Stent-graft with fixation elements that are radially confined for delivery

Information

  • Patent Grant
  • 9770350
  • Patent Number
    9,770,350
  • Date Filed
    Tuesday, May 15, 2012
    12 years ago
  • Date Issued
    Tuesday, September 26, 2017
    7 years ago
Abstract
An endovascular stent-graft is provided that includes a flexible stent member, which includes a plurality of struts, which are shaped so as to define a generally circumferential section; a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member; and at least one fixation member shaped so as to define a base at a first end thereof and a sharp tip at a second end thereof. The base is coupled to one of the struts that are shaped so as to define the generally circumferential section. When the stent-graft is in a radially-expanded deployment state, the fixation member protrudes radially outward. When the stent-graft is in a radially-compressed delivery state, at least a portion of the fixation member between the base and the sharp tip is convex as viewed from outside the stent-graft, such that the sharp tip points radially inward.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a National Stage of International Application No. PCT/IL2012/000190 filed May 15, 2012, the contents of all of which are incorporated herein by reference in their entirety.


FIELD OF THE APPLICATION

This present application relates generally to prostheses and surgical methods, and specifically to tubular prostheses, including endovascular stent-grafts, and surgical techniques for using the prostheses to maintain patency of body passages such as blood vessels, and treating aneurysms.


BACKGROUND OF THE APPLICATION

Endovascular prostheses are sometimes used to treat aortic aneurysms. Such treatment includes implanting a stent or stent-graft within the diseased vessel to bypass the anomaly. An aneurysm is a sac formed by the dilation of the wall of the artery. Aneurysms may be congenital, but are usually caused by disease or, occasionally, by trauma. Aortic aneurysms, which commonly form between the renal arteries and the iliac arteries, are referred to as abdominal aortic aneurysms (“AAAs”). Other aneurysms occur in the aorta, such as thoracic aortic aneurysms (“TAAs”), which may occur in one or more of the descending aorta, the ascending aorta, and the aortic arch.


Conventional stent-grafts typically include a radially-expandable stent, formed from a plurality of uniform annular stent springs, and a cylindrically-shaped graft material to which the stent springs are coupled. Stent-grafts may be used for reinforcing or holding open the interior wall of lumens, such as blood vessels.


Some commercially-available stent-grafts utilize a set of circumferentially-disposed proximal barbs in order to facilitate long term fixation of the stent-graft at its appropriate landing zone on the wall of a target body lumen in general, and, in particular, a major artery such as the aorta. An additional role of fixation barbs is to facilitate sealing between the distal end of the graft material and the blood vessel neck, so as to prevent endovascular blood leaks around the stent-graft's distal edge, usually referred to as type I endoleaks.


SUMMARY OF APPLICATIONS

In some applications of the present invention, an endovascular stent-graft is configured to assume a radially-compressed delivery state and a radially-expanded deployment state. The stent-graft comprises a flexible stent member and a tubular fluid flow guide. The fluid flow guide comprises a graft material, and which is attached to the stent member, such that at least a generally circumferential section of the stent member is not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state. The circumferential section of the stent member is shaped so as to define: (a) a plurality of first struts, (b) a plurality of second struts, and (c) a plurality of fixation members, which are coupled to respective ones of the first struts. The circumferential section is configured such that (a) when the stent-graft is in the delivery state, typically when the body is positioned in an external delivery sheath of a delivery catheter, the second struts radially constrain the fixation members, respectively, from protruding radially outward, and (b) when the stent-graft is in the deployment state, the fixation members are not radially-constrained by the second struts and protrude radially outward.


When the stent-graft is in the delivery state, the radially-constrained fixation members are unlikely to penetrate, tear, or otherwise damage the external delivery sheath of the delivery catheter. When the stent-graft is in the deployment state, the fixation members are configured to penetrate the inner wall of a tubular body part, such as a blood vessel, in order to help anchor stent-graft to the blood vessel.


Reference is made to FIG. 1, which is a schematic illustration of an endovascular stent-graft during several stages of loading the stent-graft into an external delivery sheath of a delivery catheter of a delivery system, in accordance with the prior art. The traumatic nature of fixation barbs presents a technical challenge in reducing the crossing profile and maintaining the integrity of external sheaths of delivery systems of stent-grafts. Fixation barbs, because they are traumatic, are often prone to damage the inner wall of the polymeric external delivery sheath that externally confines the stent-graft when the stent-graft is in its radially compressed state. The external delivery sheath is usually gradually advanced over the stent in the proximal to distal direction, relative to the operator that is crimping the stent-graft into the delivery system. Because most fixation barbs are directed in the distal to proximal direction, pushing an external sheath over the stent in a direction opposite to the direction in which the barbs point is usually traumatic to the inner wall of such an external delivery sheath. To prevent such trauma to the sheath, a resilient and relatively thick external sheath is generally used, which adversely increases the crossing profile of the crimped stent-graft.


Some techniques of the present invention overcome this problem by radially confining at least the traumatic tips of the fixation members from radially outwardly protruding, when the stent-graft is radially confined. When the stent-graft transitions from a radially-confined to a radially-expanded state, the fixation members are released and their traumatic tips assume a radially-protruded position for tissue penetration.


For some applications, the stent member is shaped so as to define a generally circumferential band, which includes the above-mentioned circumferential section and the first and second struts. The circumferential band is shaped such that pairs of first and second struts are coupled at respective peaks of the circumferential band. Typically, the fixation members are shaped so as to define respective bases at respective first ends thereof and respective sharp tips at respective second ends thereof. The bases are coupled to respective ones of the first struts.


For some applications, a first subset of the fixation members extend in a counterclockwise direction from their respective first struts, and a second subset of the fixation members extend in a clockwise direction from their respective first struts. For some applications, the fixation members of the first and second subsets are arranged alternatingly around the circumferential section. This arrangement of the fixation members generally helps better anchor the stent-graft to the wall of the blood vessel. For example, blood flow in tortuous blood vessels may cause some rotation of the blood vessel. Because some fixation members point in each direction (clockwise and counterclockwise), a subset of the fixation members anchors better regardless of the direction in which the blood vessel rotates (clockwise or counterclockwise).


In some applications of the present invention, an alternative configuration of the stent-graft is provided which also overcomes the problem described hereinabove with reference to FIG. 1. In this alternative configuration, the fixation members are outwardly radially convex as viewed from outside the stent-graft, such that when the stent-graft is radially confined, the tips of the fixation members are radially retracted relative to the apex of the convexity of the fixation member. When the stent-graft assumes its radially expanded state, the fixation members are released to their radially protruded position and respective tips thereof assume the outermost radial position.


There is therefore provided, in accordance with an application of the present invention, apparatus including an endovascular stent-graft, which is configured to assume a radially-compressed delivery state and a radially-expanded deployment state, and which includes:


a flexible stent member; and


a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member,


wherein the stent member includes a generally circumferential section that is shaped so as to define: (a) a plurality of first struts, (b) a plurality of second struts, and (c) a plurality of fixation members, which are coupled to respective ones of the first struts, and


wherein the circumferential section is configured such that:

    • when the stent-graft is in the delivery state, the second struts radially constrain the fixation members, respectively, from protruding radially outward, and
    • when the stent-graft is in the deployment state, the fixation members are not radially-constrained by the second struts and protrude radially outward.


For some applications, a first subset of the fixation members extend in a counterclockwise direction from the respective first struts, and a second subset of the fixation members extend in a clockwise direction from the respective first struts. For some applications, the fixation members of the first subset and the fixation members of the second subset are arranged alternatingly around the circumferential section.


For some applications, the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members.


For some applications:


the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section and the first and the second struts, and is shaped such that pairs of the first and the second struts are coupled at respective peaks of the circumferential band,


the fixation members are shaped so as to define respective bases at respective first ends thereof and respective sharp tips at respective second ends thereof, which bases are coupled to the respective ones of the first struts, and


the second struts (a) radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, and (b) do not radially constrain the tips when the stent-graft is in the radially-expanded deployment state.


For some applications, the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members. For some applications, the peaks are curved. For some applications, the bases of the fixation members are coupled to the respective first struts within a distance of the respective peaks, which distance equals 50% a length of the first struts.


For some applications, a first subset of the pairs of struts are configured such that the first struts thereof are disposed clockwise with respect to the second struts thereof, and a second subset of the pairs of struts are configured such that the first struts thereof are disposed counterclockwise with respect to the second struts thereof. For some applications, the pairs of struts of the first subset and the pairs of struts of the second subset are arranged alternatingly around the circumferential section.


For some applications, the second struts are shaped so as to define respective lateral protrusions, and the lateral protrusions radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, such that the second struts radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state. For some applications, one or more of the lateral protrusions include respective radiopaque markers.


For any of the applications described above, the circumferential section may be at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.


For any of the applications described above, when the stent-graft is in the radially-compressed delivery state, (a) a first one of the fixation members may be bent laterally in a clockwise direction, and (b) a second one of the fixation members may be bent laterally in a counterclockwise direction.


For any of the applications described above, when the stent-graft is in the radially-compressed delivery state, (a) a plurality of first ones of the fixation members may be bent laterally in a clockwise direction, (b) a plurality of second ones of the fixation members may be bent laterally in a counterclockwise direction, and the first ones of the fixation members and the second ones of the fixation members may be arranged alternatingly around the circumferential section.


For any of the applications described above, the circumferential section may be disposed at an end of the stent-graft.


For any of the applications described above, the fixation members may be shaped so as to define respective barbs.


For any of the applications described above, the apparatus may further include an external delivery sheath, in which the stent-graft is removably positioned in the radially-compressed delivery state.


There is further provided, in accordance with an application of the present invention, apparatus including an endovascular stent-graft, which is configured to assume a radially-compressed delivery state and a radially-expanded deployment state, and which includes:


a flexible stent member; and


a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member,


wherein the stent member includes a generally circumferential section that is shaped so as to define at least one fixation member having a sharp tip,


wherein, when the stent-graft is in the radially-expanded deployment state, the fixation member protrudes radially outward, and


wherein, when the stent-graft is in the radially-compressed delivery state, at least a portion of the fixation member is convex as viewed from outside the stent-graft, such that the sharp tip points radially inward.


For some applications, the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section, which is shaped so as to define at least one first strut and at least one second strut, which are coupled at a peak of the circumferential band, and the fixation member is shaped so as to define a base at a first end thereof and the sharp tip at a second end thereof, which base is coupled to the first strut.


For any of the applications described above, the circumferential section may be at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.


There is still further provided, in accordance with an application of the present invention, a method including:


providing an endovascular stent-graft in a radially-expanded deployment state, which stent-graft includes (a) a flexible stent member, and (b) a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member, wherein the stent member includes a generally circumferential section that is shaped so as to define: (i) a plurality of first struts, (ii) a plurality of second struts, and (iii) a plurality of fixation members, which are coupled to respective ones of the first struts, wherein, when the stent-graft is in the deployment state, the fixation members are not radially-constrained by the second struts and protrude radially outward; and


loading the stent-graft into an external delivery sheath of a delivery catheter, such that the stent-graft assumes a radially-compressed delivery state, in which the second struts radially constrain the fixation members, respectively, from protruding radially outward.


For some applications, loading includes: positioning the second struts and the fixation members such that the second struts radially constrain the fixation members, respectively; and, thereafter, loading the fixation members into the external delivery sheath.


For some applications, providing the stent-graft includes providing the stent-graft in which a first subset of the fixation members extend in a counterclockwise direction from the respective first struts, and a second subset of the fixation members extend in a clockwise direction from the respective first struts. For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members of the first subset and the fixation members of the second subset are arranged alternatingly around the circumferential section.


For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members.


For some applications, providing the stent-graft includes providing the stent-graft in which:


the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section and the first and the second struts, and is shaped such that pairs of the first and the second struts are coupled at respective peaks of the circumferential band,


the fixation members are shaped so as to define respective bases at respective first ends thereof and respective sharp tips at respective second ends thereof, which bases are coupled to the respective ones of the first struts, and


the second struts (a) radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, and (b) do not radially constrain the tips when the stent-graft is in the radially-expanded deployment state.


For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members. For some applications, providing the stent-graft includes providing the stent-graft in which the peaks are curved. For some applications, providing the stent-graft includes providing the stent-graft in which the bases of the fixation members are coupled to the respective first struts within a distance of the respective peaks, which distance equals 50% of a length of the first struts.


For some applications, providing the stent-graft includes providing the stent-graft in which a first subset of the pairs of struts are configured such that the first struts thereof are disposed clockwise with respect to the second struts thereof, and a second subset of the pairs of struts are configured such that the first struts thereof are disposed counterclockwise with respect to the second struts thereof. For some applications, providing the stent-graft includes providing the stent-graft in which the pairs of struts of the first subset and the pairs of struts of the second subset are arranged alternatingly around the circumferential section.


For some applications, providing the stent-graft includes providing the stent-graft in which the second struts are shaped so as to define respective lateral protrusions, and the lateral protrusions radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, such that the second struts radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state.


For any of the applications described above, providing the stent-graft may include providing the stent-graft in which, when the stent-graft is in the radially-compressed delivery state, (a) a first one of the fixation members is bent laterally in a clockwise direction, and (b) a second one of the fixation members is bent laterally in a counterclockwise direction.


For any of the applications described above, providing the stent-graft may include providing the stent-graft in which, when the stent-graft is in the radially-compressed delivery state, (a) a plurality of first ones of the fixation members are bent laterally in a clockwise direction, (b) a plurality of second ones of the fixation members are bent laterally in a counterclockwise direction, and the first ones of the fixation members and the second ones of the fixation members are arranged alternatingly around the circumferential section.


For any of the applications described above, providing the stent-graft may include providing the stent-graft in which the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.


For any of the applications described above, providing the stent-graft may include providing the stent-graft in which the circumferential section is disposed at an end of the stent-graft.


For any of the applications described above, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped so as to define respective barbs.


There is yet additionally provided, in accordance with an application of the present invention, a method including:


providing an endovascular stent-graft, which is configured to assume a radially-compressed delivery state and a radially-expanded deployment state, and which includes (a) a flexible stent member, and (b) a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member, wherein the stent member includes a generally circumferential section that is shaped so as to define: (i) a plurality of first struts, (ii) a plurality of second struts, and (iii) a plurality of fixation members, which are coupled to respective ones of the first struts;


transvascularly introducing the stent-graft into a blood vessel of a human subject while the stent-graft is in the radially-compressed delivery state, in which the second struts radially constrain the fixation members, respectively, from protruding radially outward; and


thereafter, transitioning the stent-graft in the blood vessel to the radially-expanded deployment state, in which the fixation members are not radially-constrained by the second struts and protrude radially outwardly and engage a wall of the blood vessel.


For some applications, providing the stent-graft includes providing the stent-graft in which the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.


For some applications, providing the stent-graft includes providing the stent-graft in which a first subset of the fixation members extend in a counterclockwise direction from the respective first struts, and a second subset of the fixation members extend in a clockwise direction from the respective first struts. For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members of the first subset and the fixation members of the second subset are arranged alternatingly around the circumferential section.


For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members.


For some applications, providing the stent-graft includes providing the stent-graft in which:


the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section and the first and the second struts, and is shaped such that pairs of the first and the second struts are coupled at respective peaks of the circumferential band,


the fixation members are shaped so as to define respective bases at respective first ends thereof and respective sharp tips at respective second ends thereof, which bases are coupled to the respective ones of the first struts, and


the second struts (a) radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, and (b) do not radially constrain the tips when the stent-graft is in the radially-expanded deployment state.


For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped as tabs that are cut from the respective first struts on all sides of the tabs except at respective bases of the of fixation members.


For some applications, providing the stent-graft includes providing the stent-graft in which the peaks are curved.


For some applications, providing the stent-graft includes providing the stent-graft in which the bases of the fixation members are coupled to the respective first struts within a distance of the respective peaks, which distance equals 50% of a length of the first struts.


For some applications, providing the stent-graft includes providing the stent-graft in which a first subset of the pairs of struts are configured such that the first struts thereof are disposed clockwise with respect to the second struts thereof, and a second subset of the pairs of struts are configured such that the first struts thereof are disposed counterclockwise with respect to the second struts thereof. For some applications, providing the stent-graft includes providing the stent-graft in which the pairs of struts of the first subset and the pairs of struts of the second subset are arranged alternatingly around the circumferential section.


For some applications, providing the stent-graft includes providing the stent-graft in which the second struts are shaped so as to define respective lateral protrusions, and the lateral protrusions radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state, such that the second struts radially constrain the tips, respectively, from protruding radially outward when the stent-graft is in the radially-compressed delivery state.


For some applications, providing the stent-graft includes providing the stent-graft in which, when the stent-graft is in the radially-compressed delivery state, (a) a first one of the fixation members is bent laterally in a clockwise direction, and (b) a second one of the fixation members is bent laterally in a counterclockwise direction.


For some applications, providing the stent-graft includes providing the stent-graft in which, when the stent-graft is in the radially-compressed delivery state, (a) a plurality of first ones of the fixation members are bent laterally in a clockwise direction, (b) a plurality of second ones of the fixation members are bent laterally in a counterclockwise direction, and the first ones of the fixation members and the second ones of the fixation members are arranged alternatingly around the circumferential section.


For some applications, providing the stent-graft includes providing the stent-graft in which the circumferential section is disposed at an end of the stent-graft.


For some applications, providing the stent-graft includes providing the stent-graft in which the fixation members are shaped so as to define respective barbs.


For some applications, transvascularly introducing includes transvascularly introducing the stent-graft into the blood while the stent-graft is positioned in an external delivery sheath of a delivery catheter in the radially-compressed delivery state, and transitioning the stent-graft to the radially-expanded deployment state in the blood vessel includes deploying the stent-graft from the external delivery sheath.


There is also provided, in accordance with an application of the present invention, a method including:


providing an endovascular stent-graft in a radially-expanded deployment state, which stent-graft includes (a) a flexible stent member, and (b) a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member, wherein the stent member includes a generally circumferential section that is shaped so as to define at least one fixation member having a sharp tip, and wherein, when the stent-graft is in the deployment state, the fixation members protrudes radially outward; and


loading the stent-graft into an external delivery sheath of a delivery catheter, such that the stent-graft assumes a radially-compressed delivery state, in which at least a portion of the fixation member is convex as viewed from outside the stent-graft, such that the sharp tip points radially inward.


For some applications, providing the stent-graft includes providing the stent-graft in which the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.


For some applications, providing the stent-graft includes providing the stent-graft in which the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section, which is shaped so as to define at least one first strut and at least one second strut, which are coupled at a peak of the circumferential band, and the fixation member is shaped so as to define a base at a first end thereof and the sharp tip at a second end thereof, which base is coupled to the first strut.


There is further provided, in accordance with an application of the present invention, a method including:


providing an endovascular stent-graft, which is configured to assume a radially-compressed delivery state and a radially-expanded deployment state, and which includes (a) a flexible stent member, and (b) a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member, wherein the stent member includes a generally circumferential section that is shaped so as to define at least one fixation member having a sharp tip;


transvascularly introducing the stent-graft into a blood vessel of a human subject while the stent-graft is in the radially-compressed delivery state, in which at least a portion of the fixation member is convex as viewed from outside the stent-graft, such that the sharp tip points radially inward; and


thereafter, transitioning the stent-graft to the radially-expanded deployment state in the blood vessel, such that the fixation member protrudes radially outwardly.


For some applications, providing the stent-graft includes providing the stent-graft in which the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.


For some applications, providing the stent-graft includes providing the stent-graft in which (a) the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section, which is shaped so as to define at least one first strut and at least one second strut, which are coupled at a peak of the circumferential band, and (b) the fixation member is shaped so as to define a base at a first end thereof and the sharp tip at a second end thereof, which base is coupled to the first strut.


The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of an endovascular stent-graft during several stages of loading the stent-graft into an external delivery sheath of a delivery catheter, in accordance with the prior art;



FIGS. 2A-C are schematic illustrations of an endovascular stent-graft during several stages of loading the stent-graft into an external delivery sheath of a delivery catheter, in accordance with an application of the present invention;



FIGS. 3A-C are schematic illustrations of the stent-graft of FIGS. 2A-C during several stages of deployment of the stent-graft from the external delivery sheath, in accordance with an application of the present invention;



FIGS. 4A-C are schematic illustrations of a portion of a circumferential band of the stent-graft of FIGS. 2A-C and 3A-C in several states, respectively, in accordance with an application of the present invention;



FIGS. 5A-B are schematic illustrations of a portion of the circumferential band of FIGS. 2A-C and 3A-C in two states, respectively, in accordance with an application of the present invention;



FIGS. 6A-C are schematic illustrations of another configuration the stent-graft of FIGS. 2A-C and 3A-C during several stages of deployment of the stent-graft from the external delivery sheath, in accordance with an application of the present invention;



FIG. 7 is a schematic illustration of a portion of the stent-graft of FIGS. 2A-C and 3A-C, in accordance with an application of the present invention;



FIGS. 8A-B are schematic illustrations of another configuration of a portion of a circumferential band of the stent-graft 2A-C and 3A-C in several states, respectively, in accordance with an application of the present invention;



FIGS. 9A-B are schematic illustrations of another stent-graft during two stages of deployment of the stent-graft from an external delivery sheath of a delivery catheter, in accordance with an application of the present invention; and



FIGS. 10A-C are schematic side views of a single one of the fixation members and a single one of the first struts of the stent-graft of FIGS. 9A-B, in several deployment states, in accordance with an application of the present invention.





DETAILED DESCRIPTION OF APPLICATIONS

Reference is made to FIGS. 2A-C and 3A-C. FIGS. 2A-C are schematic illustrations of an endovascular stent-graft 10 during several stages of loading the stent-graft into an external delivery sheath 20 of a delivery catheter of a delivery system, in accordance with an application of the present invention. FIGS. 3A-C are schematic illustrations of stent-graft 10 during several stages of deployment of the stent-graft from external delivery sheath 20, in accordance with an application of the present invention.


Stent-graft 10 comprises a flexible stent member 24 and a tubular fluid flow guide 26. Stent-graft 10 is configured to assume (a) a radially-compressed delivery state, typically when the body is positioned in sheath 20, such as shown in FIGS. 2C and 3A, and (b) a radially-expanded deployment state, when not positioned in the sheath. FIGS. 2A and 3C show a distal portion of the body in the radially-expanded state. FIGS. 2B and 3B show a distal portion of the body partially radially expanded. FIGS. 2A-C and 3A-C also show a distal tip 30 and an inner shaft 32 of the delivery system.


Typically, external delivery sheath 20 comprises a polymer. For some applications, external delivery sheath 20 comprises an extruded polymer tube, encapsulating a metallic (or other type of very resilient polymer wire, such as Kevlar™) wire helical coil, and/or braid, which provide kink resistance, and/or longitudinal straight wires for prevention of elongation of the sheath. Optionally, an internal low-friction layer, e.g., comprising PTFE, is provided as an inner lining of the external sheath, in order to reduce frictional forces between the stent-graft and the external delivery sheath.


Fluid flow guide 26 is attached to stent member 24, such as by suturing or stitching. The flexible stent member may be attached to an internal and/or an external surface of the fluid flow guide. Flexible stent member 24 comprises a plurality of structural stent elements 28, which are either indirectly connected to one another by the fluid flow guide (as shown), or interconnected with one another (configuration not shown). Optionally, a portion of the structural stent elements may be attached (e.g., sutured) to the internal surface of the fluid flow guide, and another portion to the external surface of the fluid flow guide. For some applications, structural stent elements 24 comprise a metal. Alternatively or additionally, the structural stent elements comprise a self-expanding material, such that stent-graft 10 is self-expandable. Alternatively or additionally, the structural stent elements comprise one or more metallic alloys, such as one or more superelastic metal alloys, a shape memory metallic alloy, and/or Nitinol. For some applications, the stent-graft is heat-set to assume the radially-expanded state.


Fluid flow guide 26 comprises a graft material, i.e., at least one biologically-compatible substantially blood-impervious flexible sheet. The flexible sheet may comprise, for example, a polyester, a polyethylene (e.g., a poly-ethylene-terephthalate), a polymeric film material (e.g., polytetrafluoroethylene), a polymeric textile material (e.g., woven polyethylene terephthalate (PET)), natural tissue graft (e.g., saphenous vein or collagen), Polytetrafluoroethylene (PTFE), ePTFE, Dacron, or a combination of two or more of these materials. The graft material optionally is woven.


Typically, stent-graft 10 is configured to self-expand from the delivery state to the deployment state, such as shown in FIGS. 3A-C. (FIG. 3C shows a distal portion of the stent-graft radially expanded in the deployment state; the remainder of the stent-graft transitions to the deployment state when external delivery sheath 20 is subsequently fully withdrawn from the stent-graft.) For example, stent member 24 may be heat-set to cause stent-graft 10 to self-expand from the delivery state to the deployment state.


Fluid flow guide 26 is attached to stent member 24 such that at least a generally circumferential section 40 of the stent member is at least partially, e.g., completely, not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state. Typically, the circumferential section is disposed at an end of stent-graft 10, such as a distal end of the stent-graft as shown in FIGS. 2A-C and 3A-C.


For some applications, circumferential section 40 is shaped so as to define a plurality of first struts 42 and a plurality of second struts 43. Circumferential section 40 is shaped so as to further define a plurality of fixation members 44, which are coupled to respective ones of first struts 42. (The fixation members may be “coupled” to the struts by fabricating the fixation members and struts from a single piece, e.g., from a rectangular blank by removing missing portions by any standard means such as punching, stamping, milling, or laser cutting; alternatively, the fixation members may comprises separate pieces, which are fixed to the struts during fabrication.) For some applications, one or more (e.g., all) of fixation members 44 are shaped so as to define respective barbs, typically including sharp tips 45 for penetrating tissue, e.g., of an inner wall of a blood vessel. As used in the present application, including in the claims, a “barb” means an element having at least one free sharp end, which is sharp enough to enter the aortic wall. The element may or may not define a sharp projection extending backward from the sharp end for preventing easy extraction. Fixation members 44 are shown as narrowing toward tips 45 in FIGS. 2A-C and 3A-C (and FIGS. 4A-C, 5A-B, and 6A-C, described hereinbelow). Alternatively, the width of the fixation members remains generally constant along at least a portion of, e.g., all of, the length thereof, e.g., similar to the configuration shown in FIGS. 8A-B.


For some applications, as shown in FIGS. 2A-B and 3B-C (and FIGS. 4A-C, 5A-B, and 6A-C, described hereinbelow) circumferential section 40 is configured such that:

    • when stent-graft 10 is in the delivery state, second struts 43 radially constrain fixation members 44, respectively, including sharp tips 45, respectively, from protruding radially outward, and
    • when stent-graft 10 is in the deployment state, fixation members 44 are not radially-constrained by second struts 43 and protrude radially outward. In this state, tips 45 of fixation members 44 typically extend in respective directions that define angles of between 40 and 90 degrees with an external surface of stent-graft 10. Typically, fixation member 44 are heat-set to protrude radially outward when not confined by second struts 43.


When the stent-graft is in the delivery state, radially-constrained fixation members 44 are unlikely to penetrate, tear, or otherwise damage external delivery sheath 20. When the stent-graft is in the deployment state, fixation members 44 are configured to penetrate the inner wall of a tubular body part, such as a blood vessel, in order to help anchor stent-graft 10 to the blood vessel.


As mentioned above, when stent-graft 10 is in the delivery state, second struts 43 radially constrain respective fixation members 44 from protruding radially outward. Typically, second struts 43 are closer to first struts 42 when stent-graft 10 is in the delivery state (and the stent-graft is thus radially compressed and consequently also circumferentially compressed) than when stent-graft 10 is in the deployment state. As a result, for some applications, second struts 43 are close enough to first struts 42 to come in contact with respective portions of fixation members 44 and block the fixation members from protruding radially outward. Fixation members 44 are disposed radially inward of second struts 43, resting against respective surfaces of second struts 43 that face radially inward, such as shown in FIGS. 2B, 3B, 4B-C, and 6B. In contrast, when stent-graft 10 is in the deployment state, second struts 43 are too far from first struts 42 to come in contact with respective fixation members 44, which are thus free to expand radially outward, such as shown in FIGS. 2A, 3C, 4A, and 6C.


In some applications of the present invention, a method is provided for loading stent-graft 10 into external delivery sheath 20. Stent-graft 10 is provided in the radially-expanded deployment state, and loaded into external delivery sheath 20, such that the stent-graft assumes the radially-compressed delivery state, in which second struts 43 radially constrain fixation members 44, respectively, from protruding radially outward. Typically, fixation members 44 are loaded into the external delivery sheath after the second struts and fixation members have been positioned such that the second struts radially constrain the fixation members, as shown in FIG. 2B. For some applications, a jig (not shown) may be used to push fixation members 44 radially inward and optionally also laterally, during the crimping and constraining process. The stent-graft may be held in a partially radially-compressed state at this point in the loading procedure, as shown in FIG. 2B.


For some applications, such as shown in FIGS. 2A-B and 3B-C (and FIGS. 4A-C, 5A-B, and 6A-C, described hereinbelow), stent member 24 is shaped so as to define a generally circumferential band 50, which includes circumferential section 40 and first and second struts 42 and 43. Circumferential band 50 is shaped such that pairs 52 of first and second struts 42 and 43 are coupled at respective peaks 54 of circumferential band 50. As used in the present application, including the claims, a “pair” consists of exactly two elements; each pair 52 consists of exactly one of first struts 42 and exactly one of second struts 43. Typically, fixation members 44 are shaped so as to define respective bases 60 at respective first ends thereof and respective sharp tips 45 at respective second ends thereof. Bases 60 are coupled to respective ones of first struts 42. For some applications, bases 60 are coupled to respective first struts 42 within a distance of the respective peaks, which distance equals 50% of a length of first struts 42. For some applications, peaks 54 are curved.


Reference is now made to FIGS. 4A-C, which are schematic illustrations of a portion of circumferential band 50 in several states, respectively, in accordance with an application of the present invention. FIGS. 4A-C show the portion of circumferential band 50 viewed from outside the stent-graft. FIG. 4A shows circumferential band 50 when the stent-graft is in the deployment state, in which fixation members 44 are not radially-constrained by respective second struts 43 and protrude radially outward. FIGS. 4B and 4C show stent-graft 10 at two levels of radial compression. One of these levels of compression, or an intermediary level of compression, may occur in the delivery state, depending on the inner diameter of external delivery sheath 20 and the crossing profile of the stent-graft. At these levels of compression, one or more second struts 43 of circumferential section 40 radially constrain respective fixation members 44 from protruding radially outward.


Reference is now made to FIGS. 5A-B, which are schematic illustrations of a portion of circumferential band 50 in two states, respectively, in accordance with an application of the present invention. FIGS. 5A-B show the portion of circumferential band 50 viewed from outside the stent-graft. FIG. 5A shows circumferential band 50 when the stent-graft is in the deployment state, in which fixation members 44 are not radially-constrained by respective second struts 43 and protrude radially outward. FIG. 5B shows circumferential band 50 when second struts 43 radially constrain respective fixation members 44 from protruding radially outward constrained by respective and protrude radially outward, such as when the stent-graft is in the deployment state. In this configuration, second struts 43 are shaped so as to define respective lateral protrusions 80. Lateral protrusions 80 constrain respective ones of tips 45 from protruding radially outward, and thus possibly damaging the inner surface of the external delivery sheath, when the stent-graft is in the radially-compressed delivery state, such that second struts 43 constrain the respective tips from protruding radially outward when the stent-graft is in the radially-compressed delivery state.


Typically, second struts 43 are closer to first struts 42 when stent-graft 10 is in the delivery state than when stent-graft 10 is in the deployment state. As a result, for some applications, second struts 43 are close enough to first struts 42 for lateral protrusions to come in contact with respective portions of fixation members 44 and block the fixation members from protruding radially outward. Fixation members 44 are disposed radially inward of second struts 43, resting against respective surfaces of lateral protrusions 80 that face radially inward, as shown in FIG. 5B. In contrast, when stent-graft 10 is in the deployment state, second struts 43 are too far from first struts 42 for lateral protrusions 80 to come in contact with respective fixation members 44, which are thus free to expand radially outward, such as shown in FIG. 5A.


For some applications, one or more of lateral protrusions 80 comprise respective radiopaque markers 82, which may aid in properly positioning and/or rotationally aligning the stent-graft during deployment and/or implantation.


Reference is again made to FIGS. 2A-C, 3A-C, 4A-C, and 5A-B, as well as to FIGS. 6A-C, which are schematic illustrations of another configuration stent-graft 10 during several stages of deployment of the stent-graft from external delivery sheath 20, in accordance with an application of the present invention. In the configurations shown in FIGS. 2A-C, 3A-C, 4A-C, and 5A-B, fixations members 44 are radially outwardly curved when in the deployment state. Alternatively, in the configuration shown in FIGS. 6A-C, fixation members 44 are flat when in the deployment state. In this configuration, fixation members 44 typically articulate with respect to respective first struts 42 at the respective bases 60 of the fixation members, at the sites of coupling with first struts 42. This flat configuration may be implemented with any of the configurations described herein, including with reference to FIGS. 4A-C and FIGS. 5A-B.


Reference is again made to FIGS. 2A-C, 3A-C, 4A-C, 5A-B, and 6A-C, as well as to FIG. 7, which is a schematic illustration of a portion of stent-graft 10, in accordance with an application of the present invention. For some applications, such as shown in these figures, a first subset of fixation members 44 (labeled 44A) extend in a counterclockwise direction (e.g., as viewed from a distal end of the stent-graft, i.e., from above in FIG. 7) from their respective first struts 42, and a second subset of fixation members 44 (labeled 44B) extend in a clockwise direction (e.g., as viewed from a distal end of the stent-graft, i.e., from above in FIG. 7) from their respective first struts 42. (When the stent-graft is in the deployment state, the direction of the fixation members also includes a radially-outward component, i.e., the fixation members protrude radially outward.) Thus, a first subset 90A of pairs 52 of struts are configured such that first struts 42 thereof are disposed clockwise (e.g., as viewed from a distal end of the stent-graft) with respect to second struts 43 thereof, and a second subset 90B of pairs 52 of struts are configured such that first struts 42 thereof are disposed counterclockwise (e.g., as viewed from a distal end of the stent-graft) with respect to second struts 43 thereof.


For some applications, fixation members 44A and 44B are arranged alternatingly around circumferential section 40, i.e., fixation member 44A, fixation member 44B, fixation member 44A, fixation member 44B, etc. For these applications, pairs 52 of struts 42 and 43 of first subset 90A and pairs 52 of struts 42 and 43 of second subset 90B are arranged alternatingly around circumferential section 40.


This arrangement of the fixation members may help better anchor stent-graft 10 to the wall of the blood vessel. For example, blood flow in tortuous blood vessels may cause some rotation of the blood vessel. Because some fixation members 44 point in each direction (clockwise and counterclockwise), a subset of the fixation members anchors better regardless of the direction in which the blood vessel rotates (clockwise or counterclockwise).


Reference is now made to FIGS. 8A-B, which are schematic illustrations of another configuration of a portion of circumferential band 50 in two respective states, in accordance with an application of the present invention. FIGS. 8A-B show the portion of circumferential band 50 viewed from outside the stent-graft. This configuration may be used in combination with the configurations described hereinabove with reference to FIGS. 1A-C, 2A-C, and/or 6A-C. In this configuration, circumferential band 50 is shaped such that pairs 152 of first and second struts 142 and 143 are coupled at respective peaks 154 of circumferential band 50. Fixation members 144 are coupled to respective ones of first struts 142.



FIG. 8A shows circumferential band 50 when stent-graft 10 is in the delivery state, in which second strut 143 radially constrains fixation member 144 from protruding radially outward. FIG. 8B shows circumferential band 50 when the stent-graft is in the deployment state, in which fixation members 144 are not radially-constrained by respective second struts 143 and protrude radially outward.


In this configuration, fixation member 144 is shaped as a tab that is cut from first strut 142 on all sides of the tab except at a base 160 thereof that is coupled to first strut 142. For example, the tab may be manufactured by making a U- or V-shaped cut in first strut 142. Fixation member 144 may be generally flat, as shown in FIGS. 8A-B, or curved when in the deployment state (configuration not shown). Typically, fixation member 144 is heat-set to assume the state shown in FIG. 8B. If the tab is straightened such that a surface thereof is parallel with a surface of first strut 142, the tab is surrounded on all sides thereof by first strut 142.


Typically, second struts 143 are closer to first struts 142 when the stent-graft is in the delivery state than when the stent-graft is in the deployment state. As a result, for some applications, second struts 143 are close enough to first struts 142 to come in contact with respective portions of fixation members 144 and block the fixation members from protruding radially outward. Fixation members 144 are disposed radially inward of second struts 143, resting against respective surfaces of second struts 143 that face radially inward, such as shown in FIG. 8A. In contrast, when the stent-graft is in the deployment state, second struts 143 are too far from first struts 142 to come in contact with respective fixation members 144, which are thus free to expand radially outward, such as shown in FIG. 8B.


Reference is now made to FIGS. 9A-B, which are schematic illustrations of a stent-graft 210 during two stages of deployment of the stent-graft from a external delivery sheath 220, in accordance with an application of the present invention. FIGS. 9A and 9B are shown in different scales, with greater enlargement of the device in FIG. 9A than in FIG. 9B; sheath 220 is in practice exactly or approximately the same size in FIGS. 9A and 9B. Stent-graft 210 comprises a flexible stent member 224 and a tubular fluid flow guide 226. Stent-graft 210 is configured to assume (a) a radially-compressed delivery state, typically when the body is positioned in sheath 220, such as shown in FIG. 9A, and (b) a radially-expanded deployment state, when not positioned in the sheath. FIG. 9B shows a distal portion of the body in the radially-expanded state. FIG. 9A also shows a distal tip 230 and an inner shaft 232 of the delivery system.


Fluid flow guide 226 is attached to stent member 224, such as described hereinabove with reference to FIGS. 2A-C and 3A-C regarding fluid flow guide 26 and stent member 24. Fluid flow guide 226 comprises a graft material, such as described hereinabove with reference to FIGS. 2A-C and 3A-C regarding fluid flow guide 26. Typically, stent-graft 210 is configured to self-expand from the delivery state to the deployment state, such as shown in FIGS. 9A-B. (FIG. 9B shows a distal portion of the stent-graft radially expanded in the deployment state; the remainder of the stent-graft transitions to the deployment state when external delivery sheath 220 is subsequently fully withdrawn from the stent-graft.) For example, stent member 224 may be heat-set to cause stent-graft 210 to self-expand from the delivery state to the deployment state.


Fluid flow guide 226 is attached to stent member 224 such that at least a generally circumferential section 240 of the stent member is at least partially, e.g., completely, not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state. Typically, the circumferential section is disposed at an end of stent-graft 210, such as a distal end of the stent-graft as shown in FIGS. 9A-B.


Circumferential section 240 is shaped so as to define a plurality of first struts 242 and a plurality of second struts 243. Circumferential section 240 is shaped so as to further define a plurality of fixation members 244, which are coupled to respective ones of first struts 242. (The fixation members may be “coupled” to the struts by fabricating the fixation members and struts from a single piece, e.g., from a rectangular blank by removing missing portions by any standard means such as punching, stamping, milling, or laser cutting; alternatively, the fixation members may comprises separate pieces, which are fixed to the struts during fabrication.) For some applications, one or more (e.g., all) of fixation members 244 are shaped so as to define respective barbs, typically including sharp tips 245 for penetrating tissue, e.g., of an inner wall of a blood vessel. As used in the present application, including in the claims, a “barb” means an element having at least one free sharp end, which is sharp enough to enter the aortic wall. The element may or may not define a sharp projection extending backward from the sharp end for preventing easy extraction.


Reference is still made to FIGS. 9A-B, and is additionally made to FIGS. 10A-C, which are schematic side views of a single one of fixation members 244 and a single one of first struts 242, in several deployment states, in accordance with an application of the present invention. Each of these figures shows a single one of first struts 242 and a single one of fixation members 244 coupled thereto in side view, in which the radially-outward direction is the rightward direction in FIGS. 10A-C (second struts are directly behind first struts 242, and thus cannot be seen in the figures).


Fixation member 244 is shaped so as to define a base 260 at a first end thereof and sharp tip 245 at a second end thereof. Base 260 is coupled to first strut 242. For some applications, base 260 is coupled to first strut 242 within a distance of a peak 254 of the pair including the first and second struts, which distance equals 50% of a length of the first strut. For some applications, peak 254 is curved.



FIGS. 9A and 10A show first strut 242 and fixation member 244 when stent-graft 210 is in the radially-compressed delivery state. In this state, at least a portion of fixation member 244 is convex as viewed from outside stent-graft 210, such that sharp tip 245 points radially inward (i.e., to the left in FIG. 10A, toward a central longitudinal axis of stent-graft 210). Fixation member 244 is bent radially inward. Typically, tip 245 is positioned more radially inward than is first strut 242.


When stent-graft 210 is in the radially-expanded deployment state, as shown in FIGS. 9B and 10C, fixation member 244 and sharp tip 245 protrude radially outward (i.e., to the right in FIG. 10C, away from a central longitudinal axis of stent-graft 210), typically beyond all other portions of fixation member 244 and first strut 242.


When the stent-graft is in the delivery state, radially-constrained fixation members 44 are unlikely to penetrate, tear, or otherwise damage external delivery sheath 220. When the stent-graft is in the deployment state, fixation members 244 are configured to penetrate the inner wall of a tubular body part, such as a blood vessel, in order to help anchor stent-graft 210 to the blood vessel.


Reference is made to FIGS. 2A-10C. For some applications, during a first stage of an implantation procedure, the stent-graft is transvascularly (typically percutaneously) introduced into a blood vessel of a human subject, such as an aorta, while the stent-graft is positioned in external delivery sheath 20 in the radially-compressed delivery state. The external delivery sheath is advanced to a desired deployment location in the blood vessel, such at or slightly above the renal arteries. The external delivery sheath is proximally withdrawn, releasing the stent-graft in the aorta. As the stent-graft is released, the stent-graft transitions to the radially-expanded deployment state in the blood vessel. In this state, the fixation members protrude radially outward and enter tissue of the internal wall of the blood vessel, helping to anchor the stent-graft in place.


Optionally, after the stent-graft has radially expanded, the surgeon rotates the stent-graft slightly, in order to better engage the fixation members with the tissue of the vessel wall. Alternatively or additionally, for some applications, a balloon is used to radially expand the stent-graft, and the balloon is configured to inflate with a rotational vector.


As used in the present application, including in the claims, “tubular” means having the form of an elongated hollow object that defines a conduit therethrough. A “tubular” structure may have varied cross-sections therealong, and the cross-sections are not necessarily circular. For example, one or more of the cross-sections may be generally circular, or generally elliptical but not circular, or circular.


The scope of the present invention includes embodiments described in the following applications, which are assigned to the assignee of the present application and are incorporated herein by reference. In an embodiment, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:

    • PCT Application PCT/IL2008/000287, filed Mar. 5, 2008, which published as PCT Publication WO 2008/107885 to Shalev et al., and U.S. application Ser. No. 12/529,936 in the national stage thereof, which published as US Patent Application Publication 2010/0063575 to Shalev et al.
    • U.S. Provisional Application 60/892,885, filed Mar. 5, 2007
    • PCT Application PCT/IL2007/001312, filed Oct. 29, 2007, which published as PCT Publication WO/2008/053469 to Shalev, and U.S. application Ser. No. 12/447,684 in the national stage thereof, which published as US Patent Application Publication 2010/0070019 to Shalev
    • U.S. Provisional Application 60/991,726, filed Dec. 2, 2007
    • PCT Application PCT/IL2008/001621, filed Dec. 15, 2008, which published as PCT Publication WO 2009/078010, and U.S. application Ser. No. 12/808,037 in the national stage thereof, which published as US Patent Application Publication 2010/0292774
    • U.S. Provisional Application 61/219,758, filed Jun. 23, 2009
    • U.S. Provisional Application 61/221,074, filed Jun. 28, 2009
    • PCT Application PCT/IB2010/052861, filed Jun. 23, 2010, which published as PCT Publication WO 2010/150208, and U.S. application Ser. No. 13/380,278 in the national stage thereof, now U.S. Pat. No. 8,870,938
    • PCT Application PCT/IL2010/000549, filed Jul. 8, 2010, which published as PCT Publication WO 2011/004374
    • PCT Application PCT/IL2010/000564, filed Jul. 14, 2010, which published as PCT Publication WO 2011/007354, and U.S. application Ser. No. 13/384,075 in the national stage thereof, which published as US Patent Application Publication 2012/0179236
    • PCT Application PCT/IL2010/000917, filed Nov. 4, 2010, which published as PCT Publication WO 2011/055364
    • PCT Application PCT/IL2010/000999, filed Nov. 30, 2010, which published as PCT Publication WO 2011/064782
    • PCT Application PCT/IL2010/001018, filed Dec. 2, 2010, which published as PCT Publication WO 2011/067764
    • PCT Application PCT/IL2010/001037, filed Dec. 8, 2010, which published as PCT Publication WO 2011/070576
    • PCT Application PCT/IL2010/001087, filed Dec. 27, 2010, which published as PCT Publication WO 2011/080738
    • PCT Application PCT/IL2011/000135, filed Feb. 8, 2011, which published as PCT Publication WO 2011/095979
    • PCT Application PCT/IL2011/000801, filed Oct. 10, 2011, which published as PCT Publication WO 2012/049679
    • U.S. application Ser. No. 13/031,871, filed Feb. 22, 2011, which published as US Patent Application Publication 2011/0208289
    • U.S. Provisional Application 61/496,613, filed Jun. 14, 2011
    • U.S. Provisional Application 61/505,132, filed Jul. 7, 2011
    • U.S. Provisional Application 61/529,931, filed Sep. 1, 2011
    • U.S. Provisional Application 61/529,931, filed Sep. 1, 2011
    • PCT Application PCT/IL2012/000148, filed Apr. 4, 2012, which published as PCT Publication WO 2013/030818


It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. Apparatus comprising an endovascular stent-graft, which is configured to assume a radially-compressed delivery state and a radially-expanded deployment state, and which comprises: a flexible stent member, which comprises a plurality of struts, which are shaped so as to define a generally circumferential section;a tubular fluid flow guide, which comprises a graft material, and which is attached to the stent member; andat least one fixation member shaped so as to define a base at a first end thereof and a sharp tip at a second end thereof, wherein the base is coupled to one of the struts that are shaped so as to define the generally circumferential section,wherein, when the stent-graft is in the radially-expanded deployment state, the fixation member protrudes radially outward, andwherein, when the stent-graft is in the radially-compressed delivery state, at least a portion of the fixation member between the base and the sharp tip is convex as viewed from outside the stent-graft, such that the sharp tip points radially inward.
  • 2. The apparatus according to claim 1, wherein the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section, andwherein the plurality of struts that are shaped so as to define the generally circumferential section include (a) the one of the struts to which the base is coupled and (b) a second strut, which are coupled at a peak of the circumferential band.
  • 3. The apparatus according to claim 1, wherein the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.
  • 4. The apparatus according to claim 1, wherein, when the stent-graft is in the radially-compressed delivery state, the sharp tip is positioned more radially inward than is the one of the struts to which the base is coupled.
  • 5. The apparatus according to claim 1, wherein, when the stent-graft is in the radially-expanded deployment state, a portion of the fixation member between the base and the sharp tip is convex as viewed from outside the stent-graft.
  • 6. A method comprising: providing an endovascular stent-graft in a radially-expanded deployment state, which stent-graft includes (a) a flexible stent member, which includes a plurality of struts, which are shaped so as to define a generally circumferential section, (b) a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member, and (c) at least one fixation member shaped so as to define a base at a first end thereof and a sharp tip at a second end thereof, wherein the base is coupled to one of the struts that are shaped so as to define the generally circumferential section, and wherein, when the stent-graft is in the deployment state, the fixation members protrudes radially outward; andloading the stent-graft into an external delivery sheath of a delivery catheter, such that the stent-graft assumes a radially-compressed delivery state, in which at least a portion of the fixation member between the base and the sharp tip is convex as viewed from outside the stent-graft, such that the sharp tip points radially inward.
  • 7. The method according to claim 6, wherein providing the stent-graft comprises providing the stent-graft in which the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.
  • 8. The method according to claim 6, wherein providing the stent-graft comprises providing the stent-graft in which the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section, andwherein the plurality of struts that are shaped so as to define the generally circumferential section include (a) the one of struts to which the base is coupled and (b) a second strut, which are coupled at a peak of the circumferential band.
  • 9. The method according to claim 6, wherein loading comprises loading the stent-graft into the external delivery sheath such that the stent-graft assume the radially-compressed delivery state, in which the sharp tip is positioned more radially inward than is the one of the struts to which the base is coupled.
  • 10. The method according to claim 6, wherein providing the stent-graft comprises providing the stent-graft in the radially-expanded deployment state in which a portion of the fixation member between the base and the sharp tip is convex as viewed from outside the stent-graft.
  • 11. A method comprising: providing an endovascular stent-graft, which is configured to assume a radially-compressed delivery state and a radially-expanded deployment state, and which includes (a) a flexible stent member, which includes a plurality of struts, which are shaped so as to define a generally circumferential section, (b) a tubular fluid flow guide, which includes a graft material, and which is attached to the stent member, and (c) at least one fixation member shaped so as to define a base at a first end thereof and a sharp tip at a second end thereof, wherein the base is coupled to one of the struts that are shaped so as to define the generally circumferential section;transvascularly introducing the stent-graft into a blood vessel of a human subject while the stent-graft is in the radially-compressed delivery state, in which at least a portion of the fixation member between the base and the sharp tip is convex as viewed from outside the stent-graft, such that the sharp tip points radially inward; andthereafter, transitioning the stent-graft to the radially-expanded deployment state in the blood vessel, such that the fixation member protrudes radially outwardly.
  • 12. The method according to claim 11, wherein providing the stent-graft comprises providing the stent-graft in which the circumferential section is at least partially not covered by the fluid flow guide at least when the stent-graft is in the radially-expanded deployment state.
  • 13. The method according to claim 11, wherein providing the stent-graft comprises providing the stent-graft in which (a) the stent member is shaped so as to define a generally circumferential band, which includes the circumferential section, and (b) the plurality of struts that are shaped so as to define the generally circumferential section include (i) the one of the struts to which the base is coupled and (ii) a second strut, which are coupled at a peak of the circumferential band.
  • 14. The method according to claim 11, wherein transvascularly introducing the stent-graft comprises transvascularly introducing the stent-graft into the blood vessel while the stent-graft is in the radially-compressed delivery state, in which the sharp tip is positioned more radially inward than is the one of the struts to which the base is coupled.
  • 15. The method according to claim 11, wherein transitioning comprises transitioning the stent-graft to the radially-expanded deployment state in the blood vessel, such that a portion of the fixation member between the base and the sharp tip is convex as viewed from outside the stent-graft.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IL2012/000190 5/15/2012 WO 00 1/6/2015
Publishing Document Publishing Date Country Kind
WO2013/171730 11/21/2013 WO A
US Referenced Citations (516)
Number Name Date Kind
4180613 Vassiliou Dec 1979 A
4355426 MacGregor Oct 1982 A
4505767 Quin Mar 1985 A
4562596 Kornberg Jan 1986 A
4577631 Kreamer Mar 1986 A
4617932 Kornberg Oct 1986 A
4665906 Jervis May 1987 A
4739762 Palmaz Apr 1988 A
4787899 Lazarus Nov 1988 A
4878906 Lindemann et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4938740 Melbin Jul 1990 A
4969458 Wiktor Nov 1990 A
5042707 Taheri Aug 1991 A
5064435 Porter Nov 1991 A
5104404 Wolff Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5129910 Phan et al. Jul 1992 A
5133732 Wiktor Jul 1992 A
5192256 Ryan Mar 1993 A
5192286 Phan et al. Mar 1993 A
5234448 Wholey et al. Aug 1993 A
5383926 Lock et al. Jan 1995 A
5456694 Marin et al. Oct 1995 A
5486183 Middleman et al. Jan 1996 A
5507769 Marin et al. Apr 1996 A
5509923 Middleman et al. Apr 1996 A
5522880 Barone et al. Jun 1996 A
5527322 Klein et al. Jun 1996 A
5549662 Fordenbacher Aug 1996 A
5554181 Das Sep 1996 A
5556413 Lam Sep 1996 A
5562724 Vorwerk et al. Oct 1996 A
5607445 Summers Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5632746 Middleman et al. May 1997 A
5632763 Glastra May 1997 A
5632772 Alcime et al. May 1997 A
5639278 Dereume et al. Jun 1997 A
5643340 Nunokawa Jul 1997 A
5653743 Martin Aug 1997 A
5676696 Marcade Oct 1997 A
5676697 McDonald Oct 1997 A
5693084 Chuter Dec 1997 A
5728134 Barak Mar 1998 A
5749879 Middleman et al. May 1998 A
5755770 Ravenscroft May 1998 A
5755771 Penn et al. May 1998 A
5755777 Chuter May 1998 A
5755781 Jayaraman May 1998 A
5769882 Fogarty et al. Jun 1998 A
5769884 Solovay Jun 1998 A
5782903 Wiktor Jul 1998 A
5782906 Marshall et al. Jul 1998 A
5824040 Cox et al. Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5827321 Roubin et al. Oct 1998 A
5843170 Ahn Dec 1998 A
5855600 Alt Jan 1999 A
5860991 Klein et al. Jan 1999 A
5876432 Lau et al. Mar 1999 A
5906641 Thompson et al. May 1999 A
5921994 Andreas et al. Jul 1999 A
5925076 Inoue Jul 1999 A
5948018 Dereume et al. Sep 1999 A
5968091 Pinchuk et al. Oct 1999 A
5980552 Pinchasik et al. Nov 1999 A
5984955 Wisselink Nov 1999 A
6015431 Thornton et al. Jan 2000 A
6016810 Ravenscroft Jan 2000 A
6030414 Taheri Feb 2000 A
6033435 Penn et al. Mar 2000 A
6036723 Anidjar et al. Mar 2000 A
6036725 Avellanet Mar 2000 A
6049824 Simonin Apr 2000 A
6051021 Frid Apr 2000 A
6059824 Taheri May 2000 A
6099497 Adams et al. Aug 2000 A
6099548 Taheri Aug 2000 A
6117145 Wood et al. Sep 2000 A
6129738 Lashinski et al. Oct 2000 A
6132457 Chobotov Oct 2000 A
6156064 Chouinard Dec 2000 A
6159228 Frid et al. Dec 2000 A
6176875 Lenker et al. Jan 2001 B1
6179878 Duerig et al. Jan 2001 B1
6200339 Leschinsky et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6270524 Kim Aug 2001 B1
6283991 Cox et al. Sep 2001 B1
6287335 Drasler et al. Sep 2001 B1
6290720 Khosravi et al. Sep 2001 B1
6296661 Davila et al. Oct 2001 B1
6312458 Golds Nov 2001 B1
6325819 Pavcnik et al. Dec 2001 B1
6325823 Horzewski et al. Dec 2001 B1
6344056 Dehdashtian Feb 2002 B1
6395018 Castaneda May 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6428565 Wisselink Aug 2002 B1
6451051 Drasler et al. Sep 2002 B2
6471722 Inoue Oct 2002 B1
6506211 Skubitz et al. Jan 2003 B1
6520988 Colombo et al. Feb 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6565597 Fearnot et al. May 2003 B1
6576009 Ryan et al. Jun 2003 B2
6613078 Barone Sep 2003 B1
6635083 Cheng et al. Oct 2003 B1
6645242 Quinn Nov 2003 B1
6648911 Sirhan et al. Nov 2003 B1
6652567 Deaton Nov 2003 B1
6652571 White et al. Nov 2003 B1
6656214 Fogarty et al. Dec 2003 B1
6673080 Reynolds et al. Jan 2004 B2
6692520 Gambale et al. Feb 2004 B1
6695833 Frantzen Feb 2004 B1
6695875 Stelter et al. Feb 2004 B2
6699277 Freidberg et al. Mar 2004 B1
6716238 Elliott Apr 2004 B2
6729356 Baker et al. May 2004 B1
6733523 Shaolian et al. May 2004 B2
6743195 Zucker Jun 2004 B2
6752826 Holloway et al. Jun 2004 B2
6776794 Hong et al. Aug 2004 B1
6808534 Escano Oct 2004 B1
6814749 Cox et al. Nov 2004 B2
6814752 Chuter Nov 2004 B1
6824560 Pelton Nov 2004 B2
6843803 Ryan et al. Jan 2005 B2
6846321 Zucker Jan 2005 B2
6860900 Clerc et al. Mar 2005 B2
6907285 Denker et al. Jun 2005 B2
6908477 McGuckin, Jr. et al. Jun 2005 B2
6929660 Ainsworth et al. Aug 2005 B1
6942691 Chuter Sep 2005 B1
6964679 Marcade et al. Nov 2005 B1
6986774 Middleman et al. Jan 2006 B2
7008441 Zucker Mar 2006 B2
7018400 Lashinski et al. Mar 2006 B2
7022131 Derowe et al. Apr 2006 B1
7044962 Elliott May 2006 B2
7105015 Goshgarian Sep 2006 B2
7105020 Greenberg et al. Sep 2006 B2
7112217 Kugler et al. Sep 2006 B1
7115127 Lindenbaum et al. Oct 2006 B2
7122052 Greenhalgh Oct 2006 B2
7131991 Zarins et al. Nov 2006 B2
7144421 Carpenter et al. Dec 2006 B2
7160318 Greenberg et al. Jan 2007 B2
7175651 Kerr Feb 2007 B2
7198638 Dong Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7220274 Quinn May 2007 B1
7223266 Lindenbaum et al. May 2007 B2
7270675 Chun et al. Sep 2007 B2
7279003 Berra et al. Oct 2007 B2
7294145 Ward Nov 2007 B2
7294147 Hartley Nov 2007 B2
7306623 Watson Dec 2007 B2
7341598 Davidson et al. Mar 2008 B2
7393357 Stelter et al. Jul 2008 B2
7396363 Frid Jul 2008 B2
7407509 Greenberg et al. Aug 2008 B2
7413573 Hartley et al. Aug 2008 B2
7425219 Quadri Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7438721 Doig et al. Oct 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7473272 Pryor Jan 2009 B2
7491231 Nazzaro et al. Feb 2009 B2
7537606 Hartley et al. May 2009 B2
7537609 Davidson et al. May 2009 B2
7540881 Meyer et al. Jun 2009 B2
7544160 Gross Jun 2009 B2
7575590 Watson Aug 2009 B2
7637939 Tischler Dec 2009 B2
7645298 Hartley et al. Jan 2010 B2
7655036 Goodson Feb 2010 B2
7655037 Fleming, III et al. Feb 2010 B2
7662161 Briganti et al. Feb 2010 B2
7662168 McGuckin, Jr. et al. Feb 2010 B2
7670369 Schaeffer Mar 2010 B2
7678141 Greenan et al. Mar 2010 B2
7699885 Leonhardt et al. Apr 2010 B2
7708704 Mitelberg et al. May 2010 B2
7722626 Middleman et al. May 2010 B2
7731732 Ken Jun 2010 B2
7766955 Vardi et al. Aug 2010 B2
7771465 Zukowski Aug 2010 B2
7789903 Spiridigliozzi et al. Sep 2010 B2
7803178 Whirley et al. Sep 2010 B2
7806923 Moloney Oct 2010 B2
7815673 Bloom et al. Oct 2010 B2
7833259 Boatman Nov 2010 B2
7846194 Hartley et al. Dec 2010 B2
7850725 Vardi et al. Dec 2010 B2
7867270 Hartley et al. Jan 2011 B2
7887575 Kujawski Feb 2011 B2
7914572 Hartley et al. Mar 2011 B2
7914574 Schmid et al. Mar 2011 B2
7955373 Sowinski et al. Jun 2011 B2
7955374 Erickson et al. Jun 2011 B2
7959662 Erbel et al. Jun 2011 B2
7959669 Chalekian et al. Jun 2011 B2
7998186 Hartley Aug 2011 B2
7998187 Hartley et al. Aug 2011 B2
8012193 Hartley et al. Sep 2011 B2
8021412 Hartley et al. Sep 2011 B2
8021418 Gerberding et al. Sep 2011 B2
8021419 Hartley et al. Sep 2011 B2
8043365 Thramann Oct 2011 B2
8048139 Frid et al. Nov 2011 B2
8048140 Purdy Nov 2011 B2
8048147 Adams Nov 2011 B2
8052736 Doig et al. Nov 2011 B2
8052741 Bruszewski et al. Nov 2011 B2
8066755 Zacharias et al. Nov 2011 B2
8080053 Satasiya et al. Dec 2011 B2
8100960 Bruszewski Jan 2012 B2
8118854 Bowe Feb 2012 B2
8133267 Leonhardt et al. Mar 2012 B2
8157810 Case et al. Apr 2012 B2
8167926 Hartley et al. May 2012 B2
8172892 Chuter et al. May 2012 B2
8172895 Anderson et al. May 2012 B2
8197475 Bruszewski et al. Jun 2012 B2
8197533 Kujawski Jun 2012 B2
8211158 Wolf Jul 2012 B2
8216298 Wright et al. Jul 2012 B2
8221494 Schreck et al. Jul 2012 B2
8226706 Hartley et al. Jul 2012 B2
8236040 Mayberry et al. Aug 2012 B2
8251963 Chin et al. Aug 2012 B2
8257423 Kerr Sep 2012 B2
8262719 Erickson et al. Sep 2012 B2
8273115 Hamer et al. Sep 2012 B2
8287586 Schaeffer et al. Oct 2012 B2
8292885 Bruszewski et al. Oct 2012 B2
8292941 Muzslay Oct 2012 B2
8292949 Berra et al. Oct 2012 B2
8292951 Muzslay Oct 2012 B2
8333800 Bruszewski et al. Dec 2012 B2
8337546 Bruszewski Dec 2012 B2
8353898 Lutze et al. Jan 2013 B2
8357192 Mayberry et al. Jan 2013 B2
8361134 Hartley et al. Jan 2013 B2
8394136 Hartley et al. Mar 2013 B2
8425585 Melsheimer et al. Apr 2013 B2
8470018 Hartley et al. Jun 2013 B2
8475513 Sithian Jul 2013 B2
8480726 Cunningham et al. Jul 2013 B2
8486131 Shalev Jul 2013 B2
8491646 Schreck Jul 2013 B2
8506622 Bruszewski et al. Aug 2013 B2
8870938 Shalev et al. Oct 2014 B2
8968384 Pearson et al. Mar 2015 B2
9168123 Barrand Oct 2015 B2
20010000188 Lenker et al. Apr 2001 A1
20010004705 Killion et al. Jun 2001 A1
20010014823 Ressemann et al. Aug 2001 A1
20010034550 Buirge et al. Oct 2001 A1
20010037142 Stelter et al. Nov 2001 A1
20010044647 Pinchuk et al. Nov 2001 A1
20010044651 Steinke et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010047198 Drasler et al. Nov 2001 A1
20010049550 Martin et al. Dec 2001 A1
20010053930 Kugler et al. Dec 2001 A1
20020040236 Lau et al. Apr 2002 A1
20020052643 Wholey et al. May 2002 A1
20020052644 Shaolian et al. May 2002 A1
20020072790 McGuckin, Jr. et al. Jun 2002 A1
20020099438 Furst Jul 2002 A1
20020099441 Dehdashtian Jul 2002 A1
20020107564 Cox et al. Aug 2002 A1
20020111667 Girton et al. Aug 2002 A1
20020123791 Harrison Sep 2002 A1
20020156495 Brenneman et al. Oct 2002 A1
20020156517 Perouse Oct 2002 A1
20020173809 Fleischman et al. Nov 2002 A1
20020183783 Shadduck Dec 2002 A1
20020193864 Khosravi et al. Dec 2002 A1
20020198585 Wisselink Dec 2002 A1
20030033005 Houser et al. Feb 2003 A1
20030040791 Oktay Feb 2003 A1
20030065345 Weadock Apr 2003 A1
20030065386 Weadock Apr 2003 A1
20030068296 Ricci et al. Apr 2003 A1
20030074055 Haverkost Apr 2003 A1
20030093145 Lawrence-Brown et al. May 2003 A1
20030125796 Dong Jul 2003 A1
20030130720 DePalma et al. Jul 2003 A1
20030144725 Lombardi Jul 2003 A1
20030153944 Phung et al. Aug 2003 A1
20030153968 Geis et al. Aug 2003 A1
20030171771 Anderson et al. Sep 2003 A1
20030191523 Hojeibane Oct 2003 A1
20030199967 Hartley et al. Oct 2003 A1
20030199968 Ainsworth et al. Oct 2003 A1
20030204236 Letort Oct 2003 A1
20030204242 Zarins et al. Oct 2003 A1
20030204243 Shiu Oct 2003 A1
20030212449 Cox Nov 2003 A1
20030233117 Adams et al. Dec 2003 A1
20030236567 Elliot Dec 2003 A1
20040015227 Vardi et al. Jan 2004 A1
20040015229 Fulkerson et al. Jan 2004 A1
20040098091 Erbel et al. May 2004 A1
20040106972 Deaton Jun 2004 A1
20040106978 Greenberg et al. Jun 2004 A1
20040117003 Ouriel et al. Jun 2004 A1
20040133266 Clerc et al. Jul 2004 A1
20040138735 Shaolian et al. Jul 2004 A1
20040162606 Thompson Aug 2004 A1
20040171978 Shalaby Sep 2004 A1
20040181149 Langlotz et al. Sep 2004 A1
20040215319 Berra et al. Oct 2004 A1
20040215327 Doig et al. Oct 2004 A1
20040215332 Frid Oct 2004 A1
20040260383 Stelter et al. Dec 2004 A1
20050010246 Streeter et al. Jan 2005 A1
20050033406 Barnhart et al. Feb 2005 A1
20050049678 Cocks et al. Mar 2005 A1
20050065545 Wallace Mar 2005 A1
20050085900 Case et al. Apr 2005 A1
20050102018 Carpenter et al. May 2005 A1
20050102021 Osborne May 2005 A1
20050131517 Hartley et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050149166 Schaeffer et al. Jul 2005 A1
20050154448 Cully et al. Jul 2005 A1
20050159803 Lad et al. Jul 2005 A1
20050165480 Jordan et al. Jul 2005 A1
20050171598 Schaeffer Aug 2005 A1
20050171599 White Aug 2005 A1
20050177132 Lentz et al. Aug 2005 A1
20050177224 Fogarty et al. Aug 2005 A1
20050203606 VanCamp Sep 2005 A1
20050216018 Sennett Sep 2005 A1
20050222667 Hunt Oct 2005 A1
20050222668 Schaeffer et al. Oct 2005 A1
20050222669 Purdy Oct 2005 A1
20050228480 Douglas et al. Oct 2005 A1
20050234542 Melsheimer Oct 2005 A1
20050266042 Tseng Dec 2005 A1
20050273155 Bahler et al. Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20060015170 Jones et al. Jan 2006 A1
20060030921 Chu Feb 2006 A1
20060052799 Middleman et al. Mar 2006 A1
20060069426 Weinberger Mar 2006 A1
20060095114 Hartley et al. May 2006 A1
20060100684 Elliott May 2006 A1
20060106406 Weinberger May 2006 A1
20060116748 Kaplan et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060155358 LaDuca et al. Jul 2006 A1
20060155359 Watson Jul 2006 A1
20060155366 LaDuca et al. Jul 2006 A1
20060167476 Burdulis et al. Jul 2006 A1
20060173530 Das Aug 2006 A1
20060178733 Pinchuk Aug 2006 A1
20060190070 Dieck et al. Aug 2006 A1
20060193892 Furst et al. Aug 2006 A1
20060229709 Morris et al. Oct 2006 A1
20060241740 Vardi et al. Oct 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060276882 Case et al. Dec 2006 A1
20060281966 Peacock, III Dec 2006 A1
20061010640 Peacock, III Dec 2006
20070016281 Melsheimer Jan 2007 A1
20070021822 Boatman Jan 2007 A1
20070043425 Hartley et al. Feb 2007 A1
20070050011 Klein et al. Mar 2007 A1
20070055326 Farley et al. Mar 2007 A1
20070055350 Erickson et al. Mar 2007 A1
20070055358 Krolik et al. Mar 2007 A1
20070055360 Hanson et al. Mar 2007 A1
20070060989 Deem et al. Mar 2007 A1
20070061002 Paul, Jr. et al. Mar 2007 A1
20070073373 Bonsignore Mar 2007 A1
20070088425 Schaeffer Apr 2007 A1
20070112344 Keilman May 2007 A1
20070135677 Miller et al. Jun 2007 A1
20070142896 Anderson et al. Jun 2007 A1
20070150051 Arnault De La Menardiere et al. Jun 2007 A1
20070156167 Connors et al. Jul 2007 A1
20070162104 Frid Jul 2007 A1
20070167898 Peters et al. Jul 2007 A1
20070167955 Arnault De La Menardiere et al. Jul 2007 A1
20070168013 Douglas Jul 2007 A1
20070168018 Amplatz et al. Jul 2007 A1
20070179598 Duerig Aug 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208410 Berra et al. Sep 2007 A1
20070213805 Schaeffer et al. Sep 2007 A1
20070213807 Roubin et al. Sep 2007 A1
20070219610 Israel Sep 2007 A1
20070219627 Chu et al. Sep 2007 A1
20070225797 Krivoruhko Sep 2007 A1
20070233229 Berra et al. Oct 2007 A1
20070237973 Purdy et al. Oct 2007 A1
20070244542 Greenan et al. Oct 2007 A1
20070244543 Mitchell Oct 2007 A1
20070244547 Greenan Oct 2007 A1
20070250154 Greenberg et al. Oct 2007 A1
20070255388 Rudakov et al. Nov 2007 A1
20080002871 Gunzert-Marx et al. Jan 2008 A1
20080015673 Chuter Jan 2008 A1
20080058918 Watson Mar 2008 A1
20080109058 Greenberg et al. May 2008 A1
20080109066 Quinn May 2008 A1
20080114444 Yu May 2008 A1
20080114445 Melsheimer et al. May 2008 A1
20080147173 Mciff et al. Jun 2008 A1
20080167704 Wright et al. Jul 2008 A1
20080195190 Bland et al. Aug 2008 A1
20080195191 Luo et al. Aug 2008 A1
20080215134 Lawrence-Brown Sep 2008 A1
20080249598 Sherry Oct 2008 A1
20080262595 Chu et al. Oct 2008 A1
20080269789 Eli Oct 2008 A1
20080275540 Wen Nov 2008 A1
20080275542 LaDuca et al. Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080294234 Hartley et al. Nov 2008 A1
20080300665 Lootz et al. Dec 2008 A1
20080319528 Yribarren et al. Dec 2008 A1
20090012597 Doig et al. Jan 2009 A1
20090012602 Quadri Jan 2009 A1
20090030497 Metcalf et al. Jan 2009 A1
20090030502 Sun et al. Jan 2009 A1
20090048663 Greenberg Feb 2009 A1
20090054967 Das Feb 2009 A1
20090062899 Dang et al. Mar 2009 A1
20090069881 Chalekian et al. Mar 2009 A1
20090069882 Venturelli et al. Mar 2009 A1
20090082841 Zacharias et al. Mar 2009 A1
20090082847 Zacharias et al. Mar 2009 A1
20090099648 Yu Apr 2009 A1
20090099649 Chobotov et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090105809 Lee et al. Apr 2009 A1
20090112233 Xiao Apr 2009 A1
20090125096 Chu et al. May 2009 A1
20090138067 Pinchuk et al. May 2009 A1
20090149877 Hanson et al. Jun 2009 A1
20090164001 Biggs et al. Jun 2009 A1
20090171437 Brocker et al. Jul 2009 A1
20090192587 Frid Jul 2009 A1
20090227997 Wang et al. Sep 2009 A1
20090240316 Bruszewski Sep 2009 A1
20090248134 Dierking et al. Oct 2009 A1
20090254170 Hartley et al. Oct 2009 A1
20090259290 Bruszewski et al. Oct 2009 A1
20090287145 Cragg et al. Nov 2009 A1
20100004728 Rao et al. Jan 2010 A1
20100029608 Finley et al. Feb 2010 A1
20100063575 Shalev et al. Mar 2010 A1
20100070019 Shalev Mar 2010 A1
20100082091 Berez et al. Apr 2010 A1
20100161026 Brocker et al. Jun 2010 A1
20100211159 Schmid et al. Aug 2010 A1
20100249899 Chuter et al. Sep 2010 A1
20100256725 Rasmussen Oct 2010 A1
20100274187 Argentine Oct 2010 A1
20100274345 Rust Oct 2010 A1
20100292774 Shalev Nov 2010 A1
20100318171 Porter et al. Dec 2010 A1
20110040369 Rasmussen et al. Feb 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110125251 Cottone et al. May 2011 A1
20110208289 Shalev Aug 2011 A1
20110208296 Duffy et al. Aug 2011 A1
20110208297 Tuval et al. Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110218607 Arbefeuille et al. Sep 2011 A1
20110257720 Peterson et al. Oct 2011 A1
20110262684 Wintsch et al. Oct 2011 A1
20110264184 Heltai Oct 2011 A1
20110288622 Chan et al. Nov 2011 A1
20110301702 Rust et al. Dec 2011 A1
20110319983 Zhu et al. Dec 2011 A1
20120150274 Shalev et al. Jun 2012 A1
20120172929 Shalev Jul 2012 A1
20120179236 Benary et al. Jul 2012 A1
20120185031 Ryan et al. Jul 2012 A1
20120271401 Bruszewski et al. Oct 2012 A1
20120310324 Benary et al. Dec 2012 A1
20120316634 Shalev et al. Dec 2012 A1
20120323305 Benary et al. Dec 2012 A1
20120330399 Shalev et al. Dec 2012 A1
20120330401 Sugimoto et al. Dec 2012 A1
20130013050 Shalev et al. Jan 2013 A1
20130013051 Benary Jan 2013 A1
20130035751 Shalev Feb 2013 A1
20130090722 Shalev et al. Apr 2013 A1
20130116773 Roeder et al. May 2013 A1
20130116775 Roeder et al. May 2013 A1
20130131783 Shalev et al. May 2013 A1
20130204343 Shalev Aug 2013 A1
20130261994 Raz et al. Oct 2013 A1
20130289587 Shalev Oct 2013 A1
20130297005 Shalev Nov 2013 A1
20140005764 Schroeder Jan 2014 A1
20140052236 Shalev Feb 2014 A1
20140148888 Barrand May 2014 A1
20140172072 Shalev Jun 2014 A1
20140180378 Roeder Jun 2014 A1
20140288635 Shalev Sep 2014 A1
20140324154 Shalev Oct 2014 A1
20150196301 Bödewadt et al. Jul 2015 A1
20150374383 Bödewadt et al. Dec 2015 A1
20160262880 Li et al. Sep 2016 A1
Foreign Referenced Citations (84)
Number Date Country
2497704 Mar 2004 CA
2453960 Oct 2001 CN
2817770 Sep 2006 CN
201058061 May 2008 CN
1177780 Feb 2002 EP
1325716 Jul 2003 EP
1470797 Oct 2004 EP
1759666 Mar 2007 EP
1961401 Aug 2008 EP
2266509 Dec 2010 EP
2298248 Mar 2011 EP
2002253682 Sep 2002 JP
9806355 Feb 1998 WO
9934748 Jul 1999 WO
0152776 Jul 2001 WO
02083038 Oct 2002 WO
03099108 Dec 2003 WO
2004017868 Mar 2004 WO
2004100836 Nov 2004 WO
2005002466 Jan 2005 WO
2005034809 Apr 2005 WO
2005037138 Apr 2005 WO
2005041781 May 2005 WO
2005041783 May 2005 WO
2005046524 May 2005 WO
2005046526 May 2005 WO
2006007389 Jan 2006 WO
2006028925 Mar 2006 WO
2006070372 Jul 2006 WO
2006088905 Aug 2006 WO
2006130755 Dec 2006 WO
2007022495 Feb 2007 WO
2007039587 Apr 2007 WO
2007084547 Jul 2007 WO
2007144782 Dec 2007 WO
2008008291 Jan 2008 WO
2008035337 Mar 2008 WO
2008042266 Apr 2008 WO
2008047092 Apr 2008 WO
2008047354 Apr 2008 WO
2008051704 May 2008 WO
2008053469 May 2008 WO
2008066923 Jun 2008 WO
2008107885 Sep 2008 WO
2008140796 Nov 2008 WO
2009078010 Jun 2009 WO
2009116041 Sep 2009 WO
2009116042 Sep 2009 WO
2009118733 Oct 2009 WO
2010027704 Mar 2010 WO
2010024869 Mar 2010 WO
2010024879 Mar 2010 WO
2010031060 Mar 2010 WO
2010045238 Apr 2010 WO
2010062355 Jun 2010 WO
2010088776 Aug 2010 WO
2010128162 Nov 2010 WO
2010150208 Dec 2010 WO
2011004374 Jan 2011 WO
2011007354 Jan 2011 WO
2011055364 May 2011 WO
2011064782 Jun 2011 WO
2011067764 Jun 2011 WO
2011070576 Jun 2011 WO
2011080738 Jul 2011 WO
2011095979 Aug 2011 WO
2011106532 Sep 2011 WO
2011106533 Sep 2011 WO
2011106544 Sep 2011 WO
2012049679 Apr 2012 WO
2012104842 Aug 2012 WO
2012111006 Aug 2012 WO
2012117395 Sep 2012 WO
2012176187 Dec 2012 WO
2013005207 Jan 2013 WO
2013030818 Mar 2013 WO
2013030819 Mar 2013 WO
2013065040 May 2013 WO
2013084235 Jun 2013 WO
2013171730 Nov 2013 WO
2014020609 Feb 2014 WO
2014108895 Jul 2014 WO
2014141232 Sep 2014 WO
2014188412 Nov 2014 WO
Non-Patent Literature Citations (127)
Entry
European search report issued in Application No. 10832752.9, dated May 23, 2016.
European search report issued in Application No. 10834308.8, dated Sep. 22, 2016.
A non-final Office Action issued on Feb. 28, 2014 in U.S. Appl. No. 13/512,778.
An International Preliminary Report on Patentability dated Jan. 7, 2014, which issued during the prosecution of Applicant's PCT/IL2012/000269.
An International Preliminary Report on Patentability dated Jan. 4, 2012, which issued during the prosecution of Applicant's PCT/IB2010/052861.
An International Preliminary Report on Patentability dated Dec. 23, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000241.
An International Preliminary Report on Patentability dated Aug. 6, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000060.
An English translation of an Office Action dated Oct. 8, 2014, which issued during the prosecution of Chinese Patent Application No. 201080036970.7.
An English translation of an Office Action dated Nov. 28, 2013, which issued during the prosecution of Chinese Patent Application No. 200880126889.0.
An English translation of an Office Action dated Jan. 28, 2014, which issued during the prosecution of Chinese Patent Application No. 201080036970.7.
An English translation of an Office Action dated May 16, 2014, which issued during the prosecution of Chinese Patent Application No. 200880126889.0.
An English translation of an Office Action dated Aug. 25, 2011, which issued during the prosecution of Chinese Patent Application No. 200880014919.9.
An English translation of an Office Action dated Feb. 16, 2013, which issued during the prosecution of Chinese Patent Application No. 200880126889.0.
An International Preliminary Report on Patentability dated Jan. 10, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000549.
An International Preliminary Report on Patentability dated Jan. 17, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000564.
A Notice of Allowance dated Aug. 2, 2012, which issued during the prosecution of U.S. Appl. No. 12/529,936.
An Advisory Action dated Feb. 13, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/807,880.
An International Preliminary Report on Patentability dated Jun. 5, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000999.
An International Preliminary Report on Patentability dated Jun. 5, 2012, which issued during the prosecution of Applicant's PCT/IL2010/001018.
An International Preliminary Report on Patentability dated Jun. 10, 2014, which issued during the prosecution of Applicant's PCT/IL2012/050506.
A Notice of Allowance issued in U.S. Appl. No. 13/807,906 on Oct. 10, 2014.
A Restriction Requirement dated Jan. 29, 2014, which issued during the prosecution of U.S. Appl. No. 13/519,971.
An International Preliminary Report on Patentability dated Jun. 12, 2012, which issued during the prosecution of Applicant's PCT/IL2010/001037.
An International Preliminary Report on Patentability dated Mar. 4, 2014, which issued during the prosecution of Applicant's PCT/IL2012/000300.
An International Preliminary Report on Patentability dated May 6, 2014, which issued during the prosecution of Applicant's PCT/IL2012/050424.
An International Preliminary Report on Patentability dated May 8, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000917.
An International Preliminary Report on Patentability dated Nov. 18, 2014, which issued during the prosecution of Applicant's PCT/IL2012/000190.
An International Search Report and a Written Opinion both dated Apr. 18, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001037.
An International Search Report and a Written Opinion both dated Aug. 4, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000999.
An International Search Report and a Written Opinion both dated Aug. 31, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000148.
An International Search Report and a Written Opinion both dated Dec. 3, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000564.
An International Search Report and a Written Opinion both dated Feb. 4, 2011, which issued during the prosecution of Applicant's PCT/IB2010/052861.
An International Search Report and a Written Opinion both dated Jul. 13, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000083.
An International Search Report and a Written Opinion both dated Jul. 17, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000095.
An International Search Report and a Written Opinion both dated Jun. 14, 2013, which issued during the prosecution of Applicant's PCT/IL2012/050506.
An International Search Report and a Written Opinion both dated Jun. 28, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000135.
An International Search Report and a Written Opinion both dated Jun. 30, 2009, which issued during the prosecution of Applicant's PCT/IL2008/001621.
An International Search Report and a Written Opinion both dated Mar. 10, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000917.
An International Search Report and a Written Opinion both dated Mar. 11, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001312.
An International Search Report and a Written Opinion both dated Mar. 15, 2013, which issued during the prosecution of Applicant's PCT/IL2012/050424.
An International Preliminary Report on Patentability dated Sep. 3, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000095.
An International Search Report and a Written Opinion both dated Mar. 30, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001018.
An International Search Report and a Written Opinion both dated May 23, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001087.
An International Search Report and a Written Opinion both dated Nov. 5, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000549.
An International Search Report and a Written Opinion both dated Nov. 27, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000300.
An International Search Report and a Written Opinion both dated Oct. 1, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000241.
An International Search Report and a Written Opinion both dated Oct. 4, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000269.
An International Search Report and a Written Opinion both dated Sep. 6, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000190.
An International Search Report and a Written Opinion both dated Apr. 28, 2014, which issued during the prosecution of Applicant's PCT/IL2014/050019.
An International Search Report dated Jul. 30, 2014, which issued during the prosecution of Applicant's PCT/IL2014/050174.
An International Search Report and a Written Opinion both dated Sep. 24, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000060.
An International Search Report and a Written Opinion both dated Sep. 29, 2008, which issued during the prosecution of Applicant's PCT/IL2008/000287.
An International Search Report dated Nov. 26, 2013, which issued during the prosecution of Applicant's PCT/IL2013/050656.
Notice of allowance dated Jun. 24, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/380,278.
An International Search Report dated Nov. 28, 2014, which issued during the prosecution of Applicant's PCT/IL2014/050434.
An Interview Summary dated Feb. 28, 2012, which issued during the prosecution of U.S. Appl. No. 12/529,936.
An Office Action dated Apr. 10, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/807,906.
An Office Action dated Apr. 24, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/380,278.
An Office Action dated Dec. 2, 2013, which issued during the prosecution of U.S. Appl. No. 13/807,880.
An office Action dated Feb. 25. 2013, which issued during the prosecution of U.S. Appl. No. 13/031,871.
An Office Action dated Feb. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/808,037.
An Office Action dated Jul. 24, 2014, which issued during the prosecution of Canadian Patent Application No. 2768228.
An Office Action dated Jul. 28, 2014, which issued during the prosecution of U.S. Appl. No. 13/031,871.
An Office Action dated Jun. 19, 2012, which issued during the prosecution of U.S. Appl. No. 12/808,037.
An Office Action dated Mar. 24, 2011, which issued during the prosecution of U.S. Appl. No. 12/529,936.
An Office Action dated Mar. 28, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/519,971.
An Office Action dated Apr. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/447,684.
An Office Action dated Apr. 28, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/939,798.
An Office Action dated May 20, 2013, which issued during the prosecution of U.S. Appl. No. 13/807,880.
An Office Action dated Nov. 12, 2010, which issued during the prosecution of U.S. Appl. No. 12/447,684.
An Office Action dated Nov. 3, 2014, which issued during the prosecution of Canadian Patent Application No. 2767596.
An Office Action dated Nov. 19, 2013, which issued during the prosecution of U.S. Appl. No. 13/663,117.
An Office Action dated Oct. 11, 2012, which issued during the prosecution of U.S. Appl. No. 13/031,871.
U.S. Appl. No. 61/219,758, filed Jun. 23, 2009.
U.S. Appl. No. 61/221,074, filed Jun. 28, 2009.
U.S. Appl. No. 61/496,613, filed Jun. 14, 2011.
An Office Action dated Oct. 28, 2011, which issued during the prosecution of U.S. Appl. No. 12/529,936.
U.S. Appl. No. 61/505,132, filed Jul. 7, 2011.
U.S. Appl. No. 61/678,182, filed Aug. 1, 2012.
U.S. Appl. No. 61/529,931, filed Sep. 1, 2011.
U.S. Appl. No. 61/553,209, filed Oct. 30, 2011.
U.S. Appl. No. 61/499,195, filed Jun. 21, 2011.
U.S. Appl. No. 61/749,965, filed Jan. 8, 2013.
Notice of Allowance dated Jun. 18, 2013, which issued during the prosecution of U.S. Appl. No. 13/523,296.
Office Action issued on Oct. 27, 2014 in Canadian Patent Application No. 2,785,953.
Ryhanen J., in “Biocompatibility evaluation of nickel-titanium shape memory metal alloy,” Academic Dissertation, Faculty of Medicine, Department of Surgery, University of Oulu, Finland (May 1999).
Supplementary European Search Report dated Dec. 13, 2012, which issued during the prosecution of Applicant's European App No. 08719912.1.
Supplementary European Search Report dated Feb. 17, 2014, which issued during the prosecution of Applicant's European App No. 12803376.8.
Supplementary European Search Report dated Jun. 23, 2014, which issued during the prosecution of Applicant's European App No. 12741804.4.
Written Opinion dated Nov. 26, 2013, which issued during the prosecution of Applicant's PCT/IL2013/050656.
“E-vita® open plus” product brochure (JOTEC GmbH, Hechingcn, Germany), 2010.
An Office action dated Sep. 4, 2014, from the U.S. Patent and Trademark Office in counterpart U.S. Appl. No. 13/519,971.
European Office Action issued Dec. 17, 2014 in European Patent Application No. 12803376.8.
An Office action dated Feb. 5, 2015, from the U.S. Patent and Trademark Office in counterpart U.S. Appl. No. 13/384,075.
European Search Report issued Feb. 24, 2014 in European Patent Application No. 12803376.8.
Fattori et al., Degenerative aneurysm of the descending aorta. Endovascular Treatment. pp. 1-11, 2007, European Association for Cardio-Thoracic Surgery.
International Preliminary Report on Patentability dated Jan. 12, 2010 in corresponding International Application No. PCT/IL2008/000287.
Fonseca A et al., “Intravascular ultrasound assessment of the novel AngioSculpt scoring balloon catheter for the treatment of complex coronary lesions,” J Invasive Cardiol 20(1):21-7 (Jan. 2008).
Van Prehn J et al., “Oversizing of aortic stent grafts for abdominal aneurysm repair: a systematic review of the benefits and risks,” Eur J Vase Endovase Surg. Jul. 2009:38(I):42-53. Epub May 9, 2009 (abstract only).
Invitation to Pay Additional Fees dated May 13, 2014, which issued during the prosecution of Applicant's PCT/IL2014/050019.
Invitation to Pay Additional Fees dated May 8, 2014, which issued during the prosecution of Applicant's PCT/IL2014/50174.
Khlif H et al., “Contribution to the Improvement of Textile Vascular Prostheses Crimping,” Trends in Applied Sciences Research 6(9):1019-1027 (2011).
U.S. Appl. No. 61/775,964, filed Mar. 11, 2013.
U.S. Appl. No. 61/826,544, filed May 23, 2013.
U.S. Appl. No. 61/906,014, filed Nov. 19, 2013.
U.S. Appl. No. 61/926,533, filed Jan. 13, 2014.
U.S. Appl. No. 61/528,242, filed Aug. 28, 2011.
An Office Action dated Aug. 15, 2014, which issued during the prosecution of Applicant's U.S. Appl. No. 13/939,798.
U.S. Appl. No. 61/566,654, filed Dec. 4, 2011.
An English translation of an Office Action dated Mar. 19, 2015, which issued during the prosecution of Chinese Patent Application No. 201080036970.7.
A Notice of Allowance dated Jan. 20, 2015, which issued during the prosecution of U.S. Appl. No. 13/383,128.
A Notice of Allowance dated Nov. 7, 2014, which issued during the prosecution of U.S. Appl. No. 13/512,778.
An Office Action dated Aug. 15, 2014, which issued during the prosecution of U.S. Appl. No. 13/512,778.
An International Search Report and a Written Opinion both dated Mar. 18, 2015, which issued during the prosecution of Applicant's PCT/IL2014/050973.
An Office Action dated Apr. 14, 2015, which issued during the prosecution of U.S. Appl. No. 14/130,213.
An International Preliminary Report on Patentability dated Feb. 3, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050656.
A Notice of Allowance dated Jan. 7, 2014, which issued during the prosecution of U.S. Appl. No. 13/663,117.
An Office Action dated Mar. 26, 2015, which issued during the prosecution of U.S. Appl. No. 13/514,240.
Supplementary European Search Report dated Oct. 31, 2014, which issued during the prosecution of Applicant's European App No. 12752054.2.
An Office Action dated Sep. 2, 2014, which issued during the prosecution of U.S. Appl. No. 12/447,684.
U.S. Appl. No. 61/448,199, filed Mar. 2, 2011.
U.S. Appl. No. 61/014,031, filed Dec. 15, 2007.
An Examiner Interview Summary dated Dec. 13, 2010, which issued during the prosecution of U.S. Appl. No. 12/447,684.
An Office Action dated Mar. 21, 2012, which issued during the prosecution of U.S. Appl. No. 12/808,037.
An Office Action dated May 22, 2013, which issued during the prosecution of U.S. Appl. No. 12/808,037.
U.S. Appl. No. 60/863,373, filed Oct. 29, 2006.
An International Preliminary Report on Patentability dated Aug. 21, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000083.
Related Publications (1)
Number Date Country
20150142096 A1 May 2015 US