This application is a National Stage of International Application No. PCT/IL2012/000190 filed May 15, 2012, the contents of all of which are incorporated herein by reference in their entirety.
This present application relates generally to prostheses and surgical methods, and specifically to tubular prostheses, including endovascular stent-grafts, and surgical techniques for using the prostheses to maintain patency of body passages such as blood vessels, and treating aneurysms.
Endovascular prostheses are sometimes used to treat aortic aneurysms. Such treatment includes implanting a stent or stent-graft within the diseased vessel to bypass the anomaly. An aneurysm is a sac formed by the dilation of the wall of the artery. Aneurysms may be congenital, but are usually caused by disease or, occasionally, by trauma. Aortic aneurysms, which commonly form between the renal arteries and the iliac arteries, are referred to as abdominal aortic aneurysms (“AAAs”). Other aneurysms occur in the aorta, such as thoracic aortic aneurysms (“TAAs”), which may occur in one or more of the descending aorta, the ascending aorta, and the aortic arch.
Conventional stent-grafts typically include a radially-expandable stent, formed from a plurality of uniform annular stent springs, and a cylindrically-shaped graft material to which the stent springs are coupled. Stent-grafts may be used for reinforcing or holding open the interior wall of lumens, such as blood vessels.
Some commercially-available stent-grafts utilize a set of circumferentially-disposed proximal barbs in order to facilitate long term fixation of the stent-graft at its appropriate landing zone on the wall of a target body lumen in general, and, in particular, a major artery such as the aorta. An additional role of fixation barbs is to facilitate sealing between the distal end of the graft material and the blood vessel neck, so as to prevent endovascular blood leaks around the stent-graft's distal edge, usually referred to as type I endoleaks.
In some applications of the present invention, an endovascular stent-graft is configured to assume a radially-compressed delivery state and a radially-expanded deployment state. The stent-graft comprises a flexible stent member and a tubular fluid flow guide. The fluid flow guide comprises a graft material, and which is attached to the stent member, such that at least a generally circumferential section of the stent member is not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state. The circumferential section of the stent member is shaped so as to define: (a) a plurality of first struts, (b) a plurality of second struts, and (c) a plurality of fixation members, which are coupled to respective ones of the first struts. The circumferential section is configured such that (a) when the stent-graft is in the delivery state, typically when the body is positioned in an external delivery sheath of a delivery catheter, the second struts radially constrain the fixation members, respectively, from protruding radially outward, and (b) when the stent-graft is in the deployment state, the fixation members are not radially-constrained by the second struts and protrude radially outward.
When the stent-graft is in the delivery state, the radially-constrained fixation members are unlikely to penetrate, tear, or otherwise damage the external delivery sheath of the delivery catheter. When the stent-graft is in the deployment state, the fixation members are configured to penetrate the inner wall of a tubular body part, such as a blood vessel, in order to help anchor stent-graft to the blood vessel.
Reference is made to
Some techniques of the present invention overcome this problem by radially confining at least the traumatic tips of the fixation members from radially outwardly protruding, when the stent-graft is radially confined. When the stent-graft transitions from a radially-confined to a radially-expanded state, the fixation members are released and their traumatic tips assume a radially-protruded position for tissue penetration.
For some applications, the stent member is shaped so as to define a generally circumferential band, which includes the above-mentioned circumferential section and the first and second struts. The circumferential band is shaped such that pairs of first and second struts are coupled at respective peaks of the circumferential band. Typically, the fixation members are shaped so as to define respective bases at respective first ends thereof and respective sharp tips at respective second ends thereof. The bases are coupled to respective ones of the first struts.
For some applications, a first subset of the fixation members extend in a counterclockwise direction from their respective first struts, and a second subset of the fixation members extend in a clockwise direction from their respective first struts. For some applications, the fixation members of the first and second subsets are arranged alternatingly around the circumferential section. This arrangement of the fixation members generally helps better anchor the stent-graft to the wall of the blood vessel. For example, blood flow in tortuous blood vessels may cause some rotation of the blood vessel. Because some fixation members point in each direction (clockwise and counterclockwise), a subset of the fixation members anchors better regardless of the direction in which the blood vessel rotates (clockwise or counterclockwise).
In some applications of the present invention, an alternative configuration of the stent-graft is provided which also overcomes the problem described hereinabove with reference to
There is therefore provided, in accordance with an application of the present invention, apparatus including an endovascular stent-graft, which is configured to assume a radially-compressed delivery state and a radially-expanded deployment state, and which includes:
a flexible stent member; and
a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member,
wherein the stent member includes a generally circumferential section that is shaped so as to define: (a) a plurality of first struts, (b) a plurality of second struts, and (c) a plurality of fixation members, which are coupled to respective ones of the first struts, and
wherein the circumferential section is configured such that:
For some applications, a first subset of the fixation members extend in a counterclockwise direction from the respective first struts, and a second subset of the fixation members extend in a clockwise direction from the respective first struts. For some applications, the fixation members of the first subset and the fixation members of the second subset are arranged alternatingly around the circumferential section.
For some applications, the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members.
For some applications:
the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section and the first and the second struts, and is shaped such that pairs of the first and the second struts are coupled at respective peaks of the circumferential band,
the fixation members are shaped so as to define respective bases at respective first ends thereof and respective sharp tips at respective second ends thereof, which bases are coupled to the respective ones of the first struts, and
the second struts (a) radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, and (b) do not radially constrain the tips when the stent-graft is in the radially-expanded deployment state.
For some applications, the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members. For some applications, the peaks are curved. For some applications, the bases of the fixation members are coupled to the respective first struts within a distance of the respective peaks, which distance equals 50% a length of the first struts.
For some applications, a first subset of the pairs of struts are configured such that the first struts thereof are disposed clockwise with respect to the second struts thereof, and a second subset of the pairs of struts are configured such that the first struts thereof are disposed counterclockwise with respect to the second struts thereof. For some applications, the pairs of struts of the first subset and the pairs of struts of the second subset are arranged alternatingly around the circumferential section.
For some applications, the second struts are shaped so as to define respective lateral protrusions, and the lateral protrusions radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, such that the second struts radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state. For some applications, one or more of the lateral protrusions include respective radiopaque markers.
For any of the applications described above, the circumferential section may be at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.
For any of the applications described above, when the stent-graft is in the radially-compressed delivery state, (a) a first one of the fixation members may be bent laterally in a clockwise direction, and (b) a second one of the fixation members may be bent laterally in a counterclockwise direction.
For any of the applications described above, when the stent-graft is in the radially-compressed delivery state, (a) a plurality of first ones of the fixation members may be bent laterally in a clockwise direction, (b) a plurality of second ones of the fixation members may be bent laterally in a counterclockwise direction, and the first ones of the fixation members and the second ones of the fixation members may be arranged alternatingly around the circumferential section.
For any of the applications described above, the circumferential section may be disposed at an end of the stent-graft.
For any of the applications described above, the fixation members may be shaped so as to define respective barbs.
For any of the applications described above, the apparatus may further include an external delivery sheath, in which the stent-graft is removably positioned in the radially-compressed delivery state.
There is further provided, in accordance with an application of the present invention, apparatus including an endovascular stent-graft, which is configured to assume a radially-compressed delivery state and a radially-expanded deployment state, and which includes:
a flexible stent member; and
a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member,
wherein the stent member includes a generally circumferential section that is shaped so as to define at least one fixation member having a sharp tip,
wherein, when the stent-graft is in the radially-expanded deployment state, the fixation member protrudes radially outward, and
wherein, when the stent-graft is in the radially-compressed delivery state, at least a portion of the fixation member is convex as viewed from outside the stent-graft, such that the sharp tip points radially inward.
For some applications, the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section, which is shaped so as to define at least one first strut and at least one second strut, which are coupled at a peak of the circumferential band, and the fixation member is shaped so as to define a base at a first end thereof and the sharp tip at a second end thereof, which base is coupled to the first strut.
For any of the applications described above, the circumferential section may be at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.
There is still further provided, in accordance with an application of the present invention, a method including:
providing an endovascular stent-graft in a radially-expanded deployment state, which stent-graft includes (a) a flexible stent member, and (b) a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member, wherein the stent member includes a generally circumferential section that is shaped so as to define: (i) a plurality of first struts, (ii) a plurality of second struts, and (iii) a plurality of fixation members, which are coupled to respective ones of the first struts, wherein, when the stent-graft is in the deployment state, the fixation members are not radially-constrained by the second struts and protrude radially outward; and
loading the stent-graft into an external delivery sheath of a delivery catheter, such that the stent-graft assumes a radially-compressed delivery state, in which the second struts radially constrain the fixation members, respectively, from protruding radially outward.
For some applications, loading includes: positioning the second struts and the fixation members such that the second struts radially constrain the fixation members, respectively; and, thereafter, loading the fixation members into the external delivery sheath.
For some applications, providing the stent-graft includes providing the stent-graft in which a first subset of the fixation members extend in a counterclockwise direction from the respective first struts, and a second subset of the fixation members extend in a clockwise direction from the respective first struts. For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members of the first subset and the fixation members of the second subset are arranged alternatingly around the circumferential section.
For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members.
For some applications, providing the stent-graft includes providing the stent-graft in which:
the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section and the first and the second struts, and is shaped such that pairs of the first and the second struts are coupled at respective peaks of the circumferential band,
the fixation members are shaped so as to define respective bases at respective first ends thereof and respective sharp tips at respective second ends thereof, which bases are coupled to the respective ones of the first struts, and
the second struts (a) radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, and (b) do not radially constrain the tips when the stent-graft is in the radially-expanded deployment state.
For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members. For some applications, providing the stent-graft includes providing the stent-graft in which the peaks are curved. For some applications, providing the stent-graft includes providing the stent-graft in which the bases of the fixation members are coupled to the respective first struts within a distance of the respective peaks, which distance equals 50% of a length of the first struts.
For some applications, providing the stent-graft includes providing the stent-graft in which a first subset of the pairs of struts are configured such that the first struts thereof are disposed clockwise with respect to the second struts thereof, and a second subset of the pairs of struts are configured such that the first struts thereof are disposed counterclockwise with respect to the second struts thereof. For some applications, providing the stent-graft includes providing the stent-graft in which the pairs of struts of the first subset and the pairs of struts of the second subset are arranged alternatingly around the circumferential section.
For some applications, providing the stent-graft includes providing the stent-graft in which the second struts are shaped so as to define respective lateral protrusions, and the lateral protrusions radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, such that the second struts radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state.
For any of the applications described above, providing the stent-graft may include providing the stent-graft in which, when the stent-graft is in the radially-compressed delivery state, (a) a first one of the fixation members is bent laterally in a clockwise direction, and (b) a second one of the fixation members is bent laterally in a counterclockwise direction.
For any of the applications described above, providing the stent-graft may include providing the stent-graft in which, when the stent-graft is in the radially-compressed delivery state, (a) a plurality of first ones of the fixation members are bent laterally in a clockwise direction, (b) a plurality of second ones of the fixation members are bent laterally in a counterclockwise direction, and the first ones of the fixation members and the second ones of the fixation members are arranged alternatingly around the circumferential section.
For any of the applications described above, providing the stent-graft may include providing the stent-graft in which the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.
For any of the applications described above, providing the stent-graft may include providing the stent-graft in which the circumferential section is disposed at an end of the stent-graft.
For any of the applications described above, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped so as to define respective barbs.
There is yet additionally provided, in accordance with an application of the present invention, a method including:
providing an endovascular stent-graft, which is configured to assume a radially-compressed delivery state and a radially-expanded deployment state, and which includes (a) a flexible stent member, and (b) a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member, wherein the stent member includes a generally circumferential section that is shaped so as to define: (i) a plurality of first struts, (ii) a plurality of second struts, and (iii) a plurality of fixation members, which are coupled to respective ones of the first struts;
transvascularly introducing the stent-graft into a blood vessel of a human subject while the stent-graft is in the radially-compressed delivery state, in which the second struts radially constrain the fixation members, respectively, from protruding radially outward; and
thereafter, transitioning the stent-graft in the blood vessel to the radially-expanded deployment state, in which the fixation members are not radially-constrained by the second struts and protrude radially outwardly and engage a wall of the blood vessel.
For some applications, providing the stent-graft includes providing the stent-graft in which the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.
For some applications, providing the stent-graft includes providing the stent-graft in which a first subset of the fixation members extend in a counterclockwise direction from the respective first struts, and a second subset of the fixation members extend in a clockwise direction from the respective first struts. For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members of the first subset and the fixation members of the second subset are arranged alternatingly around the circumferential section.
For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members.
For some applications, providing the stent-graft includes providing the stent-graft in which:
the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section and the first and the second struts, and is shaped such that pairs of the first and the second struts are coupled at respective peaks of the circumferential band,
the fixation members are shaped so as to define respective bases at respective first ends thereof and respective sharp tips at respective second ends thereof, which bases are coupled to the respective ones of the first struts, and
the second struts (a) radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, and (b) do not radially constrain the tips when the stent-graft is in the radially-expanded deployment state.
For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members.
For some applications, providing the stent-graft includes providing the stent-graft in which the peaks are curved.
For some applications, providing the stent-graft includes providing the stent-graft in which the bases of the fixation members are coupled to the respective first struts within a distance of the respective peaks, which distance equals 50% of a length of the first struts.
For some applications, providing the stent-graft includes providing the stent-graft in which a first subset of the pairs of struts are configured such that the first struts thereof are disposed clockwise with respect to the second struts thereof, and a second subset of the pairs of struts are configured such that the first struts thereof are disposed counterclockwise with respect to the second struts thereof. For some applications, providing the stent-graft includes providing the stent-graft in which the pairs of struts of the first subset and the pairs of struts of the second subset are arranged alternatingly around the circumferential section.
For some applications, providing the stent-graft includes providing the stent-graft in which the second struts are shaped so as to define respective lateral protrusions, and the lateral protrusions radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, such that the second struts radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state.
For some applications, providing the stent-graft includes providing the stent-graft in which, when the stent-graft is in the radially-compressed delivery state, (a) a first one of the fixation members is bent laterally in a clockwise direction, and (b) a second one of the fixation members is bent laterally in a counterclockwise direction.
For some applications, providing the stent-graft includes providing the stent-graft in which, when the stent-graft is in the radially-compressed delivery state, (a) a plurality of first ones of the fixation members are bent laterally in a clockwise direction, (b) a plurality of second ones of the fixation members are bent laterally in a counterclockwise direction, and the first ones of the fixation members and the second ones of the fixation members are arranged alternatingly around the circumferential section.
For some applications, providing the stent-graft includes providing the stent-graft in which the circumferential section is disposed at an end of the stent-graft.
For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped so as to define respective barbs.
For some applications, transvascularly introducing includes transvascularly introducing the stent-graft into the blood while the stent-graft is positioned in an external delivery sheath of a delivery catheter in the radially-compressed delivery state, and transitioning the stent-graft to the radially-expanded deployment state in the blood vessel includes deploying the stent-graft from the external delivery sheath.
There is also provided, in accordance with an application of the present invention, a method including:
providing an endovascular stent-graft in a radially-expanded deployment state, which stent-graft includes (a) a flexible stent member, and (b) a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member, wherein the stent member includes a generally circumferential section that is shaped so as to define at least one fixation member having a sharp tip, and wherein, when the stent-graft is in the deployment state, the fixation members protrudes radially outward; and
loading the stent-graft into an external delivery sheath of a delivery catheter, such that the stent-graft assumes a radially-compressed delivery state, in which at least a portion of the fixation member is convex as viewed from outside the stent-graft, such that the sharp tip points radially inward.
For some applications, providing the stent-graft includes providing the stent-graft in which the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.
For some applications, providing the stent-graft includes providing the stent-graft in which the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section, which is shaped so as to define at least one first strut and at least one second strut, which are coupled at a peak of the circumferential band, and the fixation member is shaped so as to define a base at a first end thereof and the sharp tip at a second end thereof, which base is coupled to the first strut.
There is further provided, in accordance with an application of the present invention, a method including:
providing an endovascular stent-graft, which is configured to assume a radially-compressed delivery state and a radially-expanded deployment state, and which includes (a) a flexible stent member, and (b) a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member, wherein the stent member includes a generally circumferential section that is shaped so as to define at least one fixation member having a sharp tip;
transvascularly introducing the stent-graft into a blood vessel of a human subject while the stent-graft is in the radially-compressed delivery state, in which at least a portion of the fixation member is convex as viewed from outside the stent-graft, such that the sharp tip points radially inward; and
thereafter, transitioning the stent-graft to the radially-expanded deployment state in the blood vessel, such that the fixation member protrudes radially outwardly.
For some applications, providing the stent-graft includes providing the stent-graft in which the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.
For some applications, providing the stent-graft includes providing the stent-graft in which (a) the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section, which is shaped so as to define at least one first strut and at least one second strut, which are coupled at a peak of the circumferential band, and (b) the fixation member is shaped so as to define a base at a first end thereof and the sharp tip at a second end thereof, which base is coupled to the first strut.
The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:
Reference is made to
Stent-graft 10 comprises a flexible stent member 24 and a tubular fluid flow guide 26. Stent-graft 10 is configured to assume (a) a radially-compressed delivery state, typically when the body is positioned in sheath 20, such as shown in
Typically, external delivery sheath 20 comprises a polymer. For some applications, external delivery sheath 20 comprises an extruded polymer tube, encapsulating a metallic (or other type of very resilient polymer wire, such as Kevlar™) wire helical coil, and/or braid, which provide kink resistance, and/or longitudinal straight wires for prevention of elongation of the sheath. Optionally, an internal low-friction layer, e.g., comprising PTFE, is provided as an inner lining of the external sheath, in order to reduce frictional forces between the stent-graft and the external delivery sheath.
Fluid flow guide 26 is attached to stent member 24, such as by suturing or stitching. The flexible stent member may be attached to an internal and/or an external surface of the fluid flow guide. Flexible stent member 24 comprises a plurality of structural stent elements 28, which are either indirectly connected to one another by the fluid flow guide (as shown), or interconnected with one another (configuration not shown). Optionally, a portion of the structural stent elements may be attached (e.g., sutured) to the internal surface of the fluid flow guide, and another portion to the external surface of the fluid flow guide. For some applications, structural stent elements 24 comprise a metal. Alternatively or additionally, the structural stent elements comprise a self-expanding material, such that stent-graft 10 is self-expandable. Alternatively or additionally, the structural stent elements comprise one or more metallic alloys, such as one or more superelastic metal alloys, a shape memory metallic alloy, and/or Nitinol. For some applications, the stent-graft is heat-set to assume the radially-expanded state.
Fluid flow guide 26 comprises a graft material, i.e., at least one biologically-compatible substantially blood-impervious flexible sheet. The flexible sheet may comprise, for example, a polyester, a polyethylene (e.g., a poly-ethylene-terephthalate), a polymeric film material (e.g., polytetrafluoroethylene), a polymeric textile material (e.g., woven polyethylene terephthalate (PET)), natural tissue graft (e.g., saphenous vein or collagen), Polytetrafluoroethylene (PTFE), ePTFE, Dacron, or a combination of two or more of these materials. The graft material optionally is woven.
Typically, stent-graft 10 is configured to self-expand from the delivery state to the deployment state, such as shown in
Fluid flow guide 26 is attached to stent member 24 such that at least a generally circumferential section 40 of the stent member is at least partially, e.g., completely, not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state. Typically, the circumferential section is disposed at an end of stent-graft 10, such as a distal end of the stent-graft as shown in
For some applications, circumferential section 40 is shaped so as to define a plurality of first struts 42 and a plurality of second struts 43. Circumferential section 40 is shaped so as to further define a plurality of fixation members 44, which are coupled to respective ones of first struts 42. (The fixation members may be “coupled” to the struts by fabricating the fixation members and struts from a single piece, e.g., from a rectangular blank by removing missing portions by any standard means such as punching, stamping, milling, or laser cutting; alternatively, the fixation members may comprises separate pieces, which are fixed to the struts during fabrication.) For some applications, one or more (e.g., all) of fixation members 44 are shaped so as to define respective barbs, typically including sharp tips 45 for penetrating tissue, e.g., of an inner wall of a blood vessel. As used in the present application, including in the claims, a “barb” means an element having at least one free sharp end, which is sharp enough to enter the aortic wall. The element may or may not define a sharp projection extending backward from the sharp end for preventing easy extraction. Fixation members 44 are shown as narrowing toward tips 45 in
For some applications, as shown in
When the stent-graft is in the delivery state, radially-constrained fixation members 44 are unlikely to penetrate, tear, or otherwise damage external delivery sheath 20. When the stent-graft is in the deployment state, fixation members 44 are configured to penetrate the inner wall of a tubular body part, such as a blood vessel, in order to help anchor stent-graft 10 to the blood vessel.
As mentioned above, when stent-graft 10 is in the delivery state, second struts 43 radially constrain respective fixation members 44 from protruding radially outward. Typically, second struts 43 are closer to first struts 42 when stent-graft 10 is in the delivery state (and the stent-graft is thus radially compressed and consequently also circumferentially compressed) than when stent-graft 10 is in the deployment state. As a result, for some applications, second struts 43 are close enough to first struts 42 to come in contact with respective portions of fixation members 44 and block the fixation members from protruding radially outward. Fixation members 44 are disposed radially inward of second struts 43, resting against respective surfaces of second struts 43 that face radially inward, such as shown in
In some applications of the present invention, a method is provided for loading stent-graft 10 into external delivery sheath 20. Stent-graft 10 is provided in the radially-expanded deployment state, and loaded into external delivery sheath 20, such that the stent-graft assumes the radially-compressed delivery state, in which second struts 43 radially constrain fixation members 44, respectively, from protruding radially outward. Typically, fixation members 44 are loaded into the external delivery sheath after the second struts and fixation members have been positioned such that the second struts radially constrain the fixation members, as shown in
For some applications, such as shown in
Reference is now made to
Reference is now made to
Typically, second struts 43 are closer to first struts 42 when stent-graft 10 is in the delivery state than when stent-graft 10 is in the deployment state. As a result, for some applications, second struts 43 are close enough to first struts 42 for lateral protrusions to come in contact with respective portions of fixation members 44 and block the fixation members from protruding radially outward. Fixation members 44 are disposed radially inward of second struts 43, resting against respective surfaces of lateral protrusions 80 that face radially inward, as shown in
For some applications, one or more of lateral protrusions 80 comprise respective radiopaque markers 82, which may aid in properly positioning and/or rotationally aligning the stent-graft during deployment and/or implantation.
Reference is again made to
Reference is again made to
For some applications, fixation members 44A and 44B are arranged alternatingly around circumferential section 40, i.e., fixation member 44A, fixation member 44B, fixation member 44A, fixation member 44B, etc. For these applications, pairs 52 of struts 42 and 43 of first subset 90A and pairs 52 of struts 42 and 43 of second subset 90B are arranged alternatingly around circumferential section 40.
This arrangement of the fixation members may help better anchor stent-graft 10 to the wall of the blood vessel. For example, blood flow in tortuous blood vessels may cause some rotation of the blood vessel. Because some fixation members 44 point in each direction (clockwise and counterclockwise), a subset of the fixation members anchors better regardless of the direction in which the blood vessel rotates (clockwise or counterclockwise).
Reference is now made to
In this configuration, fixation member 144 is shaped as a tab that is cut from first strut 142 on all sides of the tab except at a base 160 thereof that is coupled to first strut 142. For example, the tab may be manufactured by making a U- or V-shaped cut in first strut 142. Fixation member 144 may be generally flat, as shown in
Typically, second struts 143 are closer to first struts 142 when the stent-graft is in the delivery state than when the stent-graft is in the deployment state. As a result, for some applications, second struts 143 are close enough to first struts 142 to come in contact with respective portions of fixation members 144 and block the fixation members from protruding radially outward. Fixation members 144 are disposed radially inward of second struts 143, resting against respective surfaces of second struts 143 that face radially inward, such as shown in
Reference is now made to
Fluid flow guide 226 is attached to stent member 224, such as described hereinabove with reference to
Fluid flow guide 226 is attached to stent member 224 such that at least a generally circumferential section 240 of the stent member is at least partially, e.g., completely, not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state. Typically, the circumferential section is disposed at an end of stent-graft 210, such as a distal end of the stent-graft as shown in
Circumferential section 240 is shaped so as to define a plurality of first struts 242 and a plurality of second struts 243. Circumferential section 240 is shaped so as to further define a plurality of fixation members 244, which are coupled to respective ones of first struts 242. (The fixation members may be “coupled” to the struts by fabricating the fixation members and struts from a single piece, e.g., from a rectangular blank by removing missing portions by any standard means such as punching, stamping, milling, or laser cutting; alternatively, the fixation members may comprises separate pieces, which are fixed to the struts during fabrication.) For some applications, one or more (e.g., all) of fixation members 244 are shaped so as to define respective barbs, typically including sharp tips 245 for penetrating tissue, e.g., of an inner wall of a blood vessel. As used in the present application, including in the claims, a “barb” means an element having at least one free sharp end, which is sharp enough to enter the aortic wall. The element may or may not define a sharp projection extending backward from the sharp end for preventing easy extraction.
Reference is still made to
Fixation member 244 is shaped so as to define a base 260 at a first end thereof and sharp tip 245 at a second end thereof. Base 260 is coupled to first strut 242. For some applications, base 260 is coupled to first strut 242 within a distance of a peak 254 of the pair including the first and second struts, which distance equals 50% of a length of the first strut. For some applications, peak 254 is curved.
When stent-graft 210 is in the radially-expanded deployment state, as shown in
When the stent-graft is in the delivery state, radially-constrained fixation members 44 are unlikely to penetrate, tear, or otherwise damage external delivery sheath 220. When the stent-graft is in the deployment state, fixation members 244 are configured to penetrate the inner wall of a tubular body part, such as a blood vessel, in order to help anchor stent-graft 210 to the blood vessel.
Reference is made to
Optionally, after the stent-graft has radially expanded, the surgeon rotates the stent-graft slightly, in order to better engage the fixation members with the tissue of the vessel wall. Alternatively or additionally, for some applications, a balloon is used to radially expand the stent-graft, and the balloon is configured to inflate with a rotational vector.
As used in the present application, including in the claims, “tubular” means having the form of an elongated hollow object that defines a conduit therethrough. A “tubular” structure may have varied cross-sections therealong, and the cross-sections are not necessarily circular. For example, one or more of the cross-sections may be generally circular, or generally elliptical but not circular, or circular.
The scope of the present invention includes embodiments described in the following applications, which are assigned to the assignee of the present application and are incorporated herein by reference. In an embodiment, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2012/000190 | 5/15/2012 | WO | 00 | 1/6/2015 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/171730 | 11/21/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4180613 | Vassiliou | Dec 1979 | A |
4355426 | MacGregor | Oct 1982 | A |
4505767 | Quin | Mar 1985 | A |
4562596 | Kornberg | Jan 1986 | A |
4577631 | Kreamer | Mar 1986 | A |
4617932 | Kornberg | Oct 1986 | A |
4665906 | Jervis | May 1987 | A |
4739762 | Palmaz | Apr 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4938740 | Melbin | Jul 1990 | A |
4969458 | Wiktor | Nov 1990 | A |
5042707 | Taheri | Aug 1991 | A |
5064435 | Porter | Nov 1991 | A |
5104404 | Wolff | Apr 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5129910 | Phan et al. | Jul 1992 | A |
5133732 | Wiktor | Jul 1992 | A |
5192256 | Ryan | Mar 1993 | A |
5192286 | Phan et al. | Mar 1993 | A |
5234448 | Wholey et al. | Aug 1993 | A |
5383926 | Lock et al. | Jan 1995 | A |
5456694 | Marin et al. | Oct 1995 | A |
5486183 | Middleman et al. | Jan 1996 | A |
5507769 | Marin et al. | Apr 1996 | A |
5509923 | Middleman et al. | Apr 1996 | A |
5522880 | Barone et al. | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5549662 | Fordenbacher | Aug 1996 | A |
5554181 | Das | Sep 1996 | A |
5556413 | Lam | Sep 1996 | A |
5562724 | Vorwerk et al. | Oct 1996 | A |
5607445 | Summers | Mar 1997 | A |
5613974 | Andreas et al. | Mar 1997 | A |
5632746 | Middleman et al. | May 1997 | A |
5632763 | Glastra | May 1997 | A |
5632772 | Alcime et al. | May 1997 | A |
5639278 | Dereume et al. | Jun 1997 | A |
5643340 | Nunokawa | Jul 1997 | A |
5653743 | Martin | Aug 1997 | A |
5676696 | Marcade | Oct 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5693084 | Chuter | Dec 1997 | A |
5728134 | Barak | Mar 1998 | A |
5749879 | Middleman et al. | May 1998 | A |
5755770 | Ravenscroft | May 1998 | A |
5755771 | Penn et al. | May 1998 | A |
5755777 | Chuter | May 1998 | A |
5755781 | Jayaraman | May 1998 | A |
5769882 | Fogarty et al. | Jun 1998 | A |
5769884 | Solovay | Jun 1998 | A |
5782903 | Wiktor | Jul 1998 | A |
5782906 | Marshall et al. | Jul 1998 | A |
5824040 | Cox et al. | Oct 1998 | A |
5824055 | Spiridigliozzi et al. | Oct 1998 | A |
5827321 | Roubin et al. | Oct 1998 | A |
5843170 | Ahn | Dec 1998 | A |
5855600 | Alt | Jan 1999 | A |
5860991 | Klein et al. | Jan 1999 | A |
5876432 | Lau et al. | Mar 1999 | A |
5906641 | Thompson et al. | May 1999 | A |
5921994 | Andreas et al. | Jul 1999 | A |
5925076 | Inoue | Jul 1999 | A |
5948018 | Dereume et al. | Sep 1999 | A |
5968091 | Pinchuk et al. | Oct 1999 | A |
5980552 | Pinchasik et al. | Nov 1999 | A |
5984955 | Wisselink | Nov 1999 | A |
6015431 | Thornton et al. | Jan 2000 | A |
6016810 | Ravenscroft | Jan 2000 | A |
6030414 | Taheri | Feb 2000 | A |
6033435 | Penn et al. | Mar 2000 | A |
6036723 | Anidjar et al. | Mar 2000 | A |
6036725 | Avellanet | Mar 2000 | A |
6049824 | Simonin | Apr 2000 | A |
6051021 | Frid | Apr 2000 | A |
6059824 | Taheri | May 2000 | A |
6099497 | Adams et al. | Aug 2000 | A |
6099548 | Taheri | Aug 2000 | A |
6117145 | Wood et al. | Sep 2000 | A |
6129738 | Lashinski et al. | Oct 2000 | A |
6132457 | Chobotov | Oct 2000 | A |
6156064 | Chouinard | Dec 2000 | A |
6159228 | Frid et al. | Dec 2000 | A |
6176875 | Lenker et al. | Jan 2001 | B1 |
6179878 | Duerig et al. | Jan 2001 | B1 |
6200339 | Leschinsky et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6270524 | Kim | Aug 2001 | B1 |
6283991 | Cox et al. | Sep 2001 | B1 |
6287335 | Drasler et al. | Sep 2001 | B1 |
6290720 | Khosravi et al. | Sep 2001 | B1 |
6296661 | Davila et al. | Oct 2001 | B1 |
6312458 | Golds | Nov 2001 | B1 |
6325819 | Pavcnik et al. | Dec 2001 | B1 |
6325823 | Horzewski et al. | Dec 2001 | B1 |
6344056 | Dehdashtian | Feb 2002 | B1 |
6395018 | Castaneda | May 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6428565 | Wisselink | Aug 2002 | B1 |
6451051 | Drasler et al. | Sep 2002 | B2 |
6471722 | Inoue | Oct 2002 | B1 |
6506211 | Skubitz et al. | Jan 2003 | B1 |
6520988 | Colombo et al. | Feb 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6565597 | Fearnot et al. | May 2003 | B1 |
6576009 | Ryan et al. | Jun 2003 | B2 |
6613078 | Barone | Sep 2003 | B1 |
6635083 | Cheng et al. | Oct 2003 | B1 |
6645242 | Quinn | Nov 2003 | B1 |
6648911 | Sirhan et al. | Nov 2003 | B1 |
6652567 | Deaton | Nov 2003 | B1 |
6652571 | White et al. | Nov 2003 | B1 |
6656214 | Fogarty et al. | Dec 2003 | B1 |
6673080 | Reynolds et al. | Jan 2004 | B2 |
6692520 | Gambale et al. | Feb 2004 | B1 |
6695833 | Frantzen | Feb 2004 | B1 |
6695875 | Stelter et al. | Feb 2004 | B2 |
6699277 | Freidberg et al. | Mar 2004 | B1 |
6716238 | Elliott | Apr 2004 | B2 |
6729356 | Baker et al. | May 2004 | B1 |
6733523 | Shaolian et al. | May 2004 | B2 |
6743195 | Zucker | Jun 2004 | B2 |
6752826 | Holloway et al. | Jun 2004 | B2 |
6776794 | Hong et al. | Aug 2004 | B1 |
6808534 | Escano | Oct 2004 | B1 |
6814749 | Cox et al. | Nov 2004 | B2 |
6814752 | Chuter | Nov 2004 | B1 |
6824560 | Pelton | Nov 2004 | B2 |
6843803 | Ryan et al. | Jan 2005 | B2 |
6846321 | Zucker | Jan 2005 | B2 |
6860900 | Clerc et al. | Mar 2005 | B2 |
6907285 | Denker et al. | Jun 2005 | B2 |
6908477 | McGuckin, Jr. et al. | Jun 2005 | B2 |
6929660 | Ainsworth et al. | Aug 2005 | B1 |
6942691 | Chuter | Sep 2005 | B1 |
6964679 | Marcade et al. | Nov 2005 | B1 |
6986774 | Middleman et al. | Jan 2006 | B2 |
7008441 | Zucker | Mar 2006 | B2 |
7018400 | Lashinski et al. | Mar 2006 | B2 |
7022131 | Derowe et al. | Apr 2006 | B1 |
7044962 | Elliott | May 2006 | B2 |
7105015 | Goshgarian | Sep 2006 | B2 |
7105020 | Greenberg et al. | Sep 2006 | B2 |
7112217 | Kugler et al. | Sep 2006 | B1 |
7115127 | Lindenbaum et al. | Oct 2006 | B2 |
7122052 | Greenhalgh | Oct 2006 | B2 |
7131991 | Zarins et al. | Nov 2006 | B2 |
7144421 | Carpenter et al. | Dec 2006 | B2 |
7160318 | Greenberg et al. | Jan 2007 | B2 |
7175651 | Kerr | Feb 2007 | B2 |
7198638 | Dong | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7220274 | Quinn | May 2007 | B1 |
7223266 | Lindenbaum et al. | May 2007 | B2 |
7270675 | Chun et al. | Sep 2007 | B2 |
7279003 | Berra et al. | Oct 2007 | B2 |
7294145 | Ward | Nov 2007 | B2 |
7294147 | Hartley | Nov 2007 | B2 |
7306623 | Watson | Dec 2007 | B2 |
7341598 | Davidson et al. | Mar 2008 | B2 |
7393357 | Stelter et al. | Jul 2008 | B2 |
7396363 | Frid | Jul 2008 | B2 |
7407509 | Greenberg et al. | Aug 2008 | B2 |
7413573 | Hartley et al. | Aug 2008 | B2 |
7425219 | Quadri | Sep 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7438721 | Doig et al. | Oct 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7473272 | Pryor | Jan 2009 | B2 |
7491231 | Nazzaro et al. | Feb 2009 | B2 |
7537606 | Hartley et al. | May 2009 | B2 |
7537609 | Davidson et al. | May 2009 | B2 |
7540881 | Meyer et al. | Jun 2009 | B2 |
7544160 | Gross | Jun 2009 | B2 |
7575590 | Watson | Aug 2009 | B2 |
7637939 | Tischler | Dec 2009 | B2 |
7645298 | Hartley et al. | Jan 2010 | B2 |
7655036 | Goodson | Feb 2010 | B2 |
7655037 | Fleming, III et al. | Feb 2010 | B2 |
7662161 | Briganti et al. | Feb 2010 | B2 |
7662168 | McGuckin, Jr. et al. | Feb 2010 | B2 |
7670369 | Schaeffer | Mar 2010 | B2 |
7678141 | Greenan et al. | Mar 2010 | B2 |
7699885 | Leonhardt et al. | Apr 2010 | B2 |
7708704 | Mitelberg et al. | May 2010 | B2 |
7722626 | Middleman et al. | May 2010 | B2 |
7731732 | Ken | Jun 2010 | B2 |
7766955 | Vardi et al. | Aug 2010 | B2 |
7771465 | Zukowski | Aug 2010 | B2 |
7789903 | Spiridigliozzi et al. | Sep 2010 | B2 |
7803178 | Whirley et al. | Sep 2010 | B2 |
7806923 | Moloney | Oct 2010 | B2 |
7815673 | Bloom et al. | Oct 2010 | B2 |
7833259 | Boatman | Nov 2010 | B2 |
7846194 | Hartley et al. | Dec 2010 | B2 |
7850725 | Vardi et al. | Dec 2010 | B2 |
7867270 | Hartley et al. | Jan 2011 | B2 |
7887575 | Kujawski | Feb 2011 | B2 |
7914572 | Hartley et al. | Mar 2011 | B2 |
7914574 | Schmid et al. | Mar 2011 | B2 |
7955373 | Sowinski et al. | Jun 2011 | B2 |
7955374 | Erickson et al. | Jun 2011 | B2 |
7959662 | Erbel et al. | Jun 2011 | B2 |
7959669 | Chalekian et al. | Jun 2011 | B2 |
7998186 | Hartley | Aug 2011 | B2 |
7998187 | Hartley et al. | Aug 2011 | B2 |
8012193 | Hartley et al. | Sep 2011 | B2 |
8021412 | Hartley et al. | Sep 2011 | B2 |
8021418 | Gerberding et al. | Sep 2011 | B2 |
8021419 | Hartley et al. | Sep 2011 | B2 |
8043365 | Thramann | Oct 2011 | B2 |
8048139 | Frid et al. | Nov 2011 | B2 |
8048140 | Purdy | Nov 2011 | B2 |
8048147 | Adams | Nov 2011 | B2 |
8052736 | Doig et al. | Nov 2011 | B2 |
8052741 | Bruszewski et al. | Nov 2011 | B2 |
8066755 | Zacharias et al. | Nov 2011 | B2 |
8080053 | Satasiya et al. | Dec 2011 | B2 |
8100960 | Bruszewski | Jan 2012 | B2 |
8118854 | Bowe | Feb 2012 | B2 |
8133267 | Leonhardt et al. | Mar 2012 | B2 |
8157810 | Case et al. | Apr 2012 | B2 |
8167926 | Hartley et al. | May 2012 | B2 |
8172892 | Chuter et al. | May 2012 | B2 |
8172895 | Anderson et al. | May 2012 | B2 |
8197475 | Bruszewski et al. | Jun 2012 | B2 |
8197533 | Kujawski | Jun 2012 | B2 |
8211158 | Wolf | Jul 2012 | B2 |
8216298 | Wright et al. | Jul 2012 | B2 |
8221494 | Schreck et al. | Jul 2012 | B2 |
8226706 | Hartley et al. | Jul 2012 | B2 |
8236040 | Mayberry et al. | Aug 2012 | B2 |
8251963 | Chin et al. | Aug 2012 | B2 |
8257423 | Kerr | Sep 2012 | B2 |
8262719 | Erickson et al. | Sep 2012 | B2 |
8273115 | Hamer et al. | Sep 2012 | B2 |
8287586 | Schaeffer et al. | Oct 2012 | B2 |
8292885 | Bruszewski et al. | Oct 2012 | B2 |
8292941 | Muzslay | Oct 2012 | B2 |
8292949 | Berra et al. | Oct 2012 | B2 |
8292951 | Muzslay | Oct 2012 | B2 |
8333800 | Bruszewski et al. | Dec 2012 | B2 |
8337546 | Bruszewski | Dec 2012 | B2 |
8353898 | Lutze et al. | Jan 2013 | B2 |
8357192 | Mayberry et al. | Jan 2013 | B2 |
8361134 | Hartley et al. | Jan 2013 | B2 |
8394136 | Hartley et al. | Mar 2013 | B2 |
8425585 | Melsheimer et al. | Apr 2013 | B2 |
8470018 | Hartley et al. | Jun 2013 | B2 |
8475513 | Sithian | Jul 2013 | B2 |
8480726 | Cunningham et al. | Jul 2013 | B2 |
8486131 | Shalev | Jul 2013 | B2 |
8491646 | Schreck | Jul 2013 | B2 |
8506622 | Bruszewski et al. | Aug 2013 | B2 |
8870938 | Shalev et al. | Oct 2014 | B2 |
8968384 | Pearson et al. | Mar 2015 | B2 |
9168123 | Barrand | Oct 2015 | B2 |
20010000188 | Lenker et al. | Apr 2001 | A1 |
20010004705 | Killion et al. | Jun 2001 | A1 |
20010014823 | Ressemann et al. | Aug 2001 | A1 |
20010034550 | Buirge et al. | Oct 2001 | A1 |
20010037142 | Stelter et al. | Nov 2001 | A1 |
20010044647 | Pinchuk et al. | Nov 2001 | A1 |
20010044651 | Steinke et al. | Nov 2001 | A1 |
20010044652 | Moore | Nov 2001 | A1 |
20010047198 | Drasler et al. | Nov 2001 | A1 |
20010049550 | Martin et al. | Dec 2001 | A1 |
20010053930 | Kugler et al. | Dec 2001 | A1 |
20020040236 | Lau et al. | Apr 2002 | A1 |
20020052643 | Wholey et al. | May 2002 | A1 |
20020052644 | Shaolian et al. | May 2002 | A1 |
20020072790 | McGuckin, Jr. et al. | Jun 2002 | A1 |
20020099438 | Furst | Jul 2002 | A1 |
20020099441 | Dehdashtian | Jul 2002 | A1 |
20020107564 | Cox et al. | Aug 2002 | A1 |
20020111667 | Girton et al. | Aug 2002 | A1 |
20020123791 | Harrison | Sep 2002 | A1 |
20020156495 | Brenneman et al. | Oct 2002 | A1 |
20020156517 | Perouse | Oct 2002 | A1 |
20020173809 | Fleischman et al. | Nov 2002 | A1 |
20020183783 | Shadduck | Dec 2002 | A1 |
20020193864 | Khosravi et al. | Dec 2002 | A1 |
20020198585 | Wisselink | Dec 2002 | A1 |
20030033005 | Houser et al. | Feb 2003 | A1 |
20030040791 | Oktay | Feb 2003 | A1 |
20030065345 | Weadock | Apr 2003 | A1 |
20030065386 | Weadock | Apr 2003 | A1 |
20030068296 | Ricci et al. | Apr 2003 | A1 |
20030074055 | Haverkost | Apr 2003 | A1 |
20030093145 | Lawrence-Brown et al. | May 2003 | A1 |
20030125796 | Dong | Jul 2003 | A1 |
20030130720 | DePalma et al. | Jul 2003 | A1 |
20030144725 | Lombardi | Jul 2003 | A1 |
20030153944 | Phung et al. | Aug 2003 | A1 |
20030153968 | Geis et al. | Aug 2003 | A1 |
20030171771 | Anderson et al. | Sep 2003 | A1 |
20030191523 | Hojeibane | Oct 2003 | A1 |
20030199967 | Hartley et al. | Oct 2003 | A1 |
20030199968 | Ainsworth et al. | Oct 2003 | A1 |
20030204236 | Letort | Oct 2003 | A1 |
20030204242 | Zarins et al. | Oct 2003 | A1 |
20030204243 | Shiu | Oct 2003 | A1 |
20030212449 | Cox | Nov 2003 | A1 |
20030233117 | Adams et al. | Dec 2003 | A1 |
20030236567 | Elliot | Dec 2003 | A1 |
20040015227 | Vardi et al. | Jan 2004 | A1 |
20040015229 | Fulkerson et al. | Jan 2004 | A1 |
20040098091 | Erbel et al. | May 2004 | A1 |
20040106972 | Deaton | Jun 2004 | A1 |
20040106978 | Greenberg et al. | Jun 2004 | A1 |
20040117003 | Ouriel et al. | Jun 2004 | A1 |
20040133266 | Clerc et al. | Jul 2004 | A1 |
20040138735 | Shaolian et al. | Jul 2004 | A1 |
20040162606 | Thompson | Aug 2004 | A1 |
20040171978 | Shalaby | Sep 2004 | A1 |
20040181149 | Langlotz et al. | Sep 2004 | A1 |
20040215319 | Berra et al. | Oct 2004 | A1 |
20040215327 | Doig et al. | Oct 2004 | A1 |
20040215332 | Frid | Oct 2004 | A1 |
20040260383 | Stelter et al. | Dec 2004 | A1 |
20050010246 | Streeter et al. | Jan 2005 | A1 |
20050033406 | Barnhart et al. | Feb 2005 | A1 |
20050049678 | Cocks et al. | Mar 2005 | A1 |
20050065545 | Wallace | Mar 2005 | A1 |
20050085900 | Case et al. | Apr 2005 | A1 |
20050102018 | Carpenter et al. | May 2005 | A1 |
20050102021 | Osborne | May 2005 | A1 |
20050131517 | Hartley et al. | Jun 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050149166 | Schaeffer et al. | Jul 2005 | A1 |
20050154448 | Cully et al. | Jul 2005 | A1 |
20050159803 | Lad et al. | Jul 2005 | A1 |
20050165480 | Jordan et al. | Jul 2005 | A1 |
20050171598 | Schaeffer | Aug 2005 | A1 |
20050171599 | White | Aug 2005 | A1 |
20050177132 | Lentz et al. | Aug 2005 | A1 |
20050177224 | Fogarty et al. | Aug 2005 | A1 |
20050203606 | VanCamp | Sep 2005 | A1 |
20050216018 | Sennett | Sep 2005 | A1 |
20050222667 | Hunt | Oct 2005 | A1 |
20050222668 | Schaeffer et al. | Oct 2005 | A1 |
20050222669 | Purdy | Oct 2005 | A1 |
20050228480 | Douglas et al. | Oct 2005 | A1 |
20050234542 | Melsheimer | Oct 2005 | A1 |
20050266042 | Tseng | Dec 2005 | A1 |
20050273155 | Bahler et al. | Dec 2005 | A1 |
20050283188 | Loshakove et al. | Dec 2005 | A1 |
20060015170 | Jones et al. | Jan 2006 | A1 |
20060030921 | Chu | Feb 2006 | A1 |
20060052799 | Middleman et al. | Mar 2006 | A1 |
20060069426 | Weinberger | Mar 2006 | A1 |
20060095114 | Hartley et al. | May 2006 | A1 |
20060100684 | Elliott | May 2006 | A1 |
20060106406 | Weinberger | May 2006 | A1 |
20060116748 | Kaplan et al. | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060155358 | LaDuca et al. | Jul 2006 | A1 |
20060155359 | Watson | Jul 2006 | A1 |
20060155366 | LaDuca et al. | Jul 2006 | A1 |
20060167476 | Burdulis et al. | Jul 2006 | A1 |
20060173530 | Das | Aug 2006 | A1 |
20060178733 | Pinchuk | Aug 2006 | A1 |
20060190070 | Dieck et al. | Aug 2006 | A1 |
20060193892 | Furst et al. | Aug 2006 | A1 |
20060229709 | Morris et al. | Oct 2006 | A1 |
20060241740 | Vardi et al. | Oct 2006 | A1 |
20060271166 | Thill et al. | Nov 2006 | A1 |
20060276882 | Case et al. | Dec 2006 | A1 |
20060281966 | Peacock, III | Dec 2006 | A1 |
20061010640 | Peacock, III | Dec 2006 | |
20070016281 | Melsheimer | Jan 2007 | A1 |
20070021822 | Boatman | Jan 2007 | A1 |
20070043425 | Hartley et al. | Feb 2007 | A1 |
20070050011 | Klein et al. | Mar 2007 | A1 |
20070055326 | Farley et al. | Mar 2007 | A1 |
20070055350 | Erickson et al. | Mar 2007 | A1 |
20070055358 | Krolik et al. | Mar 2007 | A1 |
20070055360 | Hanson et al. | Mar 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070061002 | Paul, Jr. et al. | Mar 2007 | A1 |
20070073373 | Bonsignore | Mar 2007 | A1 |
20070088425 | Schaeffer | Apr 2007 | A1 |
20070112344 | Keilman | May 2007 | A1 |
20070135677 | Miller et al. | Jun 2007 | A1 |
20070142896 | Anderson et al. | Jun 2007 | A1 |
20070150051 | Arnault De La Menardiere et al. | Jun 2007 | A1 |
20070156167 | Connors et al. | Jul 2007 | A1 |
20070162104 | Frid | Jul 2007 | A1 |
20070167898 | Peters et al. | Jul 2007 | A1 |
20070167955 | Arnault De La Menardiere et al. | Jul 2007 | A1 |
20070168013 | Douglas | Jul 2007 | A1 |
20070168018 | Amplatz et al. | Jul 2007 | A1 |
20070179598 | Duerig | Aug 2007 | A1 |
20070185565 | Schwammenthal et al. | Aug 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070208410 | Berra et al. | Sep 2007 | A1 |
20070213805 | Schaeffer et al. | Sep 2007 | A1 |
20070213807 | Roubin et al. | Sep 2007 | A1 |
20070219610 | Israel | Sep 2007 | A1 |
20070219627 | Chu et al. | Sep 2007 | A1 |
20070225797 | Krivoruhko | Sep 2007 | A1 |
20070233229 | Berra et al. | Oct 2007 | A1 |
20070237973 | Purdy et al. | Oct 2007 | A1 |
20070244542 | Greenan et al. | Oct 2007 | A1 |
20070244543 | Mitchell | Oct 2007 | A1 |
20070244547 | Greenan | Oct 2007 | A1 |
20070250154 | Greenberg et al. | Oct 2007 | A1 |
20070255388 | Rudakov et al. | Nov 2007 | A1 |
20080002871 | Gunzert-Marx et al. | Jan 2008 | A1 |
20080015673 | Chuter | Jan 2008 | A1 |
20080058918 | Watson | Mar 2008 | A1 |
20080109058 | Greenberg et al. | May 2008 | A1 |
20080109066 | Quinn | May 2008 | A1 |
20080114444 | Yu | May 2008 | A1 |
20080114445 | Melsheimer et al. | May 2008 | A1 |
20080147173 | Mciff et al. | Jun 2008 | A1 |
20080167704 | Wright et al. | Jul 2008 | A1 |
20080195190 | Bland et al. | Aug 2008 | A1 |
20080195191 | Luo et al. | Aug 2008 | A1 |
20080215134 | Lawrence-Brown | Sep 2008 | A1 |
20080249598 | Sherry | Oct 2008 | A1 |
20080262595 | Chu et al. | Oct 2008 | A1 |
20080269789 | Eli | Oct 2008 | A1 |
20080275540 | Wen | Nov 2008 | A1 |
20080275542 | LaDuca et al. | Nov 2008 | A1 |
20080288044 | Osborne | Nov 2008 | A1 |
20080294234 | Hartley et al. | Nov 2008 | A1 |
20080300665 | Lootz et al. | Dec 2008 | A1 |
20080319528 | Yribarren et al. | Dec 2008 | A1 |
20090012597 | Doig et al. | Jan 2009 | A1 |
20090012602 | Quadri | Jan 2009 | A1 |
20090030497 | Metcalf et al. | Jan 2009 | A1 |
20090030502 | Sun et al. | Jan 2009 | A1 |
20090048663 | Greenberg | Feb 2009 | A1 |
20090054967 | Das | Feb 2009 | A1 |
20090062899 | Dang et al. | Mar 2009 | A1 |
20090069881 | Chalekian et al. | Mar 2009 | A1 |
20090069882 | Venturelli et al. | Mar 2009 | A1 |
20090082841 | Zacharias et al. | Mar 2009 | A1 |
20090082847 | Zacharias et al. | Mar 2009 | A1 |
20090099648 | Yu | Apr 2009 | A1 |
20090099649 | Chobotov et al. | Apr 2009 | A1 |
20090099650 | Bolduc et al. | Apr 2009 | A1 |
20090105809 | Lee et al. | Apr 2009 | A1 |
20090112233 | Xiao | Apr 2009 | A1 |
20090125096 | Chu et al. | May 2009 | A1 |
20090138067 | Pinchuk et al. | May 2009 | A1 |
20090149877 | Hanson et al. | Jun 2009 | A1 |
20090164001 | Biggs et al. | Jun 2009 | A1 |
20090171437 | Brocker et al. | Jul 2009 | A1 |
20090192587 | Frid | Jul 2009 | A1 |
20090227997 | Wang et al. | Sep 2009 | A1 |
20090240316 | Bruszewski | Sep 2009 | A1 |
20090248134 | Dierking et al. | Oct 2009 | A1 |
20090254170 | Hartley et al. | Oct 2009 | A1 |
20090259290 | Bruszewski et al. | Oct 2009 | A1 |
20090287145 | Cragg et al. | Nov 2009 | A1 |
20100004728 | Rao et al. | Jan 2010 | A1 |
20100029608 | Finley et al. | Feb 2010 | A1 |
20100063575 | Shalev et al. | Mar 2010 | A1 |
20100070019 | Shalev | Mar 2010 | A1 |
20100082091 | Berez et al. | Apr 2010 | A1 |
20100161026 | Brocker et al. | Jun 2010 | A1 |
20100211159 | Schmid et al. | Aug 2010 | A1 |
20100249899 | Chuter et al. | Sep 2010 | A1 |
20100256725 | Rasmussen | Oct 2010 | A1 |
20100274187 | Argentine | Oct 2010 | A1 |
20100274345 | Rust | Oct 2010 | A1 |
20100292774 | Shalev | Nov 2010 | A1 |
20100318171 | Porter et al. | Dec 2010 | A1 |
20110040369 | Rasmussen et al. | Feb 2011 | A1 |
20110093002 | Rucker et al. | Apr 2011 | A1 |
20110125251 | Cottone et al. | May 2011 | A1 |
20110208289 | Shalev | Aug 2011 | A1 |
20110208296 | Duffy et al. | Aug 2011 | A1 |
20110208297 | Tuval et al. | Aug 2011 | A1 |
20110208298 | Tuval et al. | Aug 2011 | A1 |
20110218607 | Arbefeuille et al. | Sep 2011 | A1 |
20110257720 | Peterson et al. | Oct 2011 | A1 |
20110262684 | Wintsch et al. | Oct 2011 | A1 |
20110264184 | Heltai | Oct 2011 | A1 |
20110288622 | Chan et al. | Nov 2011 | A1 |
20110301702 | Rust et al. | Dec 2011 | A1 |
20110319983 | Zhu et al. | Dec 2011 | A1 |
20120150274 | Shalev et al. | Jun 2012 | A1 |
20120172929 | Shalev | Jul 2012 | A1 |
20120179236 | Benary et al. | Jul 2012 | A1 |
20120185031 | Ryan et al. | Jul 2012 | A1 |
20120271401 | Bruszewski et al. | Oct 2012 | A1 |
20120310324 | Benary et al. | Dec 2012 | A1 |
20120316634 | Shalev et al. | Dec 2012 | A1 |
20120323305 | Benary et al. | Dec 2012 | A1 |
20120330399 | Shalev et al. | Dec 2012 | A1 |
20120330401 | Sugimoto et al. | Dec 2012 | A1 |
20130013050 | Shalev et al. | Jan 2013 | A1 |
20130013051 | Benary | Jan 2013 | A1 |
20130035751 | Shalev | Feb 2013 | A1 |
20130090722 | Shalev et al. | Apr 2013 | A1 |
20130116773 | Roeder et al. | May 2013 | A1 |
20130116775 | Roeder et al. | May 2013 | A1 |
20130131783 | Shalev et al. | May 2013 | A1 |
20130204343 | Shalev | Aug 2013 | A1 |
20130261994 | Raz et al. | Oct 2013 | A1 |
20130289587 | Shalev | Oct 2013 | A1 |
20130297005 | Shalev | Nov 2013 | A1 |
20140005764 | Schroeder | Jan 2014 | A1 |
20140052236 | Shalev | Feb 2014 | A1 |
20140148888 | Barrand | May 2014 | A1 |
20140172072 | Shalev | Jun 2014 | A1 |
20140180378 | Roeder | Jun 2014 | A1 |
20140288635 | Shalev | Sep 2014 | A1 |
20140324154 | Shalev | Oct 2014 | A1 |
20150196301 | Bödewadt et al. | Jul 2015 | A1 |
20150374383 | Bödewadt et al. | Dec 2015 | A1 |
20160262880 | Li et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2497704 | Mar 2004 | CA |
2453960 | Oct 2001 | CN |
2817770 | Sep 2006 | CN |
201058061 | May 2008 | CN |
1177780 | Feb 2002 | EP |
1325716 | Jul 2003 | EP |
1470797 | Oct 2004 | EP |
1759666 | Mar 2007 | EP |
1961401 | Aug 2008 | EP |
2266509 | Dec 2010 | EP |
2298248 | Mar 2011 | EP |
2002253682 | Sep 2002 | JP |
9806355 | Feb 1998 | WO |
9934748 | Jul 1999 | WO |
0152776 | Jul 2001 | WO |
02083038 | Oct 2002 | WO |
03099108 | Dec 2003 | WO |
2004017868 | Mar 2004 | WO |
2004100836 | Nov 2004 | WO |
2005002466 | Jan 2005 | WO |
2005034809 | Apr 2005 | WO |
2005037138 | Apr 2005 | WO |
2005041781 | May 2005 | WO |
2005041783 | May 2005 | WO |
2005046524 | May 2005 | WO |
2005046526 | May 2005 | WO |
2006007389 | Jan 2006 | WO |
2006028925 | Mar 2006 | WO |
2006070372 | Jul 2006 | WO |
2006088905 | Aug 2006 | WO |
2006130755 | Dec 2006 | WO |
2007022495 | Feb 2007 | WO |
2007039587 | Apr 2007 | WO |
2007084547 | Jul 2007 | WO |
2007144782 | Dec 2007 | WO |
2008008291 | Jan 2008 | WO |
2008035337 | Mar 2008 | WO |
2008042266 | Apr 2008 | WO |
2008047092 | Apr 2008 | WO |
2008047354 | Apr 2008 | WO |
2008051704 | May 2008 | WO |
2008053469 | May 2008 | WO |
2008066923 | Jun 2008 | WO |
2008107885 | Sep 2008 | WO |
2008140796 | Nov 2008 | WO |
2009078010 | Jun 2009 | WO |
2009116041 | Sep 2009 | WO |
2009116042 | Sep 2009 | WO |
2009118733 | Oct 2009 | WO |
2010027704 | Mar 2010 | WO |
2010024869 | Mar 2010 | WO |
2010024879 | Mar 2010 | WO |
2010031060 | Mar 2010 | WO |
2010045238 | Apr 2010 | WO |
2010062355 | Jun 2010 | WO |
2010088776 | Aug 2010 | WO |
2010128162 | Nov 2010 | WO |
2010150208 | Dec 2010 | WO |
2011004374 | Jan 2011 | WO |
2011007354 | Jan 2011 | WO |
2011055364 | May 2011 | WO |
2011064782 | Jun 2011 | WO |
2011067764 | Jun 2011 | WO |
2011070576 | Jun 2011 | WO |
2011080738 | Jul 2011 | WO |
2011095979 | Aug 2011 | WO |
2011106532 | Sep 2011 | WO |
2011106533 | Sep 2011 | WO |
2011106544 | Sep 2011 | WO |
2012049679 | Apr 2012 | WO |
2012104842 | Aug 2012 | WO |
2012111006 | Aug 2012 | WO |
2012117395 | Sep 2012 | WO |
2012176187 | Dec 2012 | WO |
2013005207 | Jan 2013 | WO |
2013030818 | Mar 2013 | WO |
2013030819 | Mar 2013 | WO |
2013065040 | May 2013 | WO |
2013084235 | Jun 2013 | WO |
2013171730 | Nov 2013 | WO |
2014020609 | Feb 2014 | WO |
2014108895 | Jul 2014 | WO |
2014141232 | Sep 2014 | WO |
2014188412 | Nov 2014 | WO |
Entry |
---|
European search report issued in Application No. 10832752.9, dated May 23, 2016. |
European search report issued in Application No. 10834308.8, dated Sep. 22, 2016. |
A non-final Office Action issued on Feb. 28, 2014 in U.S. Appl. No. 13/512,778. |
An International Preliminary Report on Patentability dated Jan. 7, 2014, which issued during the prosecution of Applicant's PCT/IL2012/000269. |
An International Preliminary Report on Patentability dated Jan. 4, 2012, which issued during the prosecution of Applicant's PCT/IB2010/052861. |
An International Preliminary Report on Patentability dated Dec. 23, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000241. |
An International Preliminary Report on Patentability dated Aug. 6, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000060. |
An English translation of an Office Action dated Oct. 8, 2014, which issued during the prosecution of Chinese Patent Application No. 201080036970.7. |
An English translation of an Office Action dated Nov. 28, 2013, which issued during the prosecution of Chinese Patent Application No. 200880126889.0. |
An English translation of an Office Action dated Jan. 28, 2014, which issued during the prosecution of Chinese Patent Application No. 201080036970.7. |
An English translation of an Office Action dated May 16, 2014, which issued during the prosecution of Chinese Patent Application No. 200880126889.0. |
An English translation of an Office Action dated Aug. 25, 2011, which issued during the prosecution of Chinese Patent Application No. 200880014919.9. |
An English translation of an Office Action dated Feb. 16, 2013, which issued during the prosecution of Chinese Patent Application No. 200880126889.0. |
An International Preliminary Report on Patentability dated Jan. 10, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000549. |
An International Preliminary Report on Patentability dated Jan. 17, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000564. |
A Notice of Allowance dated Aug. 2, 2012, which issued during the prosecution of U.S. Appl. No. 12/529,936. |
An Advisory Action dated Feb. 13, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/807,880. |
An International Preliminary Report on Patentability dated Jun. 5, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000999. |
An International Preliminary Report on Patentability dated Jun. 5, 2012, which issued during the prosecution of Applicant's PCT/IL2010/001018. |
An International Preliminary Report on Patentability dated Jun. 10, 2014, which issued during the prosecution of Applicant's PCT/IL2012/050506. |
A Notice of Allowance issued in U.S. Appl. No. 13/807,906 on Oct. 10, 2014. |
A Restriction Requirement dated Jan. 29, 2014, which issued during the prosecution of U.S. Appl. No. 13/519,971. |
An International Preliminary Report on Patentability dated Jun. 12, 2012, which issued during the prosecution of Applicant's PCT/IL2010/001037. |
An International Preliminary Report on Patentability dated Mar. 4, 2014, which issued during the prosecution of Applicant's PCT/IL2012/000300. |
An International Preliminary Report on Patentability dated May 6, 2014, which issued during the prosecution of Applicant's PCT/IL2012/050424. |
An International Preliminary Report on Patentability dated May 8, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000917. |
An International Preliminary Report on Patentability dated Nov. 18, 2014, which issued during the prosecution of Applicant's PCT/IL2012/000190. |
An International Search Report and a Written Opinion both dated Apr. 18, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001037. |
An International Search Report and a Written Opinion both dated Aug. 4, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000999. |
An International Search Report and a Written Opinion both dated Aug. 31, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000148. |
An International Search Report and a Written Opinion both dated Dec. 3, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000564. |
An International Search Report and a Written Opinion both dated Feb. 4, 2011, which issued during the prosecution of Applicant's PCT/IB2010/052861. |
An International Search Report and a Written Opinion both dated Jul. 13, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000083. |
An International Search Report and a Written Opinion both dated Jul. 17, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000095. |
An International Search Report and a Written Opinion both dated Jun. 14, 2013, which issued during the prosecution of Applicant's PCT/IL2012/050506. |
An International Search Report and a Written Opinion both dated Jun. 28, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000135. |
An International Search Report and a Written Opinion both dated Jun. 30, 2009, which issued during the prosecution of Applicant's PCT/IL2008/001621. |
An International Search Report and a Written Opinion both dated Mar. 10, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000917. |
An International Search Report and a Written Opinion both dated Mar. 11, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001312. |
An International Search Report and a Written Opinion both dated Mar. 15, 2013, which issued during the prosecution of Applicant's PCT/IL2012/050424. |
An International Preliminary Report on Patentability dated Sep. 3, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000095. |
An International Search Report and a Written Opinion both dated Mar. 30, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001018. |
An International Search Report and a Written Opinion both dated May 23, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001087. |
An International Search Report and a Written Opinion both dated Nov. 5, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000549. |
An International Search Report and a Written Opinion both dated Nov. 27, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000300. |
An International Search Report and a Written Opinion both dated Oct. 1, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000241. |
An International Search Report and a Written Opinion both dated Oct. 4, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000269. |
An International Search Report and a Written Opinion both dated Sep. 6, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000190. |
An International Search Report and a Written Opinion both dated Apr. 28, 2014, which issued during the prosecution of Applicant's PCT/IL2014/050019. |
An International Search Report dated Jul. 30, 2014, which issued during the prosecution of Applicant's PCT/IL2014/050174. |
An International Search Report and a Written Opinion both dated Sep. 24, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000060. |
An International Search Report and a Written Opinion both dated Sep. 29, 2008, which issued during the prosecution of Applicant's PCT/IL2008/000287. |
An International Search Report dated Nov. 26, 2013, which issued during the prosecution of Applicant's PCT/IL2013/050656. |
Notice of allowance dated Jun. 24, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/380,278. |
An International Search Report dated Nov. 28, 2014, which issued during the prosecution of Applicant's PCT/IL2014/050434. |
An Interview Summary dated Feb. 28, 2012, which issued during the prosecution of U.S. Appl. No. 12/529,936. |
An Office Action dated Apr. 10, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/807,906. |
An Office Action dated Apr. 24, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/380,278. |
An Office Action dated Dec. 2, 2013, which issued during the prosecution of U.S. Appl. No. 13/807,880. |
An office Action dated Feb. 25. 2013, which issued during the prosecution of U.S. Appl. No. 13/031,871. |
An Office Action dated Feb. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/808,037. |
An Office Action dated Jul. 24, 2014, which issued during the prosecution of Canadian Patent Application No. 2768228. |
An Office Action dated Jul. 28, 2014, which issued during the prosecution of U.S. Appl. No. 13/031,871. |
An Office Action dated Jun. 19, 2012, which issued during the prosecution of U.S. Appl. No. 12/808,037. |
An Office Action dated Mar. 24, 2011, which issued during the prosecution of U.S. Appl. No. 12/529,936. |
An Office Action dated Mar. 28, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/519,971. |
An Office Action dated Apr. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/447,684. |
An Office Action dated Apr. 28, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/939,798. |
An Office Action dated May 20, 2013, which issued during the prosecution of U.S. Appl. No. 13/807,880. |
An Office Action dated Nov. 12, 2010, which issued during the prosecution of U.S. Appl. No. 12/447,684. |
An Office Action dated Nov. 3, 2014, which issued during the prosecution of Canadian Patent Application No. 2767596. |
An Office Action dated Nov. 19, 2013, which issued during the prosecution of U.S. Appl. No. 13/663,117. |
An Office Action dated Oct. 11, 2012, which issued during the prosecution of U.S. Appl. No. 13/031,871. |
U.S. Appl. No. 61/219,758, filed Jun. 23, 2009. |
U.S. Appl. No. 61/221,074, filed Jun. 28, 2009. |
U.S. Appl. No. 61/496,613, filed Jun. 14, 2011. |
An Office Action dated Oct. 28, 2011, which issued during the prosecution of U.S. Appl. No. 12/529,936. |
U.S. Appl. No. 61/505,132, filed Jul. 7, 2011. |
U.S. Appl. No. 61/678,182, filed Aug. 1, 2012. |
U.S. Appl. No. 61/529,931, filed Sep. 1, 2011. |
U.S. Appl. No. 61/553,209, filed Oct. 30, 2011. |
U.S. Appl. No. 61/499,195, filed Jun. 21, 2011. |
U.S. Appl. No. 61/749,965, filed Jan. 8, 2013. |
Notice of Allowance dated Jun. 18, 2013, which issued during the prosecution of U.S. Appl. No. 13/523,296. |
Office Action issued on Oct. 27, 2014 in Canadian Patent Application No. 2,785,953. |
Ryhanen J., in “Biocompatibility evaluation of nickel-titanium shape memory metal alloy,” Academic Dissertation, Faculty of Medicine, Department of Surgery, University of Oulu, Finland (May 1999). |
Supplementary European Search Report dated Dec. 13, 2012, which issued during the prosecution of Applicant's European App No. 08719912.1. |
Supplementary European Search Report dated Feb. 17, 2014, which issued during the prosecution of Applicant's European App No. 12803376.8. |
Supplementary European Search Report dated Jun. 23, 2014, which issued during the prosecution of Applicant's European App No. 12741804.4. |
Written Opinion dated Nov. 26, 2013, which issued during the prosecution of Applicant's PCT/IL2013/050656. |
“E-vita® open plus” product brochure (JOTEC GmbH, Hechingcn, Germany), 2010. |
An Office action dated Sep. 4, 2014, from the U.S. Patent and Trademark Office in counterpart U.S. Appl. No. 13/519,971. |
European Office Action issued Dec. 17, 2014 in European Patent Application No. 12803376.8. |
An Office action dated Feb. 5, 2015, from the U.S. Patent and Trademark Office in counterpart U.S. Appl. No. 13/384,075. |
European Search Report issued Feb. 24, 2014 in European Patent Application No. 12803376.8. |
Fattori et al., Degenerative aneurysm of the descending aorta. Endovascular Treatment. pp. 1-11, 2007, European Association for Cardio-Thoracic Surgery. |
International Preliminary Report on Patentability dated Jan. 12, 2010 in corresponding International Application No. PCT/IL2008/000287. |
Fonseca A et al., “Intravascular ultrasound assessment of the novel AngioSculpt scoring balloon catheter for the treatment of complex coronary lesions,” J Invasive Cardiol 20(1):21-7 (Jan. 2008). |
Van Prehn J et al., “Oversizing of aortic stent grafts for abdominal aneurysm repair: a systematic review of the benefits and risks,” Eur J Vase Endovase Surg. Jul. 2009:38(I):42-53. Epub May 9, 2009 (abstract only). |
Invitation to Pay Additional Fees dated May 13, 2014, which issued during the prosecution of Applicant's PCT/IL2014/050019. |
Invitation to Pay Additional Fees dated May 8, 2014, which issued during the prosecution of Applicant's PCT/IL2014/50174. |
Khlif H et al., “Contribution to the Improvement of Textile Vascular Prostheses Crimping,” Trends in Applied Sciences Research 6(9):1019-1027 (2011). |
U.S. Appl. No. 61/775,964, filed Mar. 11, 2013. |
U.S. Appl. No. 61/826,544, filed May 23, 2013. |
U.S. Appl. No. 61/906,014, filed Nov. 19, 2013. |
U.S. Appl. No. 61/926,533, filed Jan. 13, 2014. |
U.S. Appl. No. 61/528,242, filed Aug. 28, 2011. |
An Office Action dated Aug. 15, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/939,798. |
U.S. Appl. No. 61/566,654, filed Dec. 4, 2011. |
An English translation of an Office Action dated Mar. 19, 2015, which issued during the prosecution of Chinese Patent Application No. 201080036970.7. |
A Notice of Allowance dated Jan. 20, 2015, which issued during the prosecution of U.S. Appl. No. 13/383,128. |
A Notice of Allowance dated Nov. 7, 2014, which issued during the prosecution of U.S. Appl. No. 13/512,778. |
An Office Action dated Aug. 15, 2014, which issued during the prosecution of U.S. Appl. No. 13/512,778. |
An International Search Report and a Written Opinion both dated Mar. 18, 2015, which issued during the prosecution of Applicant's PCT/IL2014/050973. |
An Office Action dated Apr. 14, 2015, which issued during the prosecution of U.S. Appl. No. 14/130,213. |
An International Preliminary Report on Patentability dated Feb. 3, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050656. |
A Notice of Allowance dated Jan. 7, 2014, which issued during the prosecution of U.S. Appl. No. 13/663,117. |
An Office Action dated Mar. 26, 2015, which issued during the prosecution of U.S. Appl. No. 13/514,240. |
Supplementary European Search Report dated Oct. 31, 2014, which issued during the prosecution of Applicant's European App No. 12752054.2. |
An Office Action dated Sep. 2, 2014, which issued during the prosecution of U.S. Appl. No. 12/447,684. |
U.S. Appl. No. 61/448,199, filed Mar. 2, 2011. |
U.S. Appl. No. 61/014,031, filed Dec. 15, 2007. |
An Examiner Interview Summary dated Dec. 13, 2010, which issued during the prosecution of U.S. Appl. No. 12/447,684. |
An Office Action dated Mar. 21, 2012, which issued during the prosecution of U.S. Appl. No. 12/808,037. |
An Office Action dated May 22, 2013, which issued during the prosecution of U.S. Appl. No. 12/808,037. |
U.S. Appl. No. 60/863,373, filed Oct. 29, 2006. |
An International Preliminary Report on Patentability dated Aug. 21, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000083. |
Number | Date | Country | |
---|---|---|---|
20150142096 A1 | May 2015 | US |