2004 B2
6733525 Yang et al. May 2004 B2
6736846 Cox May 2004 B2
6752828 Thornton Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6776791 Stallings et al. Aug 2004 B1
6786925 Schoon Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6792979 Konya et al. Sep 2004 B2
6797002 Spence Sep 2004 B2
6821297 Snyders Nov 2004 B2
6830575 Stenzel et al. Dec 2004 B2
6830584 Seguin Dec 2004 B1
6830585 Artof Dec 2004 B1
6846325 Liddicoat Jan 2005 B2
6866650 Stevens Mar 2005 B2
6866669 Buzzard et al. Mar 2005 B2
6872223 Roberts Mar 2005 B2
6875231 Anduiza et al. Apr 2005 B2
6883522 Spence et al. Apr 2005 B2
6887266 Williams et al. May 2005 B2
6890330 Streeter et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908481 Cribier Jun 2005 B2
6913600 Valley et al. Jul 2005 B2
6929653 Streeter Aug 2005 B2
6936066 Palmaz et al. Aug 2005 B2
6939365 Fogarty et al. Sep 2005 B1
6951571 Srivastava Oct 2005 B1
6974474 Pavcnik et al. Dec 2005 B2
6974476 McGuckin et al. Dec 2005 B2
6986742 Hart et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991649 Sievers Jan 2006 B2
7018401 Hyodoh et al. Mar 2006 B1
7022132 Kocur Apr 2006 B2
7041128 McGuckin, Jr. et al. May 2006 B2
7044966 Svanidze et al. May 2006 B2
7048014 Hyodoh et al. May 2006 B2
7097659 Woolfson et al. Aug 2006 B2
7101396 Artof et al. Sep 2006 B2
7105016 Shui et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7147663 Berg et al. Dec 2006 B1
7153324 Case et al. Dec 2006 B2
7160319 Chouinard et al. Jan 2007 B2
7175656 Khairkhahan Feb 2007 B2
7186265 Sharkawy et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201761 Woolfson et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7252680 Freitag Aug 2007 B2
7252682 Seguin Aug 2007 B2
7300457 Palmaz Nov 2007 B2
7300463 Liddicoat Nov 2007 B2
7316706 Bloom et al. Jan 2008 B2
7329278 Seguin Feb 2008 B2
7335218 Wilson et al. Feb 2008 B2
7338520 Bailey et al. Mar 2008 B2
7374571 Pease et al. May 2008 B2
7377938 Sarac et al. May 2008 B2
7381218 Schreck Jun 2008 B2
7384411 Condado Jun 2008 B1
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470284 Lambrecht et al. Dec 2008 B2
7481838 Carpentier et al. Jan 2009 B2
7510575 Spenser et al. Mar 2009 B2
7544206 Cohn et al. Jun 2009 B2
7547322 Sarac et al. Jun 2009 B2
7556646 Yang et al. Jul 2009 B2
7569071 Haverkost et al. Aug 2009 B2
7618447 Case et al. Nov 2009 B2
7651521 Ton et al. Jan 2010 B2
7682390 Seguin Mar 2010 B2
7708775 Rowe et al. May 2010 B2
7722666 Lafontaine May 2010 B2
7771463 Ton et al. Aug 2010 B2
7780726 Seguin Aug 2010 B2
7785361 Nikolchev et al. Aug 2010 B2
7806726 Seguin Aug 2010 B2
7803177 Hartley et al. Sep 2010 B2
7837643 Levine et al. Nov 2010 B2
7857845 Stacchino et al. Dec 2010 B2
7862602 Licata et al. Jan 2011 B2
7947075 Goetz et al. May 2011 B2
7959666 Salahieh et al. Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7993394 Hariton et al. Aug 2011 B2
8052750 Tuval et al. Nov 2011 B2
8075611 Millwee et al. Dec 2011 B2
8133270 Kheradvar et al. Mar 2012 B2
8236045 Benichou Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8343213 Salahieh et al. Jan 2013 B2
8348998 Pintor et al. Jan 2013 B2
8398704 Straubinger et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8454685 Hariton et al. Jun 2013 B2
8460366 Rowe Jun 2013 B2
8465540 Straubinger et al. Jun 2013 B2
8603160 Salahieh et al. Dec 2013 B2
8628566 Eberhardt Jan 2014 B2
8652202 Alon et al. Feb 2014 B2
8673000 Tabor et al. Mar 2014 B2
8696743 Holecek Apr 2014 B2
8702788 Kheradvar et al. Apr 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8840663 Salahieh et al. Sep 2014 B2
9132024 Brinser Sep 2015 B2
9295551 Straubinger et al. Mar 2016 B2
9339382 Tabor et al. May 2016 B2
9393110 Levi et al. Jul 2016 B2
9393115 Tabor et al. Jul 2016 B2
20010002445 Vesely Mar 2001 A1
20010001314 Davison et al. May 2001 A1
20010007956 Letac et al. Jul 2001 A1
20010010017 Letac et al. Jul 2001 A1
20010011189 Drasler et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025196 Chinn et al. Sep 2001 A1
20010032013 Marton Oct 2001 A1
20010037142 Stelter et al. Nov 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010044647 Pinchuk et al. Nov 2001 A1
20020010508 Chobotov Jan 2002 A1
20020029014 Jayaraman Mar 2002 A1
20020032480 Spence et al. Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020035396 Heath Mar 2002 A1
20020042650 Vardi et al. Apr 2002 A1
20020052651 Myers et al. May 2002 A1
20020058995 Stevens May 2002 A1
20020065545 Leonhardt et al. May 2002 A1
20020072789 Hackett et al. Jun 2002 A1
20020091439 Baker et al. Jul 2002 A1
20020095209 Zadno-Azizi et al. Jul 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020103533 Langberg et al. Aug 2002 A1
20020107565 Greenhalgh Aug 2002 A1
20020111674 Chouinard et al. Aug 2002 A1
20020120277 Hauschild et al. Aug 2002 A1
20020123802 Snyders Sep 2002 A1
20020133183 Lentz et al. Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020188341 Elliott Dec 2002 A1
20020193871 Beyersdorf et al. Dec 2002 A1
20030004560 Chobotov et al. Jan 2003 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030028247 Cali Feb 2003 A1
20030036791 Bonhoeffer et al. Feb 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030050684 Abrams et al. Mar 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030065386 Weadock Apr 2003 A1
20030109924 Cribier Jun 2003 A1
20030114913 Spenser Jun 2003 A1
20030125795 Pavcnik et al. Jul 2003 A1
20030130726 Thorpe et al. Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030135257 Taheri Jul 2003 A1
20030139804 Hankh et al. Jul 2003 A1
20030149475 Hyodoh et al. Aug 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030176914 Rabkin et al. Sep 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030191519 Lombardi et al. Oct 2003 A1
20030199913 Dubrul et al. Oct 2003 A1
20030199963 Tower et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030199975 Gabbay Oct 2003 A1
20030212410 Stenzel et al. Nov 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030233140 Hartley et al. Dec 2003 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040082989 Cook Apr 2004 A1
20040088045 Cox May 2004 A1
20040092858 Wilson et al. May 2004 A1
20040092989 Wilson et al. May 2004 A1
20040093005 Durcan May 2004 A1
20040093060 Sequin et al. May 2004 A1
20040093075 Kuehn May 2004 A1
20040097788 Mourles et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040106990 Spence et al. Jun 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122516 Fogarty Jun 2004 A1
20040127979 Wilson Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040167573 Williamson Aug 2004 A1
20040167620 Ortiz Aug 2004 A1
20040186514 Swain et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040210240 Saint Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215333 Duran Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220655 Swanson et al. Nov 2004 A1
20040225353 McGuckin, Jr. Nov 2004 A1
20040225354 Allen Nov 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20040260383 Stelter et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267357 Allen et al. Dec 2004 A1
20050010246 Streeter Jan 2005 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050010287 Macoviak Jan 2005 A1
20050015112 Cohn et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050049692 Numamoto Mar 2005 A1
20050049696 Siess Mar 2005 A1
20050055088 Liddicoat et al. Mar 2005 A1
20050060029 Le Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075712 Biancucci Apr 2005 A1
20050075713 Biancucci Apr 2005 A1
20050075717 Nguyen Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075724 Svanidze Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050075728 Nguyen et al. Apr 2005 A1
20050075730 Myers Apr 2005 A1
20050075731 Artof Apr 2005 A1
20050085841 Eversull et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050085890 Rasmussen et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050096568 Kato May 2005 A1
20050096692 Linder et al. May 2005 A1
20050096724 Stenzel et al. May 2005 A1
20050096734 Majercak et al. May 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050113910 Paniagua May 2005 A1
20050119688 Berheim Jun 2005 A1
20050131438 Cohn Jun 2005 A1
20050137686 Salahieh Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137692 Haug Jun 2005 A1
20050137695 Salahieh Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050137701 Salahieh Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050143809 Salahieh Jun 2005 A1
20050148997 Valley et al. Jul 2005 A1
20050149181 Eberhardt Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050187616 Realyvasquez Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203605 Dolan Sep 2005 A1
20050203618 Sharkawy Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050234546 Nugent Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050283962 Boudjemline Dec 2005 A1
20050288764 Snow et al. Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004469 Sokel Jan 2006 A1
20060009841 McGuckin et al. Jan 2006 A1
20060025857 Bergheim Feb 2006 A1
20060047297 Case Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058775 Stevens et al. Mar 2006 A1
20060089711 Dolan Apr 2006 A1
20060095119 Bolduc May 2006 A1
20060100685 Seguin et al. May 2006 A1
20060111771 Ton et al. May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060142848 Gabbay Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060167474 Bloom et al. Jul 2006 A1
20060173524 Salahieh et al. Aug 2006 A1
20060178740 Stacchino Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060206192 Tower et al. Sep 2006 A1
20060206202 Bonhoefer et al. Sep 2006 A1
20060212111 Case et al. Sep 2006 A1
20060241745 Solem Oct 2006 A1
20060247763 Slater Nov 2006 A1
20060253191 Salahieh Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060271097 Ramzipoor et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060271175 Woolfson Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060276882 Case et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070005131 Taylor Jan 2007 A1
20070010878 Raffiee et al. Jan 2007 A1
20070016286 Case et al. Jan 2007 A1
20070027518 Herrmann et al. Feb 2007 A1
20070027533 Douk Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070043431 Melsheimer Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070073392 Heyninck-Janitz Mar 2007 A1
20070078509 Lotfy et al. Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070100419 Licata et al. May 2007 A1
20070100435 Case May 2007 A1
20070100439 Cangialosi May 2007 A1
20070100440 Figulla May 2007 A1
20070100449 O'Neil et al. May 2007 A1
20070112415 Bartlett May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070162113 Sharkawy et al. Jul 2007 A1
20070185513 Woolfson et al. Aug 2007 A1
20070203391 Bloom et al. Aug 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070208550 Cao Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070225681 House Sep 2007 A1
20070232898 Huynh et al. Oct 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20070238979 Huynh et al. Oct 2007 A1
20070239254 Marchand et al. Oct 2007 A1
20070239261 Bose Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070239266 Birdsall Oct 2007 A1
20070239269 Dolan et al. Oct 2007 A1
20070239271 Nguyen Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070244544 Birdsall et al. Oct 2007 A1
20070244545 Birdsall et al. Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070244553 Rafiee et al. Oct 2007 A1
20070244554 Rafiee et al. Oct 2007 A1
20070244555 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070244557 Rafiee et al. Oct 2007 A1
20070250160 Rafiee Oct 2007 A1
20070255394 Ryan Nov 2007 A1
20070255396 Douk et al. Nov 2007 A1
20070255398 Yang et al. Nov 2007 A1
20070288000 Bonan Dec 2007 A1
20070288087 Fearnot Dec 2007 A1
20080004688 Spenser et al. Jan 2008 A1
20080004696 Vesely Jan 2008 A1
20080009940 Cribier Jan 2008 A1
20080015671 Bonhoeffer Jan 2008 A1
20080021552 Gabbay Jan 2008 A1
20080027529 Hartley et al. Jan 2008 A1
20080048656 Tan Feb 2008 A1
20080065001 Marchand et al. Mar 2008 A1
20080065206 Liddicoat Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080077234 Styrc Mar 2008 A1
20080082159 Tseng et al. Apr 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080133003 Seguin et al. Jun 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147105 Wilson et al. Jun 2008 A1
20080147180 Ghione et al. Jun 2008 A1
20080147181 Ghione et al. Jun 2008 A1
20080147182 Righini et al. Jun 2008 A1
20080154355 Benichou Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161910 Revuelta et al. Jul 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080215143 Seguin et al. Sep 2008 A1
20080215144 Ryan et al. Sep 2008 A1
20080221666 Licata et al. Sep 2008 A1
20080228254 Ryan Sep 2008 A1
20080228263 Ryan Sep 2008 A1
20080234797 Stryc Sep 2008 A1
20080243246 Ryan et al. Oct 2008 A1
20080255651 Dwork Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080262592 Jordan et al. Oct 2008 A1
20080262593 Ryan et al. Oct 2008 A1
20080269878 Lobbi Oct 2008 A1
20080275540 Wen Nov 2008 A1
20080281403 Kavteladze Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090012600 Styrc et al. Jan 2009 A1
20090048656 Wen Feb 2009 A1
20090054976 Tuval et al. Feb 2009 A1
20090062907 Quijano et al. Mar 2009 A1
20090069886 Suri et al. Mar 2009 A1
20090069887 Righini et al. Mar 2009 A1
20090069889 Suri et al. Mar 2009 A1
20090082858 Nugent et al. Mar 2009 A1
20090085900 Weiner Apr 2009 A1
20090099653 Suri et al. Apr 2009 A1
20090138079 Tuval et al. May 2009 A1
20090164004 Cohn Jun 2009 A1
20090164006 Seguin et al. Jun 2009 A1
20090171431 Swanson et al. Jul 2009 A1
20090171447 VonSegesser et al. Jul 2009 A1
20090192585 Bloom et al. Jul 2009 A1
20090192586 Tabor et al. Jul 2009 A1
20090192591 Ryan et al. Jul 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090198316 Laske et al. Aug 2009 A1
20090216310 Straubinger et al. Aug 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090216313 Straubinger et al. Aug 2009 A1
20090222082 Lock et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240264 Tuval et al. Sep 2009 A1
20090240320 Tuval Sep 2009 A1
20090259306 Rowe Oct 2009 A1
20090270972 Lane Oct 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20100004740 Seguin et al. Jan 2010 A1
20100011564 Millwee et al. Jan 2010 A1
20100018447 Holecek et al. Jan 2010 A1
20100023120 Holecek et al. Jan 2010 A1
20100029894 Oba et al. Feb 2010 A1
20100030328 Seguin et al. Feb 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100036484 Hariton et al. Feb 2010 A1
20100036485 Seguin Feb 2010 A1
20100049306 House et al. Feb 2010 A1
20100069852 Kelley Mar 2010 A1
20100094411 Tuval et al. Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100121436 Tuval May 2010 A1
20100131054 Tuval et al. May 2010 A1
20100137979 Tuval et al. Jun 2010 A1
20100145435 Voinov Jun 2010 A1
20100145439 Seguin et al. Jun 2010 A1
20100152840 Seguin et al. Jun 2010 A1
20100198346 Keogh et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100204785 Alkhatib Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100234940 Dolan Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100256723 Murray Oct 2010 A1
20100262157 Silver et al. Oct 2010 A1
20100262231 Tuval Oct 2010 A1
20100305685 Capps Dec 2010 A1
20100331972 Pintor Dec 2010 A1
20110022157 Essinger Jan 2011 A1
20110098800 Braido Apr 2011 A1
20110098802 Braido Apr 2011 A1
20110125244 Roeder et al. May 2011 A1
20110125258 Centola May 2011 A1
20110208283 Rust Aug 2011 A1
20110224780 Tabor et al. Sep 2011 A1
20110257729 Spenser et al. Oct 2011 A1
20110295361 Claiborne, III et al. Dec 2011 A1
20120078347 Braido et al. Mar 2012 A1
20120078357 Conklin Mar 2012 A1
20120089223 Nguyen Apr 2012 A1
20120101567 Jansen Apr 2012 A1
20120172982 Stacchino et al. Jul 2012 A1
20120271398 Essinger Oct 2012 A1
20120296418 Bonyuet Nov 2012 A1
20130023984 Conklin Jan 2013 A1
20130096664 Goetz Apr 2013 A1
20130253643 Rolando Sep 2013 A1
20140155997 Braido Jun 2014 A1
20140257475 Gross Sep 2014 A1
20150018944 O'Connell Jan 2015 A1
20150112421 Barnes Apr 2015 A1
20150127093 Hosmer May 2015 A1
Foreign Referenced Citations (66)
Number Date Country
195 32 846 Mar 1997 DE
195 46 692 Jun 1997 DE
195 46 692 Jun 1997 DE
198 57 887 Jul 2000 DE
199 07 646 Aug 2000 DE
100 48 814 Sep 2000 DE
100 49 812 Apr 2002 DE
100 49 813 Apr 2002 DE
100 49 815 Apr 2002 DE
0103546 Mar 1984 EP
0597967 Dec 1994 EP
0850607 Jul 1998 EP
1057459 Jun 2000 EP
1057460 Jun 2000 EP
1088529 Apr 2001 EP
1239795 Sep 2002 EP
1255510 Nov 2002 EP
0937439 Sep 2003 EP
1340473 Sep 2003 EP
0819013 Jun 2004 EP
2788217 Dec 1999 FR
2056023 Mar 1981 GB
2433700 Dec 2007 GB
9529640 Nov 1995 WO
9814137 Apr 1998 WO
9829057 Jul 1998 WO
99033414 Jul 1999 WO
0041652 Jul 2000 WO
0044313 Aug 2000 WO
0047136 Aug 2000 WO
0047139 Aug 2000 WO
0135870 May 2001 WO
0149213 Jul 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03003943 Jan 2003 WO
03003949 Jan 2003 WO
03011195 Feb 2003 WO
03030776 Apr 2003 WO
04019811 Mar 2004 WO
04019825 Mar 2004 WO
04023980 Mar 2004 WO
04041126 May 2004 WO
04058106 Jul 2004 WO
04089250 Oct 2004 WO
05004753 Jan 2005 WO
05027790 Mar 2005 WO
05046528 May 2005 WO
08047354 Apr 2008 WO
08079962 Jul 2008 WO
08100599 Aug 2008 WO
08150529 Dec 2008 WO
09002548 Dec 2008 WO
09029199 Mar 2009 WO
09042196 Apr 2009 WO
09045338 Apr 2009 WO
09061389 May 2009 WO
09091509 Jul 2009 WO
Non-Patent Literature Citations (38)
Entry
U.S. Appl. No. 12/476,702, filed Jun. 2, 2009.
U.S. Appl. No. 12/711,289, filed Feb. 24, 2010.
Andersen, H.R. et al, “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” Euro. Heart J. (1992) 13:704-708.
Babaliaros, et al., “State of the Art Percutaneous Intervention for the Treatment of Valvular Heart Disease: A Review of the Current Technologies and Ongoing Research in the Field of Percutaneous Heart Valve Replacement and Repair,” Cardiology 2007; 107:87-96.
Bailey, “Percutaneous Expandable Prosthetic Valves,” in: Topol EJ, ed. Textbook of Interventional Cardiology. Volume II. Second edition. WB Saunders, Philadelphia, 1994:1268-1276.
Block, et al., “Percutaneous Approaches to Valvular Heart Disease,” Current Cardiology Reports, vol. 7 (2005) pp. 108-113.
Bonhoeffer, et al, “Percutaneous Replacement of Pulmonary Valve in a Right-Ventricle to Pulmonary-Artery Prosthetic Conduit with Valve Dysfunction,” Lancet (England), Oct. 21, 2000, pp. 1403-1405.
Bonhoeffer, et al, “Transcatheter Implantation of a Bovine Valve in Pulmonary Position: A Lamb Study,” Circulation (United States), Aug. 15, 2000, pp. 813-816.
Boudjemline, et al, “Images in Cardiovascular Medicine. Percutaneous Aortic Valve Replacement in Animals,” Circulation (United States), Mar. 16, 2004, 109, p. e161.
Boudjemline, et al, “Percutaneous Aortic Valve Replacement: Will We Get There?” Heart (British Cardiac Society) (England), Dec. 2001, pp. 705-706.
Boudjemline, et al, “Percutaneous Implantation of a Biological Valve in the Aorta to Treat Aortic Valve Insufficiency—a Sheep Study,” Medical Science Monitor—International Medical Journal of Experimental and Clinical Research (Poland), Apr. 2002, pp. BR113-BR116.
Boudjemline, et al, “Percutaneous Implantation of a Biological Valve in Aortic Position: Preliminary Results in a Sheep Study,” European Heart Journal 22, Sep. 2001, p. 630.
Boudjemline, et al, “Percutaneous Pulmonary Valve Replacement in a Large Right Ventricular Outflow Tract: An Experimental Study,” Journal of the American College of Cardiology (United States), Mar. 17, 2004, pp. 1082-1087.
Boudjemline, et al, “Percutaneous Valve Insertion: A New Approach,” Journal of Thoracic and Cardiovascular Surgery (United States), Mar. 2003, pp. 741-742.
Boudjemline, et al, “Steps Toward Percutaneous Aortic Valve Replacement,” Circulation (United States), Feb. 12, 2002, pp. 775-778.
Boudjemline, et al, “The Percutaneous Implantable Heart Valve,” Progress in Pediatric Cardiology (Ireland), 2001, pp. 89-93.
Coats, et al, “The Potential Impact of Percutaneous Pulmonary Valve Stent Implantation on Right Ventricular Outflow Tract Re-Intervention,” European Journal of Cardio-Thoracic Surgery (England), Apr. 2005, pp. 536-543.
Cribier, A. et al, “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description,” Circulation (2002) 3006-3008.
Davidson et al., “Percutaneous therapies for valvular heart disease,” Cardiovascular Pathology 15 (2006) 123-129.
European Patent Office Communication in Application No. 09704087.7-2320, dated Nov. 30, 2012, 5pages.
Expert report of Dr. Nigel Buller, dated Jan. 12, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934 (83 pages).
Expert report of Dr. Nigel Buller, non-confidential annex—infringement, dated Jan. 12, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934 (12 pages).
Expert report of Dr. Rodolfo Quijano, dated Jan. 9, 2009, Edwards' LifeSciences v. Cook Biotech Incorporated, United Kingdom action for invalidity, Claim No. HC 08CO0934 (18 pages).
First Expert report of Dr. Nigel Person Buller (30 pages), Corevalve, Inc. v. Edwards Lifesciences Ag and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
First Expert report of Prof. David Williams, dated Jan. 12, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934 (41 pages).
Hanzel, et al., “Complications of percutaneous aortic valve replacement: experience with the Criber-Edwards™ percutaneous heart valve,” EuroIntervention Supplements (2006), 1 (Supplement A) A3-A8.
Khambadkone, “Nonsurgical Pulmonary Valve Replacement: Why, When, and How?” Catheterization and Cardiovascular Interventions—Official Journal of the Society for Cardiac Angiography & Interventions (United States), Jul. 2004, pp. 401-408.
Khambadkone, et al, “Percutaneous Implantation of Pulmonary Valves,” Expert Review of Cardiovascular Therapy (England), Nov. 2003, pp. 541-548.
Khambadkone, et al, “Percutaneous Pulmonary Valve Implantation: Early and Medium Term Results,” Circulation 108 (17 Supplement), Oct. 28, 2003, p. IV-375.
Lutter, et al, “Percutaneous Aortic Valve Replacement: An Experimental Study. I. Studies on Implantation,” the Journal of Thoracic and Cardiovascular Surgery, Apr. 2002, pp. 768-776.
Lutter, et al, “Percutaneous Valve Replacement: Current State and Future Prospects,” Annals of Thoracic Surgery (Netherlands), Dec. 2004, pp. 2199-2206.
Medtech Insight, “New Frontiers in Heart Valve Disease,” vol. 7, No. 8 (2005).
Palacios, “Percutaneous Valve Replacement and Repair, Fiction or Reality?” Journal of American College of Cardiology, vol. 44, No. 8 (2004) pp. 1662-1663.
Pasupati et al., “Transcatheter Aortic Valve Implantation Complicated by Acute Structural Valve Failure Requiring Immediate Valve in Valve Implantation,” Heart, Lung and Circulation 2010; doi:10.1016/j.hlc.2010.05.006.
Pavcnik et al., “Aortic and venous valve for percutaneous insertion,” Min. Invas. Ther. & Allied Techol. 2000, vol. 9, pp. 287-292.
Pelton et al., “Medical Uses of Nitinol,” Materials Science Forum Vols. 327-328, pp. 63-70 (2000).
Ruiz, “Transcathether Aortic Valve Implantation and Mitral Valve Repair: State of the Art,” Pediatric Cardiology, vol. 26, No. 3 (2005).
Webb, et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation (2006), 113;842-850.
Related Publications (1)
Number Date Country
20160296327 A1 Oct 2016 US
Provisional Applications (1)
Number Date Country
61062207 Jan 2008 US
Continuations (2)
Number Date Country
Parent 14087990 Nov 2013 US
Child 15099075 US
Parent 12358980 Jan 2009 US
Child 14087990 US