This disclosure relates to pipe repair. More specifically, this disclosure relates to a stent for repairing a damaged pipe.
Piping systems, including municipal water systems, can develop breaks in pipe walls that can cause leaking. Example of breaks in a pipe wall can include radial cracks, axial cracks, point crack, etc. Repairing a break in a pipe wall often requires the piping system to be shut off, which can be inconvenient for customers and costly for providers. Further, repairs can necessitate grandiose construction, including the digging up of streets, sidewalks, and the like, which can be costly and time-consuming.
It is to be understood that this summary is not an extensive overview of the disclosure. This summary is exemplary and not restrictive, and it is intended neither to identify key or critical elements of the disclosure nor delineate the scope thereof. The sole purpose of this summary is to explain and exemplify certain concepts off the disclosure as an introduction to the following complete and extensive detailed description.
Disclosed is a stent spring for a stent comprising a plurality of minor springs connected in a series around a circumference of the stent spring, each of the minor springs defining a first leg and a second leg; and a spring constrictor engaged with each of the minor springs, each of the spring constrictors movable between a first position, wherein the corresponding minor spring defines a first maximum width, and a second position, wherein the corresponding minor spring defines a second maximum width that is greater than the first maximum width.
Also disclosed is a stent for repairing a pipe, the stent comprising a stent spring comprising a plurality of minor springs connected in a series; a spring constrictor engaged with each of the minor springs, each of the spring constrictors movable between a first position, wherein the stent is in a compressed configuration, and a second position, wherein the stent is in an expanded configuration; and a seal configured to engage an inner wall of a pipe.
A method for repairing a pipe is also disclosed, the method comprising providing a stent comprising a stent spring and a seal, the stent spring comprising a plurality of minor springs; orienting the minor springs in a constricted configuration to reduce a diameter of the stent; inserting the stent into a pipe; orienting the minor springs in an un-constricted configuration to increase the diameter of the stent; and engaging an inner wall of the pipe with the seal.
Various implementations described in the present disclosure may include additional systems, methods, features, and advantages, which may not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims.
The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.
The present disclosure can be understood more readily by reference to the following detailed description, examples, drawings, and claims, and the previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description is provided as an enabling teaching of the present devices, systems, and/or methods in its best, currently known aspect. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the present devices, systems, and/or methods described herein, while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits of the present disclosure can be obtained by selecting some of the features of the present disclosure without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present disclosure are possible and can even be desirable in certain circumstances and are a part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof.
As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an element” can include two or more such elements unless the context indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
For purposes of the current disclosure, a material property or dimension measuring about X or substantially X on a particular measurement scale measures within a range between X plus an industry-standard upper tolerance for the specified measurement and X minus an industry-standard lower tolerance for the specified measurement. Because tolerances can vary between different materials, processes and between different models, the tolerance for a particular measurement of a particular component can fall within a range of tolerances.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The word “or” as used herein means any one member of a particular list and also includes any combination of members of that list. Further, one should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain aspects include, while other aspects do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular aspects or that one or more particular aspects necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular aspect.
Disclosed are components that can be used to perform the disclosed methods and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed that while specific reference of each various individual and collective combinations and permutations of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific aspect or combination of aspects of the disclosed methods.
Disclosed in the present application is a stent for repairing a pipe and associated methods, systems, devices, and various apparatus. Example aspects of the stent can comprise a seal and a plurality of minor springs. The minor springs can be connected together to form a stent spring. It would be understood by one of skill in the art that the disclosed stent for repairing a pipe is described in but a few exemplary aspects among many. No particular terminology or description should be considered limiting on the disclosure or the scope of any claims issuing therefrom.
According to example aspects, each of the minor springs 110 can joined to an adjacent one of the minor springs 110 by the fastener 140 at the middle sections 118 thereof. For example, the fastener 140 can couple the middle section 118 of the first leg 112 of a first one of the minor springs 110 to the middle section 118 of the second leg 114 of an adjacent minor spring 110, and so on. In some aspects, as shown, each of the fasteners 140 can be oriented along the middle sections 118 of the corresponding adjacent minor springs 110 at a position that can be closer to the first ends 116 of the minor springs 110 than the second ends 120. In other aspects, however, the fasteners 140 can be positioned at any suitable location along the minor springs 110. In various example aspects, each of the first and second legs 112,114 can generally define a head portion 115 and a tail portion 117, and the fastener 140 can be positioned at or near a joint 119 between the head portion 115 and the tail portion 117. For example, in the present aspect, the fastener 140 can be positioned on the head portion 115 adjacent to the joint 119. In the present aspect, the joint 119 can define a substantially S-shaped bend; however, in other aspects, the joint between the head and tail portions 115,117 can define any other suitable shape. In some aspects, as shown, a foot 122 can be formed on each of the first and second legs 112,114 at the second end 120 of the minor spring 110. In the present aspect, each of the feet 122 can extend away from the minor spring 110 at approximately a ninety-degree angle with respect to the corresponding first or second leg 112,114. Other aspects of the feet 122 can be oriented at any suitable angle relative to the corresponding first and second legs 112,114.
In some aspects, the minor springs 110 of the stent spring 100 can comprise a metal material, such as, for example, stainless steel, spring steel, aluminum, nitinol, or cobalt chromium. For example, in some aspects, the minor springs 110 can comprise flat strips of metal bent to form each of the minor springs 110. In other aspects, the minor springs 110 can comprise a plastic material, such as, for example, nylon, POM (polyoxymethylene), or PVC (polyvinyl chloride), and in still other aspects, the minor springs 110 can comprise a carbon fiber material, or any other suitable material known in the art. Optionally, the material of the minor springs 110 can be an NSF certified material that can comply with various public health safety standards. For example, in some aspects, the material can be approved as safe for use in drinking-water applications. Moreover, in some aspects, the minor springs 110 can comprise a coating, such as, for example, a rubber or liquid metal coating. The coating can improve mechanical properties of the stent spring 100 in some aspects. For example, the coating can improve the tensile strength of the stent spring 100 by providing a flexible and/or springy outer layer. In some aspects, the coating can also be corrosion resistant, or a separate coating can be applied to the stent spring 100 for corrosion resistance. For example, a corrosion resistant coating can comprise a zinc-nickel material, phosphate, electrophoretic paint (e-coating), polyester, fusion-bonded epoxy (FBE), or any other suitable corrosion resistant material.
According to example aspects, each of the minor springs 110 can define a spring force and can be expandable, such that the minor spring 110 can be oriented in a natural, un-constricted configuration, as shown in
In the first position, the minor springs 110 can be in the constricted configuration wherein the first and second legs 112,114 can be biased towards one another by the spring constrictor 150 at the middle section 118 of the minor spring 110. As shown, in the constricted configuration, the first and second legs 112,114 can define a maximum width W1 therebetween. In the second position, the minor springs 110 can be in the natural, un-constricted configuration, wherein the spring force of the minor springs 110 can bias the corresponding first and second legs 112,114 away from each other at the middle section 118 of the minor spring 110. In the un-constricted configuration, the first and second legs 112,114 can define a maximum width W2 (shown in
Referring to
A void 230 can extend through the stent spring 100, and fluid can be configured to flow therethrough. A center axis 232 can extend substantially through a center of the void 230, as shown. A release mechanism 260 can be positioned in the void 230, as shown. According to example aspects, each of the spring constrictors 150 can be operably connected to the release mechanism 260, such that generally axial movement of the release mechanism 260 relative to the stent spring 100 towards the second ends 120 of the minor springs 110 can result in generally axial movement of the spring constrictors 150 along the first and second legs 112,114 towards the second ends 120. In some aspects, the joint 119 along each of the first and second legs 112,114 can prohibit the spring constrictors 150 from moving axially towards the first end 116. According to some aspects, each of the spring constrictors 150 can comprise a connector, such as an ear 254, extending radially inward for operably connecting the spring constrictor 150 to the release mechanism 260, as shown. To move each spring constrictor 150 from the first position at or near a center the middle section 118 of the corresponding minor spring 110 to the second position proximate the second end 120 of the minor spring 110, the release mechanism 260 can be moved towards the second end 120 of the minor springs 110. The engagement of the release mechanism 260 with the connectors (e.g., the ears 254) of the spring constrictors 150 can pull the spring constrictors 150 along the first and second legs 112,114 towards the corresponding second ends 120.
In example aspects, the spring constrictors 150 can abut the corresponding feet 122 of the minor spring 110 in the second position and can be prevented from sliding off the minor spring 110 at the second end 120. Once the spring constrictors 150 are in the second position proximate the feet 122, the spring force of each of the minor springs 110 can bias the first and second legs 112,114 apart at the middle section 118 of the minor spring 110, moving each of the minor springs 110 from the constricted configuration to the un-constricted configuration. A diameter D1 of the stent spring 100 can increase as the minor springs 110 move to the un-constricted configuration. In some aspects, as the diameter D1 increases, the spring constrictors 150 can disengage and move radially outward from the release mechanism 260. The release mechanism 260 can then be removed, so that fluid can flow substantially uninterrupted through the void 230. In some other aspects, the spring constrictors 150 can be removed along with the release mechanism 260.
The minor springs 110 are illustrated in the un-constricted configuration in
As such, a method for repairing the pipe 700 can comprise orienting the minor springs 110 of the stent spring 100 in the constricted configuration in order to reduce the diameter D1 (shown in
One should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular embodiments or that one or more particular embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
It should be emphasized that the above-described embodiments are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Any process descriptions or blocks in flow diagrams should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included in which functions may not be included or executed at all, may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the present disclosure. Further, the scope of the present disclosure is intended to cover any and all combinations and sub-combinations of all elements, features, and aspects discussed above. All such modifications and variations are intended to be included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure.
The present application is a divisional of U.S. application Ser. No. 16/786,246 on Feb. 10, 2020, which claims the benefit of U.S. Provisional Application No. 62/819,085, filed Mar. 15, 2019, both of which are hereby specifically incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3895652 | Zach | Jul 1975 | A |
4589447 | Kane et al. | May 1986 | A |
4647072 | Westman | Mar 1987 | A |
5119862 | Maimets et al. | Jun 1992 | A |
5351720 | Maimets | Oct 1994 | A |
6200336 | Pavcnik | Mar 2001 | B1 |
6589275 | Ivancev | Jul 2003 | B1 |
6712556 | Penza | Mar 2004 | B2 |
6820653 | Schempf et al. | Nov 2004 | B1 |
7025580 | Heagy et al. | Apr 2006 | B2 |
7172370 | Schmidt | Feb 2007 | B2 |
7267141 | De Meyer et al. | Sep 2007 | B1 |
7918882 | Pavcnik | Apr 2011 | B2 |
8488290 | Kauffman | Jul 2013 | B2 |
8783297 | Hawwa et al. | Jul 2014 | B2 |
9052051 | Maimets et al. | Jun 2015 | B2 |
10143552 | Wallace | Dec 2018 | B2 |
10245167 | Longo | Apr 2019 | B2 |
10368990 | Noe | Aug 2019 | B2 |
10641427 | Braun et al. | May 2020 | B2 |
11079058 | Furcoiu | Aug 2021 | B2 |
11187366 | Furcoiu | Nov 2021 | B2 |
11221099 | Braun et al. | Jan 2022 | B2 |
11326731 | Furcoiu | May 2022 | B2 |
11353154 | Furcoiu | Jun 2022 | B2 |
11391405 | Furcoiu | Jul 2022 | B2 |
20020144822 | Hackworth et al. | Oct 2002 | A1 |
20030017775 | Sowinski et al. | Jan 2003 | A1 |
20030040791 | Oktay | Feb 2003 | A1 |
20030233140 | Hartley et al. | Dec 2003 | A1 |
20040236398 | Burgmeier et al. | Nov 2004 | A1 |
20080140178 | Rasmussen et al. | Jun 2008 | A1 |
20080255660 | Guyenot et al. | Oct 2008 | A1 |
20080269789 | Eli | Oct 2008 | A1 |
20100010617 | Goodson, IV et al. | Jan 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100263759 | Maimets et al. | Oct 2010 | A1 |
20110264186 | Berglung et al. | Oct 2011 | A1 |
20120273078 | Hawwa et al. | Nov 2012 | A1 |
20130018450 | Hunt | Jan 2013 | A1 |
20130131783 | Shalev et al. | May 2013 | A1 |
20130158646 | Roeder | Jun 2013 | A1 |
20160120638 | Michalak | May 2016 | A1 |
20160143732 | Glimsdale | May 2016 | A1 |
20160238178 | Urbanski | Aug 2016 | A1 |
20170231765 | Desrosiers et al. | Aug 2017 | A1 |
20170304092 | Hong et al. | Oct 2017 | A1 |
20190093813 | Badger et al. | Mar 2019 | A1 |
20190301657 | Braun et al. | Oct 2019 | A1 |
20200224811 | Braun et al. | Jul 2020 | A1 |
20200263823 | Furcoiu | Aug 2020 | A1 |
20200292119 | Furcoiu | Sep 2020 | A1 |
20200292120 | Furcoiu | Sep 2020 | A1 |
20200340610 | Furcoiu | Oct 2020 | A1 |
20210041051 | Furcoiu | Feb 2021 | A1 |
20210041052 | Furcoiu | Feb 2021 | A1 |
20220228691 | Furcoiu | Jul 2022 | A1 |
20220228692 | Furcoiu | Jul 2022 | A1 |
20220243854 | Furcoiu | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
0621015 | Oct 1994 | EP |
2005278993 | Oct 2005 | JP |
1020070018627 | Feb 2007 | KR |
2011001189 | Jan 2011 | WO |
2019194870 | Oct 2019 | WO |
2020172136 | Aug 2020 | WO |
2020219294 | Oct 2020 | WO |
Entry |
---|
US 11,035,513 B2, 06/2021, Furcoiu (withdrawn) |
US 11,131,417 B2, 09/2021, Braun et al. (withdrawn) |
Furcoiu, Aurelian Ioan; Notice of Allowance for U.S. Appl. No. 16/987,067, filed Aug. 6, 2020, dated Apr. 5, 2022, 13 pgs. |
Furcoiu, Aurelian Ioan; Notice of Allowance for U.S. Appl. No. 16/845,557, filed Apr. 10, 2020, dated Jan. 11, 2022, 17 pgs. |
Furcoiu, Aurelian Ioan; Final Office Action for U.S. Appl. No. 16/792,984, filed Feb. 18, 2020, dated Nov. 24, 2021, 15 pgs. |
Furcoiu, Aurelian Ioan; Notice of Allowance for U.S. Appl. No. 16/792,984, filed Feb. 28, 2020, dated Jan. 31, 2022, 9 pgs. |
Furcoiu, Aurelian Ioan; Non-Final Office Action for U.S. Appl. No. 16/987,067, filed Aug. 6, 2020, dated Dec. 7, 2021, 32 pgs. |
Braun, Clifton; Non-Final Office Action for U.S. Appl. No. 16/112,207, filed Aug. 24, 2018, dated Nov. 5, 2019, 14 pgs. |
Braun, Clifton; Notice of Allowance for U.S. Appl. No. 16/112,207, filed Aug. 24, 2018, dated Feb. 13, 2020, 13 pgs. |
Braun, Clifton; Corrected Notice of Allowance for U.S. Appl. No. 16/836,468, filed Mar. 31, 2020, dated Aug. 31, 2021, 6 pgs. |
Braun, Clifton; Non-Final Office Action for U.S. Appl. No. 16/836,468, filed Mar. 31, 2020, dated May 20, 2021, 29 pgs. |
Braun, Clifton; Notice of Allowance for U.S. Appl. No. 16/836,468, filed Mar. 31, 2020, dated Oct. 1, 2021, 9 pgs. |
Braun, Clifton; Notice of Allowance for U.S. Appl. No. 16/836,468, filed Mar. 31, 2020, dated Aug. 12, 2021, 13 pgs. |
Furcoiu, Aurelian Ioan; Examiner-Initiated Interview Summary for U.S. Appl. No. 16/845,557, filed Apr. 10, 2020, dated Apr. 21, 2021, 2 pgs. |
Furcoiu, Aurelian Ioan; Non-Final Office Action for U.S. Appl. No. 16/845,557, filed Apr. 10, 2020, dated Aug. 17, 2021, 35 pgs. |
Furcoiu, Aurelian Ioan; Non-Final Office Action for U.S. Appl. No. 16/792,984, filed Feb. 18, 2020, dated May 25, 2021, 25 pgs. |
Furcoiu, Aurelian Ioan; Requirement for Restriction/Election for U.S. Appl. No. 17/792,984, filed Feb. 18, 2020, dated Apr. 1, 2021, 6 pgs. |
Furcoiu, Aurelian Ioan; Corrected Notice of Allowance for U.S. Appl. No. 16/786,193, filed Feb. 10, 2020, dated May 17, 2021, 6 pgs. |
Furcoiu, Aurelian Ioan; Corrected Notice of Allowance for U.S. Appl. No. 16/786,193, filed Feb. 10, 2020, dated Jun. 22, 2021, 6 pgs. |
Furcoiu, Aurelian Ioan; Non-Final Office Action for U.S. Appl. No. 16/786,193, filed Feb. 10, 2020, dated Feb. 4, 2021, 22 pgs. |
Furcoiu, Aurelian Ioan; Notice of Allowance for U.S. Appl. No. 16/786,193, filed Feb. 10, 2020, dated Apr. 26, 2021, 9 pgs. |
Furcoiu, Aurelian Ioan; Corrected Notice of Allowance for U.S. Appl. No. 16/786,246, filed Feb. 10, 2020, dated Aug. 31, 2021, 6 pgs. |
Furcoiu, Aurelian Ioan; Corrected Notice of Allowance for U.S. Appl. No. 16/786,246, filed Feb. 10, 2020, dated Aug. 6, 2021, 7 pgs. |
Furcoiu, Aurelian Ioan; Non-Final Office Action for U.S. Appl. No. 16/786,246, filed Feb. 10, 2020, dated Mar. 4, 2021, 21 pgs. |
Furcoiu, Aurelian Ioan; Notice of Allowance for U.S. Appl. No. 16/786,246, filed Feb. 10, 2020, dated Oct. 14, 2021, 9 pgs. |
Furcoiu, Aurelian Ioan; Requirement for Restriction/Election for U.S. Appl. No. 16/786,246, filed Feb. 10, 2020, dated Feb. 3, 2021, 6 pgs. |
Braun, Clifton; International Preliminary Report on Patentability for PCT Application No. PCT/US18/63325, filed Nov. 30, 2018, dated Oct. 15, 2020, 7 pgs. |
Braun, Clifton; International Search Report for PCT Application No. PCT/US18/63325, filed Nov. 30, 2018, dated Feb. 5, 2019, 8 pgs. |
Braun, Cliff; Extended European Search report for application No. 18913510.6, filed Nov. 30, 2018, dated Sep. 13, 2021, 7 pgs. |
Furcoiu, Aurelian Ioan; International Preliminary Report on Patentability for PCT Application No. PCT/US20/28038, filed Apr. 14, 2020, dated Nov. 4, 2021, 8 pgs. |
Furcoiu, Aurelian Ioan; International Search Report and Written Opinion for PCT Application No. PCT/US20/28038, filed Apr. 14, 2020, dated Jun. 24, 2020, 9 pgs. |
Furcoiu, Aurelian Ioan; International Preliminary Report on Patentability for PCT Application No. PCT/US20/18593, filed Feb. 18, 2020, dated Sep. 2, 2021, 8 pgs. |
Furcoiu, Aurelian Ioan; International Search Report and Written Opinion for PCT Application No. PCT/US20/18593, filed Feb. 18, 2020, dated May 7, 2020, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20210381637 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62819085 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16786246 | Feb 2020 | US |
Child | 17407374 | US |