Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient

Information

  • Patent Grant
  • 10575947
  • Patent Number
    10,575,947
  • Date Filed
    Thursday, December 21, 2017
    7 years ago
  • Date Issued
    Tuesday, March 3, 2020
    4 years ago
Abstract
The present invention relates to a stent (10) for the positioning and anchoring of a valvular prosthesis (100) in an implantation site in the heart of a patient. Specifically, the present invention relates to an expandable stent for an endoprosthesis used in the treatment of a narrowing of a cardiac valve and/or a cardiac valve insufficiency. So as to ensure that no longitudinal displacement of a valvular prosthesis (100) fastened to a stent (10) will occur relative the stent (10) in the implanted state of the stent (10), even given the peristaltic motion of the heart, the stent (10) according to the invention comprises at least one fastening portion (11) via which the valvular prosthesis (100) is connectable to the stent (10). The stent (10) further comprises positioning arches (15) and retaining arches (16), whereby at least one positioning arch (15) is connected to at least one retaining arch (16) via a first connecting land (17). The stent (10) moreover comprises at least one auxiliary retaining arch (18) which connects the respective arms (16′, 16″) of the at least one retaining arch (16) connected to the at least one positioning arch (15).
Description

The present invention relates to a stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient. Specifically, the present invention relates to an expandable stent for an endoprosthesis used in the treatment of a stenosis (narrowing) of a cardiac valve and/or a cardiac valve insufficiency.


The expression “narrowing (stenosis) of a cardiac valve and/or cardiac valve insufficiency” is intended to include a functional defect of one or more cardiac valves, which is either genetic or has developed. A cardiac defect of this type might affect each of the four heart valves, although the valves in the left ventricle (aortal and mitral valves) are affected much more often than the right-sided part of the heart (pulmonary and tricuspid valves). The functional defect can result in narrowing (stenosis), inability to close (insufficiency) or a combination of the two (combined vitium). This invention relates to an expandable stent for insetting a heart valve stent in a patient's body for treating such a heart valve defect.


In the current treatment of severe narrowing of a cardiac valve and/or cardiac valve insufficiency, the narrowed or diseased cardiac valve is replaced with a valvular prosthesis. Biological or mechanical valves models, which are typically surgically sewn into the cardiac valve bed through an opening in the chest after removal of the diseased cardiac valve, are used for this purpose. This operation necessitates the use of a heart-lung machine to maintain the patient's circulation during the procedure and cardiac arrest is induced during implantation of the prosthesis. This is a risky surgical procedure with associated dangers for the patient, as well as a long post-operative treatment and recovery phase. Such an operation can often not be considered with justifiable risk in the case of polypathic patients.


Minimally-invasive forms of treatment have been developed recently which are characterized by allowing the procedure to be performed under local anesthesia. One approach provides for the use of a catheter system to implant a self-expandable stent to which is connected a collapsible valvular prosthesis. Such a self-expandable endoprothesis can be guided via a catheter system to the implantation site within the heart through an inguinal artery or vein. After reaching the implantation site, the stem can then be unfolded.


To this end, it is known that a stent may be comprised of, for example, a plurality of self-expanding longitudinal stent segments, the segments being articulated relative one another. In order to anchor the stent securely in position the an appropriate blood vessel close to the heart, anchoring barbs are frequently used to engage with the vascular wall.


An expandable stent for the fastening and anchoring of a valvular prosthesis is known from printed publication DE 10 010 074 A1, whereby the stent is essentially formed of wire-shaped, interconnected segments. DE 10 010 074 A1 proposes a stent for fastening and anchoring a valvular prosthesis, the stent having different arched elements which assume the function of fastening and supporting the valvular prosthesis at the site of implantation. Specifically, three identically-configured positioning arches spaced 120° from one another respectively are used. These positioning arches are connected to one another by means of solid body articulations. Addition to the positioning arches, complementary curved retaining arches serve to anchor the endoprothesis by pressing radially against the vascular wall following the unfolding of the stent.


However, there is a risk of inexact or incorrect implantation of a valvular prosthesis using the solutions described above. Expressed in another way. There is a need for exact positioning and longitudinal alignment of an implanted valvular prosthesis. In particular, it is only possible using great skill on the part of the attending surgeon or cardiologist—if at all—to position a stent sufficiently precisely, in both a lateral and longitudinal direction, to ensure that the associated valvular prosthesis is located in the correct area of the patient's diseased heart valve.


Among other things, inexact implantation of a sub-optimally positioned valvular prosthesis can lead to leakage or valvular insufficiency which results in considerable ventricular stress. For example, if a valvular prosthesis is implanted too far above the plane of the native heart valve, this can lead to closure or blocking of the coronary artery ostia (inlet orifice of coronaries) and thus to fatal coronary ischemia and myocardial infarction.


Therefore, for the optimal treatment of a narrowed cardiac valve or a cardiac valve insufficiency, it is necessary to position a stent, to which a valvular prosthesis is affixed, as precisely as possible at the site of implantation of the cardiac valve to be treated.


An endoprosthesis for treating aortic valve insufficiency is known from printed publication DE 20 2007 005 491 U1. The endoprosthesis comprises a valvular prosthesis and a stent to position and anchor the valvular prosthesis at the implantation site in the patient's heart. A stent having several (multiple, normally three, but two in case of bicuspid valve) positioning arches is employed in this endoprosthesis. In the implanted state of the stent, these positioning arches extend radially and serve to engage in the pockets of the native (diseased) cardiac valve to be treated. The valvular prosthesis affixed to the stent can then self-position into the plane of the cardiac valve. Retaining arches abut against the vascular wall of the aorta in the implanted state of the endoprosthesis, form a force-fit connection and are used to anchor the endoprosthesis.


While the positioning arches enable optimal positioning of the stent of this endoprosthesis at the site of implantation in the patient's heart, what cannot be ensured is that the valvular prosthesis attached to the proximal end of the stent is actually also positioned in the plane of the cardiac valve. In particular, substantial forces act on the valvular prosthesis during the filling phase of the heart cycle (diastole), which can lead to the valvular prosthesis displacing longitudinally relative the stent. Due to this longitudinal displacement of the implanted valvular prosthesis, which occurs in the heart and blood vessels especially because of the peristaltic motion of the heart, the implanted valvular prosthesis may no longer be able to provide a secure seal.


Moreover, there is the danger that, because of the longitudinal displacement of the valvular prosthesis relative the stent occurring with the peristaltic motion, the threads or sutures used to fasten the valvular prosthesis to the stent may chafe against the stent. It can therefore not be excluded that the fastening threads may fray over the course of time and thus lose their fastening function. This would result in at least a partial separation of the valvular prosthesis from the stent, which in turn can lead to leakages, an inappropriate positioning or even complete detachment of the valvular prosthesis.


On the basis of the problems outlined above, the present invention addresses the issue of providing a self-expandable endoprothesis fox treating a narrowed cardiac valve or a cardiac valve insufficiency which realizes optimum positioning accuracy and anchoring of a valvular prosthesis to be implanted. In addition, the treatment of the narrowed cardiac valve or cardiac valve insufficiency should be by way of a simple procedure to enable routine treatment of narrowed cardiac valve or cardiac valve insufficiency without major stress to the patient.


A further task of the present invention lies in specifying an endoprothesis for the treatment of a stenosed cardiac valve or a cardiac valve insufficiency, whereby the endoprothesis can be anchored securely at the site of implantation in the patent's heart. In addition, the present invention also addresses the issue of substantially preventing displacement of an implanted valvular prosthesis from its ideal site of implantation in spite of the forces acting on the endoprothesis during the filling phase of the heart cycle.


From one aspect, an expandable stent is proposed in accordance with the present invention, the scent comprising at least one fastening portion by means of which a valvular prosthesis is connected to the stent. In particular, the stent comprises both positioning arches and retaining arches. At least one positioning arch of the stent is connected with at least one retaining arch of the stent by a first connecting web. Additionally, the stent further comprises at least one auxiliary arch which interconnects the arms of respective retaining arches.


The at least one fastening portion extends along the longitudinal axis of the stent and comprises a plurality of fastening holes distributed in a longitudinal direction at discrete positions along the length of the at least one fastening portion. Thread or thin wire may be guided through each fastening hole to secure the valvular prosthesis to the stent. The advantage of this feature is that longitudinal displacement of the valvular prosthesis relative to the stent is substantially minimized once implanted and so the prosthesis is not unduly disturbed or weakened as a result of the heart's peristaltic motion.


Depending from and between a pair of fastening portions is a fastening arch, over which valve tissue is laid. The fastening arch is located inside the circumference of the stent. In this way, the prosthesis tissue is separated and held away from positioning and retaining arches, thereby reducing the likelihood of these arches chaffing the tissue which, in turn may result in damage and weakening of the prosthesis. The fastening arch serves to anchor the lower edge of the valvular prosthesis and to tension the material so the prosthesis is effective as a valve. By having a fastening portion and fastening arches, the prosthesis is fully supported and anchored within the boundary of the stent. The combination of the two fastening mechanisms also provides a failsafe should one fastening mechanism fail. This is of particular relevance with suturing since a poorly sutured prosthesis will not be as effective as it should due to additional stresses and strains imparted to the prosthesis by the sutures. Thus, the arches allow fastening of the prosthesis in a manner that does not rely solely on suturing.


In an implanted configuration, the at least one positioning arches of the stem extends from the circumference of the stent in a generally radial direction. These positioning arches are designed to engage in the pockets of the native (diseased) cardiac valve that is being replaced which, in turn allows accurate positioning of the stent. Furthermore, on implantation, a positioning arch sits between the vascular wall and a leaflet of the native heart valve. The positioning arch then co-operates with a corresponding retaining arch resulting in clipping of the native leaflet between the two arches. In this way, the positioning and retaining arches together hold the stent in position and substantially eliminate axial rotation of the stent.


The at least one retaining arch is connected to a positioning arch by a connecting web. The retaining arch extends radially in the implanted state of the stent such that the at least one retaining arch presses against the wall of the blood vessel in which the stent is deployed with a radially-acting tensioning force. In addition to the at least one retaining arch, the invention provides for the stent to further comprise at least one auxiliary arch which interconnects the respective arms of the at least one retaining arch connected to the at least one positioning arch. As with the at least one retaining arch, the at least one auxiliary arch also protrudes radially in the expanded state of the stent when implanted such that the at least one auxiliary arch also presses against the wall of the blood vessel in which the stent is deployed with a radially-acting tensioning force.


In the at least one fastening portion of the stent, by means of which the valvular prosthesis can be fastened to the stent, a plurality of fastening holes is provided. These fastening holes are longitudinally distributed at given positions on the fastening portion and guide at least one thread or thin wire to fasten the valvular prosthesis to the stent, thereby enabling a precise positioning of the valvular prosthesis on the stent. Each individual fastening hole provided in the at least one fastening portion thereby serves to guide a thread or thin wire with which the valvular prosthesis is affixed or sewn to the fastening portion of the stent.


The means provided for fastening the valvular prosthesis to the fastening portion of the scent (thread or thin wire) is guided by way of the fastening holes so that a longitudinal displacement of the valvular prosthesis relative the stent is substantially minimized. This also allows exact positioning of the valvular prosthesis relative the stent.


The secure and defined fixing of the valvular prosthesis to the at least one fastening portion of the stent moreover effectively prevents the means used to fasten the valvular prosthesis to the stent (threads or thin wires) from rubbing against the stent and thus degrading after a longer period of use.


In order to configure the plurality of fastening holes in the fastening portion, the at least one fastening portion is preferably configured as—in comparison to the respective arms of the positioning arch, retaining arch and auxiliary retaining arch—a widened segment. Thus, the fastening portion is a stent segment which comprises a relatively large amount of material, facilitating movement and position analysis when the stent is being implanted. For example, when fluoroscopy (cardiac catheterization=LHK) or ultrasound (trans-esophageal echocardiogram=TEE) is used to monitor the insertion procedure, the fastening portion of the stent is particularly distinguishable.


In manufacturing the stent used in the endoprothesis according to the invention, it is conceivable lot the stent to exhibit a structure integrally cut from a portion of tube, in particular from a small metal tube, which incorporates the positioning arches, retaining arches and auxiliary retaining arches as well as the at least one fastening portion with the defined fastening holes. Specifically, it is conceivable to use a laser to cut the stent structure from the small metal tube, whereby the structure is thereafter subject to an applicable shaping and thermal treatment process so that the stent can transform from a collapsed state during implantation into an expanded state at the site of implantation. This shaping and thermal treatment process is advantageously performed gradually in order to prevent damage to the stent structure.


Particularly preferred is for the stent to exhibit a structure integrally cut from a small metal tube in which each positioning arch is allocated one retaining arch, and in which each upper end portion of the positioning arch towards the upper end of the stent is connected with the upper end portion of the associated retaining arch via a first connecting web. The at least one fastening portion, in which the plurality of fastening holes is provided, is thereby preferably configured within an arm of the retaining arch.


It is to be understood that the term “upper” refers to the stent when viewed in its implanted state. In other words, the term “upper” refers to the distal end of the stent which, when implanted, is sited away from the heart. Similarly, use of the term “lower” refers to a proximal position on the stent which is located towards the heart when the stent is viewed in its implanted position.


A preferred realization of the stent according to invention provides for a fastening portion to be configured within each arm of the stent's retaining arch.


In order to be able to reinforce the respective retaining arches of the stent, the auxiliary arch as already mentioned above is provided and which extends from the lower ends of the fastening portion and connects the respective arms of two neighboring retaining arches.


The stent preferably exhibits an integrally-formed structure which can transform from a first predefinable shape into a second predefinable shape, whereby the stent exhibits a first predefinable shape (collapsed shape) during insertion into the patient's body and a second predefinable shape (expanded shape) once implanted. Because of the stent's design, during the transition of the stent from the first predefinable shape into the second predefinable shape, the positioning arches, retaining arches and auxiliary arches are radially expanded as a function of the cross-sectional expansion of the stent. The stent's second shape is thereby preferably selected such that when expanding, the retaining arch and the auxiliary arch abut against the wall of the blood vessel in which the stent is deployed.


To achieve a secure anchoring of the stent at the site of implantation, both the retaining and auxiliary arches should press against the wall of the vessel with a radial force, whereby this radial force can be set by subjecting the stent structure to a suitable shaping and thermal treatment process.


A preferred embodiment of the stent according to the invention provides for the positioning arches and the associated retaining arches as well as auxiliary arches each to exhibit an essentially U-shaped, T-shaped or V-shaped structure which is closed toward the lower end of the stent. It is particularly preferred for each positioning arch to be cut from the material portion of a small metal tube from which the essentially U-shaped, T-shaped or V-shaped structure of the associated retaining arch was taken. The respective auxiliary arches are preferably cut from a material portion of the small metal tube situated between the essentially U-shaped, T-shaped or V-shaped retaining arch structures.


This preferred embodiment of the stent structure thus provides for the respective retaining and auxiliary arches of the stent to form the lower region of the endoprothesis, whereby the positioning arches are configured symmetrically to the retaining arches although preferably disposed somewhat farther toward the upper region of the endoprothesis.


The respective upper ends of the positioning arches are connected to the respective upper ends of the associated retaining arches by means of a first connecting web in the upper region of the endoprothesis. The fastening portions are configured in the respective arms of the retaining arch. In the expanded state of the stent, both the lower region with the fastening portions, as well as the connecting web disposed at the upper end of the stent between the respective positioning and retaining arches, spread out so that a radially-acting force is exerted on the blood vessel wall from both the lower region of the stent as well as the upper end of the stent, thereby enabling secure anchoring of the stent at the site of implantation.


In a preferred embodiment, the stent exhibits in its first shape (collapsed shape) an outer diameter of approximately 4 to 8 mm and a length of between 30 mm and 40 mm, preferably between 34.0 and 39.0 mm, and more preferably between 34.37 mm and 38.37 mm. This allows the stent to be inserted easily into the patient's body, for example with a 21F delivery system, and to be used with a valvular prosthesis having a diameter of between 19 mm and 28 mm. The afore-mentioned length specifications are the dimensions currently preferred, based on which the stent becomes suitable for the majority of patients to be treated.


In order to achieve a particularly secure anchoring of the implanted stent with the stretched valvular prosthesis affixed thereto, it is further conceivable for the stent to be subject to a shaping and thermal treatment process during its manufacture such that the finished stent exhibits a slightly concave configuration tapering toward its lower end in its second shape.


In other words, the lower end portion of the stent; i.e., that area in which the valvular prosthesis is fastened, exhibits a somewhat tapered diameter in comparison to the upper end portion. Specifically, it has been seen that, when the stent is in it second shape and the upper end of the stent exhibits a diameter approximately 10-25% larger than the diameter of its lower end, radial forces are generated particularly at the stent's upper end. This enables a secure hold of the stent in the blood vessel without damaging the arterial wall. This configuration also provides secure anchoring that is able to withstand the peristaltic motion of the heart and the arterial wall. The somewhat lesser radial force exerted by the lower end of the stent not only serves to anchor the stent in the blood vessel but also to stretch the valvular prosthesis attached at the lower end and reliably seal the prosthesis against the arterial wall. It is of course also conceivable to design the concave configuration of the stent in its second shape to be of greater or lesser concavity.


It is preferable for the lower end area of the stent, when in its second shape, to exhibit a diameter of between 22 mm and 33 mm, preferably between 25 mm and 31 mm. It is conceivable for the stent to exhibit two or more differently dimensioned sizes whereby the optimal stent size can be selected depending upon specific patient. In addition, exact and patient-specific dimensions of the stent—starting from a given stent size—can be realized by appropriately curing the stent, in particular by a thermal treatment process.


In a particularly preferred realization, the stent comprises a valvular prosthesis, preferably a biological valvular prosthesis, which is attached to the at least one fastening portion of the stent by means of a thread or the like.


A shape memory material is preferably used as the material for the stent, the material being designed such that the stent can transform from a temporary shape into a permanent shape under the influence of an external stimulus. The temporary shape is thereby the stent's first shape (i.e. the collapsed state of the stent), while the permanent shape is assumed in the stent's second shape (i.e. in the expanded state of the stent). In particular, use of a shape memory material such as nitinol, i.e. an equiatomic alloy of nickel and titanium, allows for a particularly gentle implantation procedure when implanting the stent.


When manufacturing the stent preferably made from a shape memory material, the stent structure is preferably shaped after it has been cut from a tube. Once the desired shape has been formed, this shape is “fixed”, this process being known as “programming.” Programming may be effected by heating the stent structure, forming the stent into the desired shape and then cooling the stent. Programming may also be effected by forming and shaping the stent structure at lower temperature, this being known as “cold stretching.” The permanent shape is thus saved, enabling the stent to be stored and implanted in a temporary, non-formed shape. If an external stimulus then acts on the stent structure, the shape memory effect is activated and the saved, permanent shape restored.


A particularly preferred embodiment provides for the external stimulus to be a definable switching temperature. It is thus conceivable that the stent material needs to be heated to a higher temperature than the switching temperature in order to activate the shape memory effect and thus regenerate the saved permanent shape of the stent. A specific switching temperature can be preset by the relevant selection of the chemical composition of the shape memory material.


It is particularly preferred to set the switching temperature to be in the range between room temperature and the patient's body temperature. Doing so is of advantage, especially with regard to the medical device being used as an implant in a patient's body. Accordingly, all that needs to be ensured in this regard when implanting the stent is that the stent is warmed up to the patient's body temperature (36° C.) at the site of implantation to activate the shape memory effect of the stent material.


The following will make reference to the included drawings in describing preferred embodiments of the stent according to the present invention in greater detail.





Shown are:



FIG. 1a a perspective side view of a cardiac valve stent in accordance with a first embodiment of the invention, where the cardiac valve stent is shown in its collapsed state;



FIG. 1b a perspective side view of the cardiac valve stent in accordance with the first embodiment of the invention, where the cardiac valve stent is shown in its expanded state;



FIG. 1c a perspective top plan view of the proximal end of the cardiac valve stent in accordance with the first embodiment of the invention, where the cardiac valve stent is shown in its expanded state;



FIG. 1d a perspective side view of an endoprothesis for treating a narrowed cardiac valve or a cardiac valve insufficiency, where the endoprothesis comprises the cardiac valve stent according to the first embodiment of the invention for holding a valvular prosthesis;



FIG. 1e a two-dimensional projection of a cutting pattern applicable to manufacturing the cardiac valve stent: according to the first embodiment of the invention in order to cut a cardiac valve stent pursuant FIG. 1a integrally from a portion of tube, in particular a small metal tube;



FIG. 2a a perspective side view of a cardiac valve stent according to a second embodiment of the invention, where the cardiac valve stent is shown in its collapsed state;



FIG. 2b a first perspective side view of the cardiac valve stent according to the second embodiment of the invention, whereby the cardiac valve stent is shown in its expanded state;



FIG. 2c a second perspective side view of the cardiac valve stent according to the second embodiment of the invention, where the cardiac valve stent is shown in its expanded state;



FIG. 2d a perspective side view of an endoprothesis for treating a narrowed cardiac valve or a cardiac valve insufficiency, where the endoprothesis comprises the cardiac valve stent according to the second embodiment of the invention for holding a valvular prosthesis;



FIG. 2e a two-dimensional projection of a cutting pattern applicable to manufacturing the cardiac valve stent according to the second embodiment of the invention in order to cut a cardiac valve stent pursuant FIG. 2a integrally from a portion of tube, in particular a small metal tube; and



FIG. 3a-c a process sequence illustrating a transarterial implantation of an endoprothesis comprising a cardiac valve stent in accordance with the invention.





Both the right and left halves of the human heart consist of a ventricle and an atrium. These cavities are separated by the septum of the heart, divided into the atrial septum (septum interatriale) and the ventricular septum (septum interventriculare).


Blood can only flow in one direction through the chambers of the heart due to the cardiac valves situated between the atria and ventricles and in the arteries connected to the ventricles which function like mechanical valves. The superior and inferior vena cava (vena cava superior et inferior) flow into the right atrium. They supply the oxygen-depleted (venous) blood from the systemic circulation to the heart. The tricuspid valve which, like a mechanical valve, prevents a reverse flow of blood into the atrium upon ventricular contraction (systole) is situated between the right atrium and the right ventricle. It comprises three segments which are affixed like flaps to the ventricular musculature by ligaments (hence also called the “flap valve”). The two pulmonary arteries depart the right ventricle of the heart via a common trunk (truncus pulmonalis). There is also a valve between the ventricle and the pulmonary trunk, the so-called pulmonary valve. This type of valve is also called a semilunar valve due to its shape. The pulmonary arteries supply the oxygen-depleted blood to the pulmonary circulation.


Oxygen-rich (arterial) blood then usually flows through four pulmonary veins from the pulmonary circulation to the left atrium. From there, it reaches the left ventricle through a further flap valve, the mitral valve. The outflow is carried by the aorta which, like the pulmonary artery, has a semilunar valve (aortic valve).


During a heart cycle, the atria fill first while the ventricles concurrently disgorge the blood into the arteries. When the ventricular musculature relaxes, the flap valves open due to the drop in pressure in the ventricle and the blood flows in from the atria (auricular systole). This is supported by a contraction of the atria. Ventricular contraction follows: the ventricular musculature contracts, the pressure rises, the flap valves close and the blood can now only flow into the arteries through the now-opened semilunar valves. A reverse blood flow from the arteries during the relaxation phase (diastole) is prevented by the closing of the semilunar valves such that the direction of flow is determined solely by the valves.


The four cardiac valves work like mechanical valves in the heart and prevent a reverse flow of blood in the wrong direction. Each half of the heart has a flap valve (atrioventricular valve) and a semilunar valve. The atrioventricular valves are situated between the atrium and the ventricle and are called the bicuspid/mitral valve and the tricuspid valve. The semilunar valves are situated between the ventricle and the vascular outflow and are called the pulmonary valve and the aortic valve respectively.


A valve defect; i.e. a dysfunctioning of a cardiac valve's function, can affect any of the four cardiac valves, although the valves on the left side of the heart (aortic and mitral valves) are affected considerably more frequently than those on the right side of the heart (pulmonary and tricuspid valves). Dysfunction can encompass constriction (stenosis), insufficiency or a combination of the two (combined vitium).


In medicine, the term “aortic valve insufficiency”, or “aortic insufficiency” for short, refers to the defective closing of the heart's aortic valve and the diastolic reverse flow of blood from the aorta into the left ventricle as a result. Depending on the severity of the aortic insufficiency and the extent of resistance to aortic depletion, the volume of reverse flow can be up to two thirds of the left ventricle's ejection volume (normal cardiac output 40 to 70 ml). This results in characteristically high blood pressure amplitude. This regurgitant bloodflow increases the diastolic filling of the left chamber and leads to a volume overload of this section of the heart, a consequence of which is eccentric hypertrophy.


Aortic valve stenosis is a valvular heart disease caused by the incomplete opening of the aortic valve. When the aortic valve becomes stenotic, it causes a pressure gradient between the left ventricle and the aorta. The more constricted the valve, the higher the gradient between the left ventricle and the aorta. For instance, with a mild aortic valve stenosis, the gradient may be 20 mmHg. This means that, at peak systole, while the left ventricle may generate a pressure of 140 mmHg, the pressure that is transmitted to the aorta will only be 120 mmHg.


In individuals with Aortic valve stenosis, the left ventricle has to generate an increased pressure in order to overcome the increased afterload caused by the stenotic aortic valve and eject blood out of the left ventricle. The more severe the aortic stenosis, the higher the gradient is between the left ventricular systolic pressures and the aortic systolic pressures. Due to the increased pressures generated by the left ventricle, the myocardium (muscle) of the left ventricle undergoes hypertrophy (increase in muscle mass).


Angina in the setting of aortic valve stenosis is secondary to the left ventricular hypertrophy that is caused by the constant production of increased pressure required to overcome the pressure gradient caused by the aortic valve stenosis. While the myocardium (i.e. heart muscle) of the left ventricle gets thicker, the arteries that supply the muscle do not get significantly longer or bigger, so the muscle may become ischemic (i.e. doesn't receive an adequate blood supply). The ischemia may first be evident during exercise, when the heart muscle requires increased blood supply to compensate for the increased workload. The individual may complain of exertional angina. At this stage, a stress test with imaging may be suggestive of ischemia.


Mitral valve insufficiency (also called mitral insufficiency) is a frequent cardiac valve defect in human medicine and also in at least some animal species. It involves a closing defect or “leakage” of the heart's mitral valve which leads to reverse bloodflow from the left ventricle into the left atrium during the ejection phase (systole).


The mitral valve functions like a mechanical valve between the left atrium and the left ventricle of the heart. It opens during the filling phase of the ventricle (diastole) and thus enables the inflow of blood from the atrium. At the beginning of the ejection phase (systole), the sudden increase in pressure in the ventricle leads to the closing of the valve and thus to a “sealing” of the atrium. In so doing, a pressure of only about 8 mmHg prevails in the atrium, while at the same time the systolic pressure of about 120 mmHg in the ventricle forces the blood along its usual path into the main artery (aorta).


In cases of severe mitral insufficiency, however, the regurgitation opening is larger than 40 mm2 and the regurgitation volume greater than 60 ml, which can lead to serious and at times life-threatening changes.


In the acute stage, with a normal size to the left ventricle and the left atrium, there is a considerable increase of the pressure in the atrium and thus also in the pulmonary veins. This can be up to 100 mmHg which, given a normal condition to the pulmonary vessels, leads to immediate pulmonary edema. The then predominantly reverse blood flow can moreover result in insufficient ejection outflow into the aorta and thus decreased blood flow to all the organs.


To treat a severe narrowed cardiac valve or cardiac valve insufficiency, it is necessary for a valvular prosthesis to perform the valve function of the narrowed, diseased or diseased cardiac valve. Essential in this respect is that the valvular prosthesis is securely positioned and anchored in the implantation site in the heart; i.e. in the plane of the (diseased) cardiac valve to be replaced, so that the valvular prosthesis is not displaced or shifted despite the, at times considerable, forces acting on it. An effective seal during systole is also important.


A cardiac valve stent 10, to which the valvular prosthesis 100 is appropriately affixed, is employed in accordance with the invention to position and anchor said valvular prosthesis. A medical device for the treating of a narrowed cardiac valve or a cardiac valve insufficiency consisting of a cardiac valve stent 10 and a valvular prosthesis 100 affixed to the stent 10 will be referred to herein simply as endoprothesis 1.



FIG. 1d shows a perspective side view of such an endoprothesis 1 for treating a narrowed cardiac valve or a cardiac valve insufficiency, whereby the endoprothesis 1 comprises a cardiac valve scent 10 to hold a valvular prosthesis 100 in accordance with a first embodiment of the invention. FIG. 2d likewise shows a perspective side view of a further endoprothesis 1 for treating a narrowed cardiac valve or a cardiac valve insufficiency, whereby here a cardiac valve stent 10 in accordance with a second embodiment of the invention is employed.


The following will make reference to the included drawings in describing the presently preferred embodiments of the present invention in detail. The cardiac valve stent 10 according to the invention (hereinafter referred to simply as “stent”) exhibits an expandable structure which is able to transform from a first predefinable shape in which the stent 10 is in a collapsed state into a second predefinable shape in which the stent 10 is in an expanded state. FIG. 1a shows a perspective side view of the stent 10 according to the first embodiment of the invention, whereby the stent 10 is in its collapsed state. FIG. 2a shows the collapsed stent 10 according to the second embodiment of the invention.


In the two embodiments, the scent 10 can be introduced in minimally-invasive fashion into the body of a patient in its first shape (cf. FIG. 1a and FIG. 2a) using an insertion catheter system (not explicitly shown in the drawings). During insertion, the valvular prosthesis 100 affixed to the stent 10 is likewise in a collapsed state. For the sake of clarity, however, both FIGS. 1a and 2a dispense with a representation of the valvular prosthesis 100 affixed to the stent 10.


Upon reaching the site of implantation in the patient's heart, the stent 10 transforms, preferably incrementally, into its second (expanded) shape in which also the valvular prosthesis 100 affixed to the stent 10 unfolds and expands. The second, expanded shape is a permanent shape that has been set by programming. The completely expanded stent 10 according to the first/second embodiment of the invention with the likewise completely unfolded and expanded valvular prosthesis 100 affixed thereto is shown in FIG. 1d and FIG. 2d.



FIG. 1b and FIG. 1c show the completely expanded stent 10 according to the first embodiment of the invention without the valvular prosthesis 100 from respectively different perspectives. FIGS. 2b and 2c show the completely expanded stent 10 according to the second embodiment of the invention, likewise without the valvular prosthesis 100, from respectively different perspectives.


The following will initially make reference to FIGS. 1a to 1e in describing the first embodiment of the inventive cardiac valve stent 10.


The stent 10 according to the first embodiment exhibits a structure integrally cut from a portion of tube, in particular a small metal tube. The cutting pattern used to form the design of the stent is depicted in a two-dimensional projection in FIG. 1e.


In detail, the stent 10 of the depicted first embodiment comprises a total of three positioning arches 15a, 15b, 15c which assume the function of self-positioning the stent into the plane of the pulmonary valve (valva trunci pulmonalis) or aortic valve (valva aortae). The positioning arches 15a, 15b, 15c exhibit a rounded head portion 20 which engages in the pockets T of the (diseased) cardiac valve to be treated during positioning of the stent 10 at the site of implantation in the heart (cf. FIG. 3a).


Providing a total of three positioning arches 15a, 15b, 15c allows for the required positioning accuracy of stent 10 in the direction of rotation. The invention is of course not limited to the use of a total of three positioning arches.


The head portions 20 of the positioning arches 15a, 15b, 15c, respectively pointing towards the lower end 2 of the stent 10, are correspondingly rounded so that the vascular wall will not be damaged when the positioning arches 15a, 15b, 15c engage in the pockets T of the cardiac valve H to be replaced. It is moreover preferred with respect to improving movement and position analysis during the implanting of the stent 10 for reference markers 21 to be provided on or within the head portions 20 of the positioning arches 15a, 15b, 15c. Radio opaque markers or markers which can be activated by infrared or ultrasound lend themselves particularly well hereto.


Specifically, the positioning arches 15a, 15b, 15c respectively exhibit an essentially U-shaped or V-shaped structure which is closed to the lower end of stent 10. Accordingly, each positioning arch 15a, 15b, 15c has a total of two arms 15a′, 15a″, 15b′, 15b″, 15c′, 15c″ respectively extending from the head portion 20 of the associated positioning arch 15a, 15b, 15c toward the upper end 3 of stent 10. By doing so, each two adjoining arms of two neighboring positioning arches are connected to one another via a connecting portion 22.


For implanting and explanting the stent 10 with a suitable catheter system, the stent 10 comprises catheter retaining means 23 at its upper end 3. The respective connecting portions 22, via which two respectively adjoining arms of two neighboring positioning arches are connected together, are respectively connected to catheter retaining means 23 via a connecting web 25. The connecting webs 25, which connect the connecting portions 22 to the associated catheter retaining means 23, will herein be referred to as “second connecting web 25.”


In the stent 10 according to the first embodiment of the invention, the catheter retaining means 23 comprise oval-shaped heads which each respectively comprise a likewise oval-shaped eyelet 24. Conceivable hereto would be providing a crown with a total of three protruding elements in the tip of a catheter of a catheter system used to implant/explant stent 10. The protruding elements of the crown are thereby to be configured complementary to the eyelets 24 which are disposed on the catheter retaining means 23 provided at the upper end 3 of stent 10 and configured as catheter retaining heads. This realization would enable the protruding elements of the crown to form a releasable engagement with the upper area 3 of stent 10 to releasably attach stent 10 to the tip of the catheter of the catheter system used to implant/explant stent 10.


The upper end portion 17d of a first connecting web 17 extending essentially in longitudinal direction L of stent 10 furthermore opens to each connecting portion 22 between the two arms 15a′, 15a″, 15b′, 15b″, 15c′, 15c″ of two neighboring positioning arches 15a, 15b, 15c in addition to the previously-mentioned second connecting web 25. As can be seen in FIG. 1b, the respective first connecting webs 17 are of essentially Y-shaped configuration and each exhibit a structure that is spread at its lower end 17p which gives way to the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of two neighboring retaining arches 16a, 16b, 16c.


This stent design achieves an axially symmetrical structure, whereby each positioning arch 15a, 15b, 15c is allocated one retaining arch 16a, 16b, 16c. The stent 10 of the first embodiment depicted in FIGS. 1a to 1d thus comprises a total of three retaining arches 16a, 16b, 16c which constitutes a retaining segment of stent 10 for accommodating a valvular prosthesis 100 as depicted for example in FIG. 1d.


In the state of the stent 10 shown in FIG. 1a, in which stent 10 is in its first (collapsed) shape, the respective arms 15a′, 15a″, 15b′, 15b″, 15c′, 15c″ of the positioning arches 15a, 15b, 15c directly adjoin the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the associated retaining arches 16a, 16b, 16c.


Reference is made to FIG. 1b, in which the stent 10 pursuant the first embodiment is shown in its second shape. It can be particularly recognized from this representation that each positioning arch 15a, 15b, 15c and associated retaining arch 16a, 16b, 16c respectively exhibit an essentially U-shaped or V-shaped structure which is closed towards the lower end 2 of the stent 10. Specifically, each positioning arch 15a, 15b, 15c is cut from a material section of a portion of a tube from which the essentially U-shaped or V-shaped structure of the associated retaining arch 16a, 16b, 16c was taken, as can be seen from the cutting pattern depicted in FIG. 1e.


A comparison of FIG. 1a to FIG. 1b shows that, upon the stent 10 expanding; i.e. when the stent 10 transforms from its first shape into its second shape, the stent 10 shortens in the longitudinal direction L while simultaneously enlarging in cross-section. In the expanded state of stent 10, the respective positioning arches 15a, 15b, 15c are expanded more in the radial direction at the lower end 2 of the stent 10 compared to the upper end 3 of stent 10. Since they protrude more in the radial direction, the positioning arches 15a, 15b, 15c can be deployed into the cardiac valve pockets T of the cardiac valve H to be replaced in particularly easy manner.


Even when a certain anchoring of the stent 10 is achieved at the site of implantation in the heart due to the positioning arches 15a, 15b, 15c already protruding radially from stent 10 in the expanded state of the stent 10, it is noted that the contact force acting on the vascular wall from the positioning arches 15a, 15b, 15c is insufficient to securely anchor the stent 10 at the site of implantation. The previously-mentioned retaining arches 16a, 16b, 16c, which form the lower end 2 of stent 10, are provided for this reason. The retaining arches 16a, 16b, 16c protrude radially from the circumference of the stent 10 in its expanded state such that the retaining arches 16a, 16b, 16c press against the wall of the blood vessel in which the stent is deployed with a radially-acting contact force.


In addition to retaining arches 16a, 16b, 16c, the stent 10 further comprises auxiliary arches 18a, 18b, 18c, which likewise exert a radially-acting contact force against the wall of the blood vessel in the implanted state of stent 10, thereby improving anchoring of stent 10 at the site of implantation.


As can be seen from FIG. 1b, stent 10 pursuant the first embodiment comprises a total of three essentially U-shaped or V-shaped auxiliary arches 18a, 18b, 18c which are closed towards the lower end 2 of said scent 10. Each auxiliary arch 18a, 18b, 18c connects a first retaining arch 16a, 16b, 16c with a second retaining arch neighboring the first retaining arch.


In a top plan view of the lower end region 2 of the expanded stent 10 (cf. FIG. 1c), the lower end region 2 exhibits a dodecagonal polygonal structure formed from the individual arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of retaining arches 16a, 16b, 16c and the individual arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of the auxiliary arches 18a, 18b, 18c. This stent design particularly provides a total of six arches 16a, 16b, 16c, 18a, 18b, 18c uniformly distributed around the lower end region 2 of stent 10, each of which press against the vascular wall and effectively hold the stent 10 in position in the expanded and implanted state of stent 10.


To recapitulate, providing retaining arches 16a, 16b, 16c on the one hand and auxiliary arches 18a, 18b, 18c on the other results in a radial force being exerted on the vascular wall by the respective lower end portions of these arches. This ensures both a secure seal of a valvular prosthesis 100 affixed to stent 10 relative the vascular wall, as well as a secure anchoring of the stent 10, at the site of implantation in the heart.


In addition to the contact force exerted on the vascular wall by way of the retaining arches 16a, 16b, 16c and auxiliary arches 18a, 18b, 18c, it is conceivable for the upper end region 3 of stent 10 to expand radially 10-25% more—in the expanded state of stent 10—compared to the lower end region 2. This gives the stent 10 a slight concave structure which tapers towards the lower end region 2. This ensures secure anchoring of the stent 10 within the vessel by the upper end region 2 of the stent 10 pressing against the vascular wall.


Furthermore, to ensure that minimal longitudinal displacement of a valvular prosthesis affixed to stent 10 can occur relative stent 10, even during the peristaltic movement of the heart and the blood vessel in which stent 10 is deployed, the embodiment of the inventive stent 10 depicted in the drawings provides for the stent 10 to comprise a plurality of fastening portions 11a to 11f extending in the longitudinal direction L of stent 10, by means of which a valvular prosthesis 100 is affixed to the stent 10. Reference is made to FIG. 1d which shows a perspective side view of an endoprothesis 1 for treating a narrowed cardiac valve or a cardiac valve insufficiency, whereby the endoprothesis 1 comprises the stent 10 pursuant the first embodiment of the invention for holding a valvular prosthesis 100. The valvular prosthesis 100 comprises at least one valve flap 102 made from a biological or synthetic material.


It will be appreciated that the valvular prosthesis may be made from any suitable material, including biological valves removed from animals such as pigs and horses, man-made biological valves created from connective tissue such as pericardium, tissue grown from cell cultures, and man-made materials and fabrics such as nitinol.


In detail, the first connecting webs 17 of stent 10 connect with connecting portions 22 via their upper ends 17d and with the upper ends 13 of fastening portions 11 via their lower ends 17p. The respective lower ends 14 of the fastening portions which are connected to one and the same connecting web 17 are thereby connected together via an essentially U-shaped or V-shaped auxiliary arch 18a, 18b, 18c which is closed towards the lower end 2 of stent 10.


Specifically, the first embodiment of the inventive stent 10 is shown in FIG. 1d in its expanded state, whereby a valvular prosthesis 100 is fastened to said scent 10 by means of a thread 101 or a thin wire and stretched by the stent 10. It is easily recognized that the widening of the center area and the lower end region 2 of stent 10 at which the valvular prosthesis 100 is disposed achieves spreading of the valvular prosthesis. At the same time, the lower end portions of the retaining arches 16a, 16b, 16c and the auxiliary arches 18a, 18b, 18c exert a radial force on the (not shown in FIG. 1d) vascular wall.


As can be seen from FIG. 1d, a defined plurality of fastening holes 12 are configured in the respective fastening portions 11a to 11f of stent 10, the same being arranged to be distributed at predefined longitudinal positions along the fastening portions 11a to 11f. The thread 101 or thin wire with which the valvular prosthesis 100 is attached to stent 10 is guided through each respective fastening hole 12.


Both components constituting the endoprothesis 1, namely the stent 10 and the valvular prosthesis 100, are preferably not connected together until directly prior to the surgical procedure. This is of advantage in terms of transport and storage since the stent 10 is a relatively sturdy component mechanically and can be stored for a long period of time without degradation. This is particularly true when the stent 10 is stored in its second shape; i.e. in the expanded state, and not brought into its first (collapsed) shape until directly prior the surgical procedure.


It can be noted from FIGS. 1b and 1d that the respective fastening portions 11a to 11f are configured in the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of retaining arches 16a, 16b, 16c of stent 10. The size of the fastening holes 12 configured in the fastening portions 11a to 11f should be adapted to the thickness of the thread 101 or wire used to fasten the valvular prosthesis 100 to the stent 10.


The cross-sectional shape to the fastening holes 12 may also be adapted to the cross-sectional shape of the thread 101 or wire used to fasten the valvular prosthesis 100. This allows fixing of the valvular prosthesis 100 to the stent 10 at a precise predefined position relative the stent 10. By providing of a plurality of fastening holes 12 to anchor the valvular prosthesis 100 to the stent 10, precise positioning of the valvular prosthesis an stent 10 is achieved.


Because the fastening holes 12 are adapted to the thickness and/or the cross-sectional shape of the thread 101 or wire used to affix the valvular prosthesis 100 to the stent 10, relative movement between the stent 10 and the valvular prosthesis 100 due to the peristaltic motion of the heart can be effectively prevented when the endoprothesis 1 is implanted. The valvular prosthesis 100 is thus fastened to the stent 10 with minimal play, based on which friction-induced wear of the thread 101 or wire used to affix the valvular prosthesis is minimized. As shown in the figures the fastening holes 12 have a circular cross-sectional shape.


As already mentioned, the fastening holes 12 configured in the respective fastening portions 11a to 11f may be of different diameters, numbers or cross-sectional shapes (oval, square, etc) according to the diameter of a thread 101 used for affixing the valvular prosthesis 100 to the stent 10, and/or according to the sewing technique utilized for affixing the valvular prosthesis 100 to the stent 10. The diameter, number and/or cross-sectional shape of at least one of the fastening holes 12 may also serve as an indication of the type of the endoprosthesis 1, i.e. the medical device used in the treatment of a narrowing of a cardiac valve and/or a cardiac valve insufficiency. In this respect, the diameter, number and/or cross-sectional shape of the at least one fastening hole 12 may be used for identification to differentiate between different sizes or types of valvular prostheses 100 adapted to be fixed on the stent 10, or may be used for identification to differentiate between different sizes or types of endoprostheses 1, if a valvular prosthesis 100 is already fixed to the stent 10. For example, a small-sized stent 10 having a small-sized valvular prosthesis 100 fixed thereto or a small-sized stent 10 adapted and configured for carrying a small-sized valvular prosthesis 100 could have circular fastening holes 12 whilst a large-sized stent 10 having a large-sized valvular prosthesis 100 fixed thereto or a large-sized stent 10 adapted and configured for carrying a large-sized valvular prosthesis 100 may have triangular fastening holes 12. This allows the surgeon/cardio staff to easily and visually tell different valve sizes, stent types and/or types of the endoprosthesis apart without the need to measure.


The fastening portions 11a to 11f of the stent 10 (onto which the valvular prosthesis 100 is sewn or sewable) do not change their shape when the stent 10 is compressed, e.g. when the stent 10 is in its first (collapsed) shape shown in FIG. 1a. This phenomenon occurs when standard tube stents are used, Thus the risk of thread wear is minimal.


The stent 10 in accordance with the second embodiment depicted in FIGS. 2a to 2c is fundamentally identical in structural and functional regard to the stent 10 according to the first embodiment depicted in FIGS. 1a to 1c. The same also holds true for the cutting pattern depicted in FIG. 2e which is, in principle, comparable to the cutting pattern according to FIG. 1e. A detailed description of the common features will therefore not be provided.


The only difference to be seen is in the configuration of the catheter retaining means 23 provided at the distal end 3 of stent 10. In contrast to the first embodiment of the inventive stent 10, heads of an essentially round configuration are used as catheter retaining means 23 in the second embodiment, in each case provided with essentially oval eyelets 24.


As already indicated, the stent 1 according to the present invention preferably exhibits a structure integrally cut from a portion of tube, and in particular from a small metal tube, in which a retaining arch 16a, 16b, 16c is allocated to each positioning arch 5a, 15b, 15c, and with which each retaining arch 16a, 16b, 16c is connected by means of an auxiliary arch 18a, 18b, 18c, whereby a fastening portion 11 with a specific number of fastening holes 12 is configured in each arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of retaining arch 16a, 16b, 16c.



FIGS. 1e and 2e each show a two-dimensional projection of a cutting pattern which can be used in the manufacture of the stent 10 pursuant the first or second embodiment of the invention in order to integrally cut a one-piece stent 10 from a portion of tube, in particular a small metal tube. It is evident that, on the one hand, the inventive stent 10 dispenses with fixed-body joints or other similar connective devices between the individual components of stent 10 (positioning arch, retaining arch, auxiliary arch). On the other hand, a stent 10 is provided which exhibits, with minimum longitudinal extension, the functionality of positionability as provided by the positioning arches 15a, 15b, 15c on the one hand and, on the other, the functionality of the defined fastening of a valvular prosthesis 100, as provided by the fastening portions 11 configured in the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arch 16a, 16b, 16c.


In addition to its retaining arches 16a, 16b, 16c, the stent 10 further comprises auxiliary arches 18a, 18b, 18c which enable a particularly secure anchoring of stent 10 in the site of implantation in the heart.


The stent 10 is preferably made from a shape memory material. The state of stent 10 shown in FIG. 1a or FIG. 2a, in which the stent 10 is in its first shape and thus in its collapsed state, is the so-called “temporary” shape of the stent structure made from a shape memory material. When an external stimulus acts on the stent structure according to FIG. 1a or FIG. 2a, the shape memory effect is activated and thus the predefined permanent shape saved during the manufacture of the stent 10 as pursuant, for example, FIG. 1b or FIG. 2b, is restored.


Said external stimulus is preferably a specifiable switching temperature whereby, to activate the shape memory effect and thus regenerate the saved permanent shape of the stent 10, the stent material is warmed to a higher temperature than the switching temperature. By selecting a suitable chemical composition of the material used for stent 10, a specific switching temperature can be predefined. In the preferred embodiment of the inventive solution, the switching temperature ranges from between about 20° C. and the body temperature of the patient.


When implanting the stent 10, it is conceivable for the stent 10 to be cooled during the insertion procedure. Once the stent 10 has been guided to its desired site of implantation, i.e. to the native cardiac valve H (cf. FIG. 3a), preferably using a suitable insertion catheter system, the cooling can be stopped. The stent 10 is then allowed to warm up to the patient's body temperature (36° C.) and the shape memory effect of the stent material is thus activated. Due to the self-expanding property of stent 10 having been triggered, radial forces are generated which act on the individual components of the stent, in particular on the positioning arches 15a, 15b, 15c, the retaining arches 16a, 16b, 16c and the auxiliary arches 18a, 18b, 18c of the stent 10.


The inventive stent 10, as well as the insertion catheter system used to implant the stent, are preferably configured so that the stent 10 with the valvular prosthesis 100 affixed thereto can be introduced transarterially into the body of the patient. In one example, the stent 10 is accommodated in the tip of the catheter of the insertion catheter system, the catheter tip being introduced into the body via, for example, puncture of the A. femoris communis (inguinal artery).


Alternatively, the stent 10 according to the invention is also suited for transapical implantation, in which—coming from the apex of the heart—the catheter tip of the insertion catheter system is advanced to the aortic valve through, for example, the left ventricle. With a catheter tip modified accordingly, an analogous implantation of the stent 10 with the valvular prosthesis 100 is thus possible.


Regardless of whether the stent 10 is delivered to the site of implantation via a transarterial or transapical approach, the tip of the catheter of the insertion catheter system is preferably advanced to the implantation site using angiographic (angiography) and echocardiographic (ultrasound) control. The actual implantation of stent 10 with the attached valvular prosthesis 100 then follows.



FIGS. 3a to 3c schematically show the process sequence to illustrate transarterial implantation of an endoprothesis 1 comprising a stent 10 in accordance with the invention. As shown, the implantation of the stent 10 with the valvular prosthesis 100 attached thereto ensues such that the individual components of the stent 10 accommodated in the catheter tip K are successively released by appropriately manipulating the catheter tip K of an insertion catheter system.


The catheter system used to implant the inventive stent 10 is ideally configured such that a liquid cooling agent can be fed through a hollow interior of the catheter system to catheter tip K. The liquid cooling agent, for example in the form of a saline solution, maintains the stent 10 accommodated in the catheter tip K at a temperature below the switching temperature while the catheter tip K is being advanced to the site of implantation. This is of particular advantage when a shape memory material is provided as the material of the stent 10. This is because the stent 10 transforms from a temporary shape into a permanent shape upon the influence of an external stimulus. The temporary shape is the first shape of stent 10 (in collapsed state, when the stent 10 is accommodated in the catheter tip K of the insertion system) and the “permanent shape” is the second shape of stent 10 (the expanded state of the stent 10 after the stent 10 has been released from the catheter tip K).


It is to be noted that the “permanent shape” of the expanded stent 10 conforms to the native shape of its environment. This allows for variations in the shape of the environment at the site of implantation which will vary from patient to patient. This property of stent 10, related to the “permanent shape” of the expanded stent 10 automatically adapting completely to the native shape of its environment, will thus always ensure that the valvular prosthesis 100 is optimally implanted.


Because a shape memory material such as nitinol, i.e. an equiatomic alloy of nickel and titanium, can be used for the inventive stent 10, a particularly gentle implantation procedure is achievable when implanting the stent 10 with the valvular prosthesis 100 affixed thereto.


The stent 10 accommodated in the catheter tip K can be cooled by flushing the insertion catheter system with a suitable cooling agent while the catheter tip K is being advanced to keep the temperature of the stent material below the critical transition temperature. Once the catheter tip K with the cooled stent 10 has been advanced to the site of implantation, cooling of the stent 10 should be stopped, as a consequence of which the stent 10 warms up to the body temperature (36° C.) of the patient and the shape memory effect of the stent material is thus activated.


Once the self-expanding property of the individual components of stent 10 have been activated, radial forces are generated which act on the individual components of stent 10, in particular on the positioning arches 15a, 15b, 15c, the retaining arches 16a, 16b, 16c and the auxiliary arches 18a, 18b, 18c of stent 10. Since the respective components of stent 10 are still situated in the catheter tip K, the radial forces developing upon the critical switching temperature being exceeded and acting on the individual components of the stent 10 are still compensated by the wall of the catheter tip K, so that—despite the activation of the shape memory effect—the stent 10 is forcibly kept in its first (collapsed) shape.


Upon the subsequent manipulation of catheter tip K—by the appropriate incremental release of the stent 10—the individual components of stent 10, are then discharged from the catheter tip K. As FIG. 3a shows, the positioning arches 15a, 15b, 15c of stent 10 spread out radially due to the acting radial forces. The expanded positioning arches 15a, 15b, 15c can then be positioned into the pockets T of the native cardiac valve H.


Thereafter—as depicted in FIG. 3b—the remaining components of stent 10 are sequentially released from the catheter tip K. The released remaining components of stent 10, in particular the auxiliary arches 18a, 18b, 18c and the retaining arches 16a, 16b, 16c with the valvular prosthesis 100, then spread out radially and the valvular prosthesis 100 attached to the fastening portions 11 unfolds like an umbrella.


The radial forces acting on both the retaining arches 16a, 16b, 16c and the auxiliary arches 18a, 18b, 18c of the stent 10 as well as the radial forces acting on the upper end region 3 of stent 10, result in the stent 10 being pressed radially against the vascular wall (cf. FIG. 3c). This effects a secure anchoring of stent 10 with the expanded valvular prosthesis 100 at the site of implantation on the one hand and, on the other, a reliable seal of the valvular prosthesis 100 at the lower end 2 of stent 10.


The catheter tip K of the insertion catheter system is then manipulated further to release the eyelets 24 of the stent 10, thereby allowing the upper end region 3 of the stent 10 to expand. In so doing, the valve leaflets of the native cardiac valve H are clamped between respective positioning and retaining arches and the valvular prosthesis 100 disposed on the lower end 2 of stent 10 can spread open.


After the successful implantation of the stent 10 and valvular prosthesis 100, the catheter is then removed from the body of the patient.


The invention is not limited to a stent 10 made from shape memory material which self-expands from its first (collapsed) shape into its second (expanded) shape in response to an external stimulus. Rather, it is also categorically conceivable for the stent 10 to be expanded using a conventional balloon system.


The inventive solution is also not limited to the embodiments as described with reference to the attached drawings. Rather, combinations of the specified individual features are also conceivable.


With respect to fixing the upper area 3 of stent 10 to the wall of the blood vessel into which the stent 10 is deployed, it would be conceivable for the stent 10 to comprise barb members arranged, for example, on the eyelets 24, the tips of the barbs pointing toward the lower end 2 of stent 10.


LIST OF REFERENCE NUMBERALS




  • 1 endoprosthesis


  • 2 lower end of the stent/endoprosthesis


  • 3 upper end of the stent/endoprosthesis


  • 10 cardiac valve stent/stent


  • 11 fastening portion of the stent


  • 12 fastening holes


  • 13 upper end of the fastening portion


  • 14 lower end of the fastening portion


  • 15
    a-15c positioning arches


  • 15
    a′, 15a″ arms of the first positioning arch


  • 15
    b′, 15b″ arms of the second positioning arch


  • 15
    c′, 15c″ arms of the third positioning arch


  • 16
    a-16c retaining arches


  • 16
    a′, 16a″ arms of the first retaining arch


  • 16
    b′, 16b″ arms of the second retaining arch


  • 16
    c′, 16c″ arms of the third retaining arch


  • 17 first connecting web


  • 17
    d upper end of the first connecting web


  • 17
    p lower end of the first connecting web


  • 18
    a-18c auxiliary arches


  • 18
    a′, 18a″ arms of the first auxiliary arch


  • 18
    b′, 18b″ arms of the second auxiliary arch


  • 18
    c′, 18c″ arms of the third auxiliary arch


  • 20 head portion of the positioning arch


  • 21 reference marker


  • 22 connecting portion between the arms of neighboring positioning arches


  • 23 catheter retaining means/catheter retaining head


  • 24 eyelet


  • 25 second connecting web


  • 100 valvular prosthesis


  • 101 thread


  • 102 flap segment of the valvular prosthesis

  • H native cardiac valve

  • K catheter tip of an insertion catheter system

  • L longitudinal direction of the stent

  • T pocket of the native cardiac valve


Claims
  • 1. A method for treating a native cardiac valve, the method comprising: positioning a stent within a native cardiac valve, the stent comprising a plurality of first arches, each first arch having a closed end portion and an open end portion, the closed end portion pointing in a proximal direction and the open end portion open to a distal end portion of the stent;a plurality of second arches, each second arch having a closed end portion and an open end portion, the closed end portion of each second arch pointing in the proximal direction, wherein each second arch is circumferentially aligned with and attached to a respective first arch,a plurality of third arches, each third arch having a closed end portion and an open end portion, the closed end portion of each third arch pointing in the proximal direction, and each third arch circumferentially interspaced between two adjacent second arches, anda valvular prosthesis attached to the plurality of second arches.
  • 2. The method of claim 1, wherein the native cardiac valve includes a plurality of pockets, and wherein positioning the stent within the native cardiac valve includes positioning the closed end portion of each of the plurality of first arches in a corresponding pocket of the native cardiac valve, and positioning each second arch respective to each first arch radially inward of the corresponding pocket of the native cardiac valve.
  • 3. The method of claim 1, further including releasing the stent; wherein at least one of the plurality of first arches, the plurality of second arches, and the plurality of third arches is configured to expand radially when the stent is released.
  • 4. The method of claim 1, wherein the valvular prosthesis is attached to the plurality of second arches via a plurality of holes defined in each of the plurality of second arches.
  • 5. The method of claim 4, wherein each of the plurality of third arches is connected to two adjacent second arches distally of the plurality of holes in each second arch.
  • 6. The method of claim 1, wherein each first arch attaches to each respective second arch at a respective connecting portion, each connecting portion including an eyelet at a distal end of the stent.
  • 7. The method of claim 6, wherein each third arch is distal from a respective connecting portion.
  • 8. A method for treating a native cardiac valve, the method comprising: positioning a stent in a native cardiac valve having a plurality of native valve leaflets, the stent comprising a plurality of first arches, each arch having an apex pointing towards a proximal end of the stent and an open end facing a distal end of the stent,a plurality of second arches, each second arch having an apex circumferentially aligned with a respective first arch, the apex of each second arch pointing towards the proximal end of the stent,a plurality of third arches, each third arch circumferentially interspaced between two adjacent second arches, each third arch having an apex pointing towards the proximal end of the stent, anda valvular prosthesis attached to the plurality of second arches;wherein positioning the stent in the native cardiac valve includes positioning each of the plurality of first arches in a corresponding pocket of the native cardiac valve.
  • 9. The method of claim 8, wherein positioning the stent in the native cardiac valve includes releasing the plurality of third arches, the plurality of third arches configured to exert a radially outward force.
  • 10. The method of claim 8, wherein each second arch includes a plurality of holes, and wherein the valvular prosthesis is sutured to the plurality of second arches via the plurality of holes.
  • 11. The method of claim 10, wherein each of the plurality of third arches connects a first second arch to an adjacent second arch distally from the plurality of holes of each second arch.
  • 12. The method of claim 8, wherein the stent comprises an equal number of first arches, second arches, and third arches.
  • 13. The method of claim 8, wherein the stent includes a plurality of head portions, each head portion connected to two adjacent first arches, and each head portion including an eyelet.
  • 14. The method of claim 13, further including deploying the stent; wherein the stent is self-expandable, and wherein deploying the stent includes releasing the stent from a collapsed shape via the eyelet of each head portion.
  • 15. The method of claim 8, wherein the apex of each first arch includes a radiopaque marker.
  • 16. A method for treating a native cardiac valve, the method comprising: positioning a stent in a native cardiac valve, the stent comprising a plurality of first arches,a plurality of second arches, each second arch circumferentially aligned with and radially offset from a respective first arch,a plurality of third arches, each third arch circumferentially interspaced between two adjacent second arches, anda valvular prosthesis attached to the plurality of second arches;wherein each of the plurality of first arches, the plurality of second arches, and the plurality of third arches includes an open end portion and a closed end portion, each closed end portion pointing towards a heart chamber when the stent is positioned in the cardiac valve; andwherein positioning the stent in the native cardiac valve includes positioning each of a plurality of leaflets of the native cardiac valve radially between one of the plurality of first arches and each respective second arch.
  • 17. The method of claim 16, wherein the plurality of second arches and the plurality of third arches are uniformly distributed around a circumference of the stent.
  • 18. The method of claim 16, wherein the closed end of each of the plurality of third arches is positioned closer to the heart chamber than the closed end of each of the plurality of first arches.
  • 19. The method of claim 16, wherein the stent includes exactly three first arches, exactly three second arches, and exactly three third arches.
  • 20. The method of claim 16, wherein positioning the stent in the native cardiac valve includes introducing the stent transarterially into a body of a patient using a catheter.
  • 21. The method of claim 16, wherein the stent is self-expanding, and wherein positioning the stent in the native cardiac valve includes releasing the stent from a collapsed shape, the plurality of second arches exerting a radial force against the plurality of leaflets of the native cardiac valve.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 14/709,909, filed on May 12, 2015, which is a continuation of U.S. application Ser. No. 12/071,814, filed on Feb. 26, 2008, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (271)
Number Name Date Kind
4922905 Strecker May 1990 A
5002566 Carpentier et al. Mar 1991 A
5061277 Carpentier et al. Oct 1991 A
5094661 Levy et al. Mar 1992 A
5104407 Lam et al. Apr 1992 A
5197979 Quintero et al. Mar 1993 A
5279612 Eberhardt Jan 1994 A
5332402 Teitelbaum Jul 1994 A
5336258 Quintero et al. Aug 1994 A
5352240 Ross Oct 1994 A
5368608 Levy et al. Nov 1994 A
5411552 Andersen et al. May 1995 A
5456713 Chuter Oct 1995 A
5469868 Reger Nov 1995 A
5509930 Love Apr 1996 A
5549666 Hata et al. Aug 1996 A
5595571 Jaffe et al. Jan 1997 A
5613982 Goldstein Mar 1997 A
5632778 Goldstein May 1997 A
5674298 Levy et al. Oct 1997 A
5679112 Levy et al. Oct 1997 A
5683451 Lenker et al. Nov 1997 A
5697972 Kim et al. Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5746775 Levy et al. May 1998 A
5755777 Chuter May 1998 A
5824041 Lenker et al. Oct 1998 A
5824080 Lamuraglia Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5841382 Walden et al. Nov 1998 A
5843181 Jaffe et al. Dec 1998 A
5876434 Flomenblit et al. Mar 1999 A
5880242 Hu et al. Mar 1999 A
5899936 Goldstein May 1999 A
5928281 Huynh et al. Jul 1999 A
5935163 Gabbay Aug 1999 A
5104407 Lam et al. Sep 1999 B1
6001126 Nguyen-Thien-Nhon Dec 1999 A
5061277 Carpentier et al. Feb 2000 B1
6077297 Robinson et al. Jun 2000 A
6093530 McIlroy et al. Jul 2000 A
6102944 Huynh et al. Aug 2000 A
6117169 Moe Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6177514 Pathak et al. Jan 2001 B1
6183481 Lee et al. Feb 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6214055 Simionescu et al. Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6254564 Wilk et al. Jul 2001 B1
6254636 Peredo Jul 2001 B1
6283995 Moe et al. Sep 2001 B1
6287338 Sarnowski et al. Sep 2001 B1
6338740 Carpentier Jan 2002 B1
6342070 Nguyen-Thien-Nhon Jan 2002 B1
6344044 Fulkerson et al. Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6379740 Rinaldi et al. Apr 2002 B1
6391538 Vyavahare et al. May 2002 B1
6425916 Garrison et al. Jul 2002 B1
6454799 Schreck Sep 2002 B1
6471723 Ashworth et al. Oct 2002 B1
6478819 Moe Nov 2002 B2
6508833 Pavcnik et al. Jan 2003 B2
6509145 Torrianni Jan 2003 B1
6521179 Girardot et al. Feb 2003 B1
6540782 Snyders Apr 2003 B1
6558417 Peredo May 2003 B2
6558418 Carpentier et al. May 2003 B2
6572642 Rinaldi et al. Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6585766 Huynh et al. Jul 2003 B1
6613086 Moe et al. Sep 2003 B1
6682559 Myers et al. Jan 2004 B2
6730118 Spenser et al. May 2004 B2
6736845 Marquez et al. May 2004 B2
6767362 Schreck Jul 2004 B2
6790230 Beyersdorf et al. Sep 2004 B2
6808529 Fulkerson Oct 2004 B2
6821211 Otten et al. Nov 2004 B2
6821297 Snyders Nov 2004 B2
6824970 Vyavahare et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6861211 Levy et al. Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6881199 Wilk et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6945997 Huynh et al. Sep 2005 B2
6974474 Pavcnik et al. Dec 2005 B2
7014655 Barbarash et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037333 Myers et al. May 2006 B2
7050276 Nishiyama May 2006 B2
7078163 Torrianni Jul 2006 B2
7081132 Cook et al. Jul 2006 B2
7101396 Artof et al. Sep 2006 B2
7137184 Schreck et al. Nov 2006 B2
7141064 Scott et al. Nov 2006 B2
7163556 Xie et al. Jan 2007 B2
7189259 Simionescu et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7238200 Lee et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7318278 Zhang et al. Jan 2008 B2
7318998 Goldstein et al. Jan 2008 B2
7322932 Xie et al. Jan 2008 B2
7329278 Seguin et al. Feb 2008 B2
7381218 Schreck Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7399315 Iobbi Jul 2008 B2
7452371 Pavcnik et al. Nov 2008 B2
7473275 Marquez Jan 2009 B2
7896915 Guyenot et al. Mar 2011 B2
7914575 Guyenot et al. Mar 2011 B2
20010011187 Pavcnik et al. Aug 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20020010489 Gayzel et al. Jan 2002 A1
20020032481 Gabbay Mar 2002 A1
20020055775 Carpentier et al. May 2002 A1
20020123790 White et al. Sep 2002 A1
20020133226 Marquez et al. Sep 2002 A1
20020198594 Schreck Dec 2002 A1
20030027332 Lafrance et al. Feb 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030036795 Andersen et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030065386 Weadock Apr 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030125795 Pavcnik et al. Jul 2003 A1
20030139796 Sequin et al. Jul 2003 A1
20030139803 Sequin et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030195620 Huynh et al. Oct 2003 A1
20030236570 Cook et al. Dec 2003 A1
20040006380 Buck et al. Jan 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040073289 Hartley et al. Apr 2004 A1
20040078950 Schreck et al. Apr 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040148018 Carpentier et al. Jul 2004 A1
20040153145 Simionescu et al. Aug 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040193244 Hartley et al. Sep 2004 A1
20040210301 Obermiller et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040260389 Case et al. Dec 2004 A1
20050009000 Wilhelm et al. Jan 2005 A1
20050033220 Wilk et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050075725 Rowe Apr 2005 A1
20050075776 Cho Apr 2005 A1
20050096726 Sequin et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050098547 Cali et al. May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050119728 Sarac Jun 2005 A1
20050119736 Zilla et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050143804 Haverkost Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050149166 Schaeffer et al. Jul 2005 A1
20050150775 Zhang et al. Jul 2005 A1
20050171597 Boatman et al. Aug 2005 A1
20050171598 Schaeffer Aug 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050222668 Schaeffer et al. Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050267560 Bates Dec 2005 A1
20060009842 Huynh et al. Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060047343 Oviatt et al. Mar 2006 A1
20060058864 Schaeffer et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060111770 Pavcnik et al. May 2006 A1
20060142846 Pavcnik et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060155366 LaDuca et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060193885 Neethling et al. Aug 2006 A1
20060210597 Hiles Sep 2006 A1
20060224183 Freudenthal Oct 2006 A1
20060229718 Marquez Oct 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060246584 Covelli Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20060290027 O'Connor et al. Dec 2006 A1
20060293745 Carpentier et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070005131 Taylor Jan 2007 A1
20070005132 Simionescu et al. Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070020248 Everaerts et al. Jan 2007 A1
20070021826 Case et al. Jan 2007 A1
20070027535 Purdy, Jr. et al. Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070038295 Case et al. Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070050014 Johnson Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070093887 Case et al. Apr 2007 A1
20070100435 Case et al. May 2007 A1
20070100440 Figulla et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070123700 Ueda et al. May 2007 A1
20070123979 Perier et al. May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070162103 Case et al. Jul 2007 A1
20070173932 Cali et al. Jul 2007 A1
20070179592 Schaeffer Aug 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070239271 Nguyen Oct 2007 A1
20070244551 Stobie Oct 2007 A1
20070260327 Case et al. Nov 2007 A1
20070288087 Fearnot et al. Dec 2007 A1
20080004688 Spenser et al. Jan 2008 A1
20080021546 Patz et al. Jan 2008 A1
20080033534 Cook et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080077236 Letac et al. Mar 2008 A1
20080086205 Gordy et al. Apr 2008 A1
20080097586 Pavcnik et al. Apr 2008 A1
20080102439 Tian et al. May 2008 A1
20080133003 Seguin et al. Jun 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080200977 Paul et al. Aug 2008 A1
20080215143 Seguin Sep 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080262602 Wilk et al. Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20080275549 Rowe Nov 2008 A1
20090216312 Straubinger et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20100249915 Zhang Sep 2010 A1
20100249916 Zhang Sep 2010 A1
20100249917 Zhang Sep 2010 A1
20100249918 Zhang Sep 2010 A1
Foreign Referenced Citations (163)
Number Date Country
2006308187 May 2007 AU
2006310681 May 2007 AU
2436258 Jan 2005 CA
2595233 Jul 2006 CA
2627555 May 2007 CA
19546692 Jun 1997 DE
20003874 Jun 2000 DE
19857887 Jul 2000 DE
10010073 Sep 2001 DE
10010074 Oct 2001 DE
101 21 210 Nov 2002 DE
19546692 Nov 2002 DE
10301026 Feb 2004 DE
10302447 Jul 2004 DE
10335948 Feb 2005 DE
10010074 Apr 2005 DE
19857887 May 2005 DE
10010073 Dec 2005 DE
10 2005 051 849 May 2007 DE
10 2005 052628 May 2007 DE
20 2007 005 491 Jul 2007 DE
0084395 Jul 1983 EP
0402036 Dec 1990 EP
0402176 Dec 1990 EP
0458877 Apr 1991 EP
0515324 Nov 1992 EP
0547135 Jun 1993 EP
0 592 410 Oct 1995 EP
0 592 410 Nov 1995 EP
0729364 Sep 1996 EP
0756498 May 1997 EP
0778775 Jun 1997 EP
0928615 Jul 1999 EP
0986348 Mar 2000 EP
1 251 805 Oct 2000 EP
1041942 Oct 2000 EP
1041943 Oct 2000 EP
1117446 Jul 2001 EP
1 233 731 May 2002 EP
1206179 May 2002 EP
1251804 Oct 2002 EP
0 971 649 Dec 2002 EP
1281357 Feb 2003 EP
1281375 Feb 2003 EP
1 017 868 Sep 2003 EP
1354569 Oct 2003 EP
1452153 Sep 2004 EP
0987998 Oct 2004 EP
1 087 727 Nov 2004 EP
1499366 Jan 2005 EP
1 253 875 Apr 2005 EP
1 251 803 Jun 2005 EP
1469797 Nov 2005 EP
1 690 515 Aug 2006 EP
1 255 510 Mar 2007 EP
1112042 Nov 2007 EP
1878407 Jan 2008 EP
1886649 Feb 2008 EP
1 900 343 Mar 2008 EP
1259195 Oct 2008 EP
1980220 Oct 2008 EP
1994913 Nov 2008 EP
2 000 115 Dec 2008 EP
3 181 096 Jun 2017 EP
2828263 Feb 2003 FR
2433700 Jul 2007 GB
2440809 Feb 2008 GB
2004-504111 Feb 2002 JP
2003-515386 May 2003 JP
2003-523262 Aug 2003 JP
2003-524504 Aug 2003 JP
2005-118585 May 2005 JP
2007-521125 Aug 2007 JP
2007-296375 Nov 2007 JP
2008-539305 Nov 2008 JP
2009-131397 Jun 2009 JP
WO-9009102 Aug 1990 WO
WO 9511055 Apr 1995 WO
WO-9524873 Sep 1995 WO
WO-9528183 Oct 1995 WO
WO-9613227 May 1996 WO
WO-9732615 Sep 1997 WO
WO 9843556 Oct 1998 WO
WO-9846165 Oct 1998 WO
WO-9937337 Jul 1999 WO
WO-9966863 Dec 1999 WO
WO 0015148 Mar 2000 WO
WO-0018445 Apr 2000 WO
WO 200025702 May 2000 WO
WO 0047139 Aug 2000 WO
WO-0053125 Sep 2000 WO
WO-0062714 Oct 2000 WO
WO-0110209 Feb 2001 WO
WO 200135870 May 2001 WO
WO 0139700 Jun 2001 WO
WO-0141679 Jun 2001 WO
WO-0151104 Jul 2001 WO
WO 0154625 Aug 2001 WO
WO 0158503 Aug 2001 WO
WO 0162189 Aug 2001 WO
WO 0164137 Sep 2001 WO
WO 200236048 May 2002 WO
WO-02058745 Aug 2002 WO
WO-02100301 Dec 2002 WO
WO-02102286 Dec 2002 WO
WO 03003949 Jan 2003 WO
WO-03007795 Jan 2003 WO
WO 2003003949 Jan 2003 WO
WO-03009785 Feb 2003 WO
WO 03013239 Feb 2003 WO
WO 2003011195 Feb 2003 WO
WO 03028592 Apr 2003 WO
WO 03047468 Jun 2003 WO
WO-03079928 Oct 2003 WO
WO 03092554 Nov 2003 WO
WO 2003096935 Nov 2003 WO
WO 2004004597 Jan 2004 WO
WO 2004016200 Feb 2004 WO
WO 2004016201 Feb 2004 WO
WO 2004019825 Mar 2004 WO
WO-2004026117 Apr 2004 WO
WO 2004026173 Apr 2004 WO
WO 2004028399 Apr 2004 WO
WO 2004043301 May 2004 WO
WO 2004082527 Sep 2004 WO
WO 2004082528 Sep 2004 WO
WO 2004096100 Nov 2004 WO
WO 2005011534 Feb 2005 WO
WO 2005021063 Mar 2005 WO
WO 2005034812 Apr 2005 WO
WO 2005062980 Jul 2005 WO
WO 2005063980 Jul 2005 WO
WO-2005072654 Aug 2005 WO
WO 2006066327 Jun 2006 WO
WO-2006066327 Jun 2006 WO
WO 2006076890 Jul 2006 WO
WO-2006102063 Sep 2006 WO
WO 2006108090 Oct 2006 WO
WO-2006124649 Nov 2006 WO
WO 2006124649 Nov 2006 WO
WO 2006127756 Nov 2006 WO
WO 2006127765 Nov 2006 WO
WO-2006132948 Dec 2006 WO
WO 2007047488 Apr 2007 WO
WO 2007047945 Apr 2007 WO
WO-2007048529 May 2007 WO
WO 2007051620 May 2007 WO
WO 2007059252 May 2007 WO
WO-2007071436 Jun 2007 WO
WO 2007098232 Aug 2007 WO
WO 2007120543 Oct 2007 WO
WO-2008028569 Mar 2008 WO
WO-2008035337 Mar 2008 WO
WO 2008045949 Apr 2008 WO
WO 2008070797 Jun 2008 WO
WO 2008079962 Jul 2008 WO
WO 2008101083 Aug 2008 WO
WO 2008125153 Oct 2008 WO
WO 2008138584 Nov 2008 WO
WO-2008150529 Dec 2008 WO
WO 2009045338 Apr 2009 WO
WO 2009053497 Apr 2009 WO
WO 2009106545 Sep 2009 WO
Non-Patent Literature Citations (13)
Entry
Aortenklappenbioprothese erfolgreich in der Entwicklung, May 16, 2003 (1 page).
English translation of Aortenklappenbioprothese erfolgreich in der Entwicklung (2 pages).
Screen shots from http://www.fraunhofer.de/presse/filme/2006/index.jsp, 2006 (2 pages).
Liang, Ma, et al., “Double-crowned valved stents for off-pump mitral valve replacement,” Eur. J. Cardio-Thoracic Surgery, vol. 28, pp. 194-198 (2005) (5 pages).
Huber, Christoph H., et al. “Direct Access Valve Replacement (DAVR)—are we entering a new era in cardiac surgery?” Eur. J. Cardio-Thoracic Surgery, vol. 29, pp. 380-385 (2006) (6 pages).
English translation of DE 19546692 A1 (3 pages).
English translation of EP 1469797 B1 (15 pages).
File history for German Patent DE 195 46 692 filed Dec. 14, 1995 and patented Jul. 11, 2002 (111 pages).
English abstract for DE 19857887 A1 (1 page).
English abstract for DE 10335948 B3 (1 page).
Klein, Allan L. et al., “Age-related Prevalence of Valvular Regurgitation in Normal Subjects: A Comprehensive Color Flow Examination of 118 Volunteers,” J. Am. Soc. Echocardiography, vol. 3, No. 1, pp. 54-63 (1990) (10 pages).
Gummert, J.F. et al., “Cardiac Surgery in Germany During 2007: A Report on Behalf of the German Society for Thoracic and Cardiovascular Surgery,” Thorac. Cardiov. Surg., vol. 56, pp. 328-336 (2008) (9 pages).
Gummert, J.F. et al., “Cardiac Surgery in Germany During 2006: A Report on Behalf of the German Society for Thoracic and Cardiovascular Surgery,” Thorac. Cardiov. Surg., vol. 55, pp. 343-350 (2007) (8 pages).
Related Publications (1)
Number Date Country
20180360601 A1 Dec 2018 US
Continuations (2)
Number Date Country
Parent 14709909 May 2015 US
Child 15850165 US
Parent 12071814 Feb 2008 US
Child 14709909 US