Stent graft

Abstract
Some embodiments are directed to a stent graft comprising a first stent graft having a first and a second stent and a first and a second inner graft supported by the first stent, and an outer graft. The second inner graft can be spaced apart from the first inner graft so that a portion of the first stent is not covered by either the first inner graft or the second inner graft. A first and second portion of the outer graft can be attached to the first stent, the outer graft being unsupported by the stent between the first and second portions so as to form a fillable space between the outer graft, the first inner graft, and the second inner graft. Some embodiments further comprise a second stent graft deployable within the inside of the first stent graft to sealingly cover the uncovered portion of the first stent.
Description
BACKGROUND OF THE DISCLOSURE
Technical Field

The present disclosure relates to endoluminal vascular prostheses and methods of placing such prostheses, and, in one application, to endoluminal vascular prostheses for use in the treatment of Type II endoleaks.


Background

Stent grafts can be used for the endovascular treatment of aortic disease including aneurysms and dissections. The purpose of the stent graft is generally to isolate the diseased portion of the aortic wall from the aortic blood pressure and prevent further dilatation or rupture of the diseased portion of the aortic wall.



FIG. 1 shows an intrarenal abdominal aneurysm. The aorta 4 is enlarged below the renal arteries 2a, 2b and above the iliac arteries 3a, 3b. The enlarged aorta has formed an aneurysm sac 1. Pairs of lumbar arteries 5a, 5b branch from the aorta 4 in the region of the aneurysm sac 1.



FIG. 2 shows a bifurcated stent graft 10 placed in the aorta 4 to exclude the aneurysm sac 1 from the arterial blood pressure. The stent graft 10 creates a proximal seal distal to the renal arteries 2a, 2b and a distal seal 3a, 3b in the iliac arteries. An incomplete seal creates leakage flow from the aorta 4 into the aneurysm sac 1 and into the lumbar arteries 5a, 5b. A leak at the proximal or distal seal of the stent graft 10 is referred to as a Type I endoleak. A leak between overlapping components of the stent graft system 1 is referred to as a Type III endoleak. A leak through the covering of the stent graft is referred to as a Type IV endoleak. Type I, III, and IV are influenced by the specific design features of the stent graft 10.


There also exists a type of endoleak that is independent of the stent graft 10. The leak is created by pressure differences in the lumbar arteries 5a, 5b. FIG. 3 illustrates a leakage flow from a first pair of lumbar arteries 5a to a second pair of lumbar arteries 5b wherein the blood pressure in the first pair of lumbar arteries 5a is greater than that in the second pair of lumbar arteries 5b. This type of leak is referred to as Type II endoleak.


Current stent graft systems do not address the issue of Type II endoleaks. Type II endoleaks are present in a considerable number of patients after stent graft placement. These endoleaks can potentially cause continuing dilatation and even rupture of the aneurysm in some patients.


Various strategies have been developed to manage Type II endoleaks. In general, patients are monitored and their aneurysms are imaged routinely to ensure stabilization of the aneurysm. In case of persistent Type II endoleaks associated with aneurysm dilatation, interventions are recommended to embolize the endoleak. Coils or fast-curing polymers can be injected into the aneurismal sac to thrombose the blood in the sac and stop the blood flow between the lumbar arteries.


There is a clear need to manage Type II endoleaks. The current invention proposes a novel design of a stent graft that eliminates Type II endoleaks at the time of stent graft placement.


SUMMARY OF SOME EMBODIMENTS

Some embodiments described herein are directed to systems, methods and apparatuses for treating endovascular aneurysms or other endovascular defects such as Type II endoleaks (collectively referred to as “defects”). However, it will be appreciated that the systems, methods and apparatuses disclosed herein can be used in other fields or other portions of the body.


In some embodiments, such defects can be treated with a deployment system for deploying an endoluminal prosthesis within a passageway comprising a graft supported in a first position within a catheter and a stent supported in a second position within the catheter and configured to be expandable within the graft, wherein the first position does not overlap the second position. The stent can be self-expandable, balloon expandable, or expandable by other suitable means.


Some embodiments disclosed herein are directed to a stent graft system comprising a first stent graft having a first stent, a first inner graft supported by the first stent, a second inner graft supported by the first stent, and an outer graft. In some embodiments, the second inner graft can be spaced apart from the first inner graft so that a portion of the first stent is not covered by either the first inner graft or the second inner graft. A first portion and a second portion of the outer graft can be attached to the first stent, the outer graft being unsupported by the stent between the first and second portions so as to form a fillable space between the outer graft, the first inner graft, and the second inner graft. The stent graft system can further comprise a second stent graft deployable within the inside of the first stent graft so as to sealingly cover the uncovered portion of the first stent, the second stent graft having a second stent and a second graft and a length that is greater than a length of the uncovered portion of the first stent graft.


Some embodiments disclosed herein are directed to a stent graft system comprising a stent having a flow lumen therethrough, a first inner graft supported along at least a portion of the length of the stent, one or more openings formed through a wall of the first inner graft, one or more flap members configured to selectively cover the one or more openings formed through a wall of the first inner graft, and an outer graft positioned around the stent and configured to cover at least the one or more openings formed through the wall of the first inner graft. In some embodiments, the stent graft can be configured such that a substantially sealed space can be created between the outer graft and at least the first inner graft and the one or more flap members. The one or more flap members can be configured to permit blood to flow from the lumen through the openings into the space, and to at least inhibit the flow of blood from the space through the openings and into the lumen.


Some embodiments disclosed herein are directed to a method of treating a blood vessel with a stent graft, comprising positioning a first stent graft across the segment of the blood vessel to be treated, the first stent graft having a first stent, an inner graft having a first portion and a second portion, and an outer graft, filling the space between the inner graft and the outer graft through the uncovered portion of the stent with blood so that the outer graft expands outwardly away from the inner graft, and deploying a second stent graft inside the first stent graft so as to sealingly cover the uncovered portion of the first stent graft, the second stent graft having a second stent and a second graft. In some embodiments, the second portion of the inner graft can be spaced apart from the first portion of the inner graft so that a portion of the first stent can be uncovered by the inner graft, and a first portion and a second portion of the outer graft can be attached to at least one of the first stent and the inner graft. The outer graft can be unsupported by the first stent or inner graft between the first and second portions of the outer graft so as to create a fillable space between the outer graft and the inner graft.


Some embodiments disclosed herein are directed to a method of sealing a branch vessel with a stent graft, comprising positioning a first stent graft across the segment of the blood vessel to be treated, the first stent graft having a first stent, an inner graft having a first portion and a second portion, and an outer graft, filling the space between the inner graft and the outer graft through the uncovered portion of the stent with blood so that the outer graft expands outwardly away from the inner graft and covers an ostium to a branch vessel, and deploying a second stent graft inside the first stent graft so as to sealingly cover the uncovered portion of the first stent graft, the second stent graft having a second stent and a second graft. In some embodiments, the second portion of the inner graft can be spaced apart from the first portion of the inner graft so that a portion of the first stent is uncovered by the inner graft. Further, a first portion and a second portion of the outer graft can be attached to at least one of the first stent and the inner graft, the outer graft being unsupported by the first stent or inner graft between the first and second portions of the outer graft so as to create a fillable space between the outer graft and the inner graft.


Some embodiments disclosed herein are directed to a stent graft system comprising a stent, a first graft supported by the stent, and a second graft surrounding substantially all of an outside surface of the first graft. In some embodiments, the first graft is formed from a porous material and is sized to cover at least a portion of the length of the stent. A first portion and a second portion of the second graft can be attached to the first stent, the second graft being unsupported by the stent between the first and second portions so as to form a fillable space between the second graft and the first graft.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the present disclosure will now be described in connection with non-exclusive embodiments, in reference to the accompanying drawings. The illustrated embodiments, however, are merely examples and are not intended to limit the invention. The following are brief descriptions of the drawings, which may not be drawn to scale.



FIG. 1 illustrates an intrarenal abdominal aortic aneurysm.



FIG. 2 illustrates a stent graft placed in the abdominal aneurysm.



FIG. 3 illustrates type II endoleak after stent graft placement.



FIG. 4A illustrates an embodiment of a bifurcated stent graft used for the treatment of abdominal aortic aneurysms, wherein the graft is supported by stent segments.



FIG. 4B illustrates an embodiment of a bifurcated stent graft used for the treatment of abdominal aortic aneurysms, wherein the graft is supported by a bifurcated stent.



FIG. 5 illustrates an embodiment of a two-layer bifurcated stent graft used for the treatment of type II endoleaks.



FIG. 6 illustrates the embodiment of the two-layer bifurcated stent graft illustrated in FIG. 5, placed in the abdominal aorta.



FIG. 7 illustrates the embodiment of the two-layer bifurcated stent graft illustrated in FIG. 5, with the space between the two layers of graft filled with blood.



FIG. 8 illustrates the pressure distribution in the embodiment of the two-layer bifurcated stent graft illustrated in FIG. 5 after stent graft deployment.



FIG. 9 illustrates the pressure distribution in the embodiment of the two-layer bifurcated stent graft illustrated in FIG. 5, after the space between the two layers of graft is filled with blood.



FIG. 10 illustrates a healthy common iliac and hypogastric artery in an abdominal aortic aneurysm.



FIG. 11 illustrates an aneurysmal common iliac in an abdominal aortic aneurysm.



FIG. 12 illustrates an aneurysmal common iliac treated with an embodiment of a coiled member in the hypogastric artery and an embodiment of a stent graft into the external iliac artery.



FIG. 13 illustrates an aneurismal common iliac treated with an embodiment of a bifurcated stent graft with a two-layer iliac stent graft segment.



FIG. 14 illustrates an embodiment of a bifurcated stent graft to treat an abdominal aortic aneurysm with a short proximal neck.



FIG. 15 illustrates an embodiment of a proximal extension placed in an embodiment of a bifurcated stent graft to treat an abdominal aortic aneurysm with a short proximal neck.



FIG. 16 illustrates another embodiment of a two-layer proximal extension placed in an embodiment of a bifurcated stent graft to treat an abdominal aortic aneurysm with a short proximal neck.



FIG. 17 illustrates another embodiment of a stent graft system comprising a first graft having two graft layers and a second graft acting as a sealing member.



FIG. 18 illustrates the placement of the embodiment of the graft system from FIG. 17 into an aneurysm.



FIG. 19 illustrates another embodiment of a two-layer graft system comprising a bifurcated stent graft having two graft layers and a second graft acting as a sealing member.



FIG. 20 illustrates another embodiment of a stent graft system.



FIG. 21A illustrates some of the components of another embodiment of a stent graft system, showing the components in an unassembled state.



FIG. 21B illustrates the embodiment of the stent graft system of FIG. 21A, showing the components in the assembled state.



FIG. 22A illustrates some of the components of another embodiment of a stent graft system, showing the components in an unassembled state.



FIG. 22B illustrates the embodiment of the stent graft system of FIG. 22A, showing the components in the assembled state.



FIG. 23A is a perspective view of a portion of the layer or layers comprising an embodiment of a porous or perforated inner graft.



FIG. 23B is a top view of a portion of the layer or layers comprising the embodiment of a porous or perforated inner graft of FIG. 23A.





DETAILED DESCRIPTION OF SOME EXEMPLIFYING EMBODIMENTS

This disclosure sets forth various embodiments of a novel stent graft system and method to reduce or eliminate Type II endoleaks. The design can also be used to improve the seal of stent grafts in difficult anatomical situations. The following detailed description is now directed to certain specific embodiments of the disclosure. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout the description and the drawings.


Some embodiments described herein are directed to systems, methods, and apparatuses to treat Type II endoleaks, lesions, aneurysms, or other defects in the aorta, including, but not limited to, the thoracic, ascending, and abdominal aorta, to name a few. However, the systems, methods, and apparatuses may have application to other vessels or areas of the body, or to other fields, and such additional applications are intended to form a part of this disclosure. For example, it will be appreciated that the systems, methods, and apparatuses may have application to the treatment of blood vessels in animals. In short, the embodiments and/or aspects of the endoluminal prosthesis systems, methods, and apparatuses described herein can be applied to other parts of the body or may have other applications apart from the treatment of the thoracic, ascending, and abdominal aorta. And, while specific embodiments may be described herein with regard to particular portions of the aorta, it is to be understood that the embodiments described are adaptable for use in other portions of the aorta or other portions of the body and are not limited to the aortic portions described.



FIG. 1 illustrates an intrarenal abdominal aneurysm. The aorta 4 is enlarged below the renal arteries 2a, 2b and above the iliac arteries 3a, 3b. The enlarged aorta forms an aneurysm sac 1. Pairs of lumbar arteries 5a, 5b branch from the aorta 4 in the region of the aneurysm sac 1. FIG. 2 shows a bifurcated stent graft 10 placed in the aorta 4 to exclude the aneurysm sac 1 from the arterial blood pressure. FIG. 3 illustrates a leakage flow from a first pair of lumbar arteries 5a to a second pair of lumbar arteries 5b wherein the blood pressure in the first pair of lumbar arteries 5a is greater than that in the second pair of lumbar arteries 5b. This type of leak is referred to as Type II endoleak.



FIG. 4 shows a typical stent graft 20 for the treatment of abdominal aortic aneurysms. The stent graft system can be a single piece bifurcated stent graft or a modular stent graft comprising two or more individual stent grafts that are assembled in situ. The stent graft 20 can consist of a main body 21 and two branch grafts 22a, 22b. The stent graft can have individual stent segments 23, as illustrated in FIG. 4A, or a bifurcated stent 24, as illustrated in FIG. 4B. The stent 24 or stent segments 23 can be self expandable, balloon expandable, or can be other similar or suitable stents. The graft 21 can be made from polyester, PTFE, ePTFE, or any other suitable material.



FIG. 5 illustrates an embodiment of a two-layer bifurcated stent graft 30 used for the treatment of type II endoleaks. The basic construction of the stent graft 30 can be similar to that of any existing stent graft system having a main body 31, branch grafts 32a, 32b, stent segments 33, and a first inner graft cover 34. In some embodiments, the main body of the bifurcated stent graft can have a second, outer graft cover 35. The outer graft cover 35 can be made from the same material as the inner graft 34. In some embodiments, the outer graft cover 35, or any other outer graft embodiments disclosed herein, can have one or more radiopaque markers thereon to provide visualization of the position or level of inflation of the outer graft cover during deployment. Similarly, any of the stent or other graft embodiments disclosed herein can have one or more radiopaque markers thereon to provide visualization of the position of such prostheses during deployment.


The diameter of the outer graft cover 35 can be larger than that of the inner graft cover 34. In some embodiments, the outer graft cover 35 or any other outer graft cover embodiment disclosed herein can have a tubular shape, or can have a bulged middle portion such that the middle portion defines a greater diameter than the end portions of the outer graft cover 35. In some embodiments, the diameter of the outer graft cover 35 can be sufficiently large to expand to the flow lumen or against the inside surface of the aneurysm. The inner graft cover 34 and the outer graft cover 35 can be connected at the distal and proximal ends to form a sealed space 36. One or more openings 37, which can have any suitable size, large or small, can be cut or otherwise formed in the inner graft cover 34 to allow fluid communication between the inner lumen of the stent graft and the space 36.


In the embodiment described in FIG. 5, the opening in the inner graft layer can provide fluid communication between the inner lumen of the graft and the space between the inner graft layer and the outer graft layer. Preferably, the opening can be large enough to allow blood cells to enter the space. At the same time, the opening can be small enough to prevent flow patterns to form in the space that would delay blood coagulation. In some embodiments, the size of the opening can be between 20 μm and 5 mm. In some embodiments, the size of the opening can be between 100 μm and 2 mm. There can be one opening or multiple openings. The opening can be in form of holes punched into the graft material or in form of porous graft material (such as, without limitation, PTFE, ePTFE, polyester, or other suitable materials) with pore sizes sufficiently large to allow blood to enter the space between the inner and outer graft layer. Alternatively, the inner graft can be made from a porous metal. In some embodiments, a braided stent can form the inner graft. The gaps between the braids can allow blood to enter the space. The braided stent would eliminate the need for a separate stent to support the inner graft. The braided stent can be constructed from memory metals or memory plastics, or any other suitable material or materials.


Further, in some embodiments, the inner graft can be a generally non-porous material having a plurality of openings formed therein along at least a portion, or all of, the length of the inner graft layer. In some embodiments, as will be described in greater detail below, the inner graft layer can have pores or openings that are configured to allow one directional fluid flow. For example, the pores or openings can permit fluid to flow from an inside lumen through the inner graft, through the openings or pores in the inner graft layer, and into the space between the inner and outer graft layers, while being configured to prevent the flow of fluid (e.g., blood) from flowing in the opposite direction. Any of the embodiments of the graft layers disclosed herein, including the inner graft layer described above, can be used with any of the stent graft embodiments described in this application. For example, in some embodiments, the porous or perforated inner graft layer described herein can be used with any of the stent or stent graft embodiments disclosed herein with appropriate modifications, as necessary. All of such combinations are contemplated as forming a part of this disclosure.


In some embodiments, the inner graft material can be configured such that the pores or openings thrombose after a particular duration of exposure to a patient's blood. In this arrangement, the pores or openings in the inner graft material will essentially be sealed, so as to substantially inhibit or prevent the flow of blood through such openings or pores after the thrombosis of such openings or pores occurs. For example, the openings or pores can be configured to thrombose or become substantially sealed after the blood thinning agent (such as heparin) that is typically administered during arterial repair or other vascular procedures is removed or diminished from the patient's blood stream, thereby sealing the blood within the space between the inner and outer grafts within such space.


In some embodiments, the circumference of the outer graft cover can be larger than that of the inner graft. The outer graft cover can be large enough to inflate to the size of the flow lumen in the diseased blood vessel. In some embodiments, a substantial portion of the outer graft cover can touch the wall of the blood vessel when inflated. In the case of an abdominal aortic aneurysm, the diameter of the outer graft cover can be from approximately 4 cm or less to approximately 8 cm. In the case of an iliac aneurysm, the diameter of the outer graft can be from approximately 2 cm or less to approximately 4 cm. In some embodiments, the outer graft cover can be configured to only cover a portion of the inner graft cover. In some embodiments, the outer graft cover can be configured to only cover the distal portion, the proximal portion, or the mid-section of the inner graft cover. In some embodiments, the outer graft cover can be configured to only cover a portion of the circumference of the inner graft cover.



FIG. 6 illustrates the embodiment of the two-layer bifurcated stent graft 30 illustrated in FIG. 5, deployed in the abdominal aorta. The stent graft 30 can be positioned proximally below the renal arteries 2a and 2b and distally in the iliac arteries 3a and 3b. The stent graft 30 can seal the aneurysm 1 from the aorta 4. The inner graft cover 35 can form a flow lumen for blood through the aorta. The outer graft cover 36 can be initially collapsed onto the inner graft cover 35.



FIG. 7 illustrates the embodiment of the two-layer bifurcated stent graft 30 illustrated in FIG. 5, with the space 36 between the two layers of graft filled with blood. As such, FIG. 7 shows the final configuration of the embodiment of the two-layer bifurcated stent graft 30 illustrated in FIG. 5. The blood in the aorta can enter through the openings 37 into the space 36 between the inner graft cover 34 and the outer graft cover 35. In some embodiments, the blood can cause the outer graft cover to inflate until it substantially fills or approximately completely fills the aneurysm sac. The blood in the space 36 can ultimately coagulate and form a thrombus.



FIG. 8 illustrates the pressure distribution in the embodiment of the two-layer bifurcated stent graft 30 illustrated in FIG. 5 after stent graft deployment. FIG. 9 illustrates the pressure distribution in the embodiment of the two-layer bifurcated stent graft 30 illustrated in FIG. 5, after the space between the two layers of graft is filled with blood. As such, FIGS. 8 and 9 illustrate the mechanism of inflation or expansion of the outer graft cover. When the stent graft is placed in the abdominal aorta, the aneurysm 41 can be isolated from the aorta 40 as illustrated in FIG. 8. As a result, the pressure (Psac) in the aneurysm sac can drop. The pressure in the aorta (Paorta) is typically 60 mmHg-200 mmHg. The isolated aneurysm sac can be pressurized antegrade from the lumbar arteries. The pressure in the sac (Psac) is typically 30 mmHg-50 mmHg immediately after stent graft placement. After stent graft placement, the pressure in the aorta (Paorta) can push blood through the openings 46 into the space 43 between the inner graft cover 44 and the outer graft cover 45. The pressure in the space (Pbag) can rise above the sac pressure (Psac) and the outer graft 45 cover can inflate and expand approximately against the wall of the sac 41, displacing the blood in the sac 41. During the filling phase, the pressure in the space (Pbag) can be lower than the aortic pressure (Paorta) but higher than the sac pressure (Psac).



FIG. 9 illustrates the completed filling of the space 43. Once the outer graft cover 45 is fully inflated, the pressure in the space 43 can be approximately the same as the pressure in the aorta 41. Blood flow through the opening or openings 46 can thereafter be significantly reduced or can cease. The blood in the sac 41 can be completely displaced. The blood in the space 43 can be stagnant and can coagulate, forming thrombus. Once the thrombus is formed, the solid thrombus in the space 43 can isolate the pressure between the aorta and the aneurysm wall so that the aneurysm sac can be isolated from the aortic pressure.


Therefore, in some embodiments, a branch vessel adjacent to the outer graft layer 45 (for example, a lumbar or mesenteric artery) can facilitate the expansion of the outer graft layer against the inside surface of the vessel wall by reducing the pressure (Psac) within the space between the outer graft material and the vessel wall relative to the pressure within the aorta (Paorta). In this configuration, in some embodiments, the space 43 between the inner and outer layers can fill with blood from the aorta as the branch vessel reduces the pressure between the outer graft layer and the vessel wall, such that an additional instrument or medically administered injection of blood or fluid into (i.e., pressurization or inflation of) the space 43 may be avoided.


Type II endoleaks, as illustrated in FIG. 3, can be suppressed or eliminated by the expanded outer graft cover. The lumbar arteries 5a, 5b in FIG. 3 can be covered by the outer graft cover 45. Without limitation, one advantage of some embodiments of the proposed design is that the aneurysm sac can be filled and Type II endoleaks can be suppressed without the need for any additional procedural steps above and beyond the standard steps required to deploy a stent graft in the abdominal aorta. Furthermore, in some embodiments, no foreign material is needed to be introduced into the body or the prosthesis to embolize the sac.


The concept of a second outer graft layer can also be applied to the stent grafting of challenging anatomies in which is it difficult to obtain a seal between the graft and the vessel wall. For example, the blood vessel may have local calcium deposit, thrombus, or sudden changes in the diameter. The stent connected to the inner graft layer may not allow the inner graft to continuously contact the wall along the seal line. In the following disclosure, additional embodiments and examples are presented to illustrate further benefits of the second outer graft layer configuration.



FIG. 10 shows an abdominal aneurysm with the two common iliac arteries 51a and 51b branching from the aneurismal aorta 50. The common iliac artery 51a branches into the hypogastric artery 52 and the external iliac artery 53 about 3 cm-8 cm from the bifurcation.



FIG. 11 shows an abdominal aneurysm with one diseased common iliac artery 61b. The common iliac artery 61b is enlarged. An enlarged common iliac artery may compromise the distal seal when stent grafting the aneurysm. Specifically blood may flow from the hypogastric artery 62 into the aneurysm sac 60, thereby pressurizing the sac.



FIG. 12 illustrates an aneurismal common iliac treated with an embodiment of a coiled member 72 in the hypogastric artery and an embodiment of a stent graft 70 into the external iliac artery. As such, FIG. 12 illustrates one strategy to stent graft an abdominal aneurysm with one diseased common iliac artery as shown in FIG. 11. First, in some embodiments, the hypogastric artery 62 can be embolized. This can be accomplished by placing the coiled member 72 in the hypogastric artery 62. Alternatively, an alternative form of a plug can be deployed in the hypogastric artery 62. After embolization of the hypogastric artery 62, in some embodiments, a stent graft 70 can be placed in the aneurysm 60, the stent graft 70 having an extended branch graft 71 that can extend into the external iliac artery 63 to provide a distal seal.



FIG. 13 illustrates an alternative strategy for the endovascular treatment of the abdominal aneurysm with one diseased common iliac artery as shown in FIG. 11. The stent graft 80 can have a branch graft 81 with a two-layer graft cover described in FIG. 5. The arterial pressure can inflate the outer graft cover 82 and the outer graft 82 can cover and seal the hypogastric artery 62 and at least partially fill the diseased portion of the common iliac artery 61b. The concept can work similar to the occlusion of the lumbar arteries in the aneurysm sac. The proposed strategy can eliminate the need for coiling, which often has to be done in a separate procedure prior to stent grafting.



FIGS. 14-16 illustrate another application of the two-layer graft cover. FIG. 14 shows a bifurcated stent graft 100 placed onto the anatomical bifurcation 93 for stent grafting of an abdominal aortic aneurysm 90. The bifurcated device 100 can provide a platform for subsequent graft placement at the aortic neck 92. In FIG. 15, an embodiment of a tubular stent graft extension 101 can be placed to overlap with the bifurcated stent graft 100 and seal the aneurysm below the renal arteries 91a and 91b. Distance between the renal arteries and the aneurysm sac is often referred to as the proximal neck 92, and the distance between the proximal end of the stent graft 101 and the aneurysm sac 90 is often referred to as the proximal seal zone. It can be preferred to place the proximal end of the stent graft 101 right below the renal arteries 91a and 91b to maximize the length of the proximal seal zone. In short-neck aneurysms, the potential seal zone may be too short to provide an adequate seal. Commercially available stent graft systems typically require a neck length of at least 10-15 mm to ensure a proper proximal seal.



FIG. 16 shows an embodiment of a two-layer stent graft extension 110 placed in the proximal neck 92 of the aortic aneurysm 90. The inflated outer layer 111 can extend the contact length 112 between the stent graft 110 and the aortic wall into the aneurysm sac 90 effectively increasing the proximal seal zone.



FIG. 17 illustrates another embodiment of a stent graft system 118, which can be a two-layer stent graft system. The stent graft system can be tubular, bifurcated The graft system 118 can comprise a first stent graft 120, which can have a tubular stent 121 and one or more tubular inner graft or graft segments 122 that partially cover the stent 121. With reference to FIG. 17, some embodiments of the stent graft system 118 can have a first inner graft 122a and a second inner graft 122b that can be positioned adjacent to the end portions of the stent 121. In some embodiments, the first inner graft 122a and a second inner graft 122b can be spaced apart so that a portion of the stent 121 can be uncovered by the inner graft 122. For example, without limitation, a portion of the midsection 124 of the stent 121 can be uncovered. Either or both of the first inner graft 122a and a second inner graft 122b can be positioned on an inside surface of the stent 121 (as illustrated), or can be positioned on an outside surface of the stent 121.


An outer graft cover 123 can be connected to or otherwise supported by the stent 121 at one or both ends. The outer graft cover 123 can have a constant diameter, or can have a varying diameter along a length thereof. In some embodiments, the middle portion of the outer graft cover 123 can define a larger diameter than one or more of the end portions of the outer graft cover 123. In some embodiments, the diameter of some or all of the outer graft cover 123 can be greater than the diameter of the first inner graft 122a and/or second inner graft 122b. The uncovered midsection 124 can provide for rapid filling of the outer graft cover 123 with the patient's blood, as is illustrated in FIG. 17. A second stent graft 125 can be placed inside the first stent graft 120 to seal the space created between the outer graft cover 123 and the inner graft 122. The graft 127 of the second stent graft 125, the inner graft 122 and the outer graft 123 of the first stent graft 120 can form a sealed space in which the patient's blood can be trapped.



FIG. 18 illustrates the placement of the stent graft system 118 in an aneurysm 131 of the aorta 130. When the first stent graft 120 is placed over the aneurysm sac 131, the blood pressure in the aorta 130 can force blood into the space 132 and can inflate the outer graft cover 123. The second stent graft 125 can be placed inside the first stent graft 120 and can be configured to substantially or completely seal the space 132.



FIG. 19 illustrates another embodiment of a stent graft system 138. The first stent graft 140 can be a bifurcated stent graft for the treatment of aorto-iliac aneurysms. In some embodiments, the embodiment of the stent graft system 138 can have any of the same features, components, or other details of any of the other embodiments of stent graft systems disclosed herein. In some embodiments, the second stent graft 141 can be a straight tubular stent graft. One advantage of the system comprising two stent grafts is that the space inside the outer graft cover can fill rapidly. Apertures or other small openings in the inner graft cover may reduce the flow into the space. They may also clog or get obstructed by emboli and thrombus. Another advantage is that the second stent graft can provide an instantaneous seal. In case of apertures or small openings, blood exiting the sac during the coagulation phase may form emboli or thrombus. Another advantage is the ability to inject contrast medium into the space to verify inflation of the outer graft cover.


The concept of a second stent graft can also be applied to the embodiments described herein with regard to, without limitation, FIGS. 5, 13, and 15. The second stent graft can be placed to cover the segments of the first stent graft that contains the openings for the blood to enter into the outer graft layer.



FIG. 20 illustrates another embodiment of a stent graft system 148, which can be a two-layer stent graft system. In some embodiments, the stent graft system 148 can have any of the components, features, or other details of any of the other stent graft system embodiments disclosed herein, including without limitation the stent graft system 118 described above.


With reference to FIG. 20, the graft system 148 can comprise a first stent graft 150, which can have a tubular stent 151 and one or more tubular inner graft or graft segments 152 that partially cover the stent 151. A portion 154 of the stent 151 can be uncovered. In some embodiments, the uncovered portion 154 of the stent 151 can be located near an end portion of the stent 151. An outer graft cover 153 can be connected to or otherwise supported by the stent 151 at one or both ends. The uncovered portion 154 can provide for rapid filling of the outer graft cover 153 with the patient's blood. A second stent graft 155 can be placed inside the first stent graft 150 to seal the space created between the outer graft cover 153 and the inner graft 152. In some embodiments, the second stent graft 155 can be placed inside the first stent graft 150 after the outer graft cover 153 has been sufficiently filled with blood. The graft 157 of the second stent graft 155, the inner graft 152 and the outer graft 153 of the first stent graft 150 can form a sealed space in which the patient's blood can be trapped.


In some embodiments, the outer graft cover 153 can be placed on the outside of the stent 151 and inverted at the ends to partially cover the inside of the stent 152. The open stent segment 155 can be located close to one end of the stent graft system. In some embodiments, the outer graft cover 157 can be configured to only form a hem at one end of the stent 151.



FIG. 21A illustrates some of the components of another embodiment of a stent graft 180, showing the components in an unassembled state. FIG. 21B illustrates the embodiment of the stent graft 180 of FIG. 21A, showing the components in the assembled state. With reference to FIGS. 21A and 21B, the stent graft system 180 can have a graft 181 and a stent 182, and can have one or more flow valves therein configured to allow flow of fluid through said valves or openings in only one direction. The stent graft system 180, or any other stent graft system disclosed herein, can have a bifurcated stent graft (as illustrated), a tubular stent graft (not illustrated), or any other suitable configuration of a stent graft, such as curved, tapering, or otherwise.


The bifurcated graft 181 can have a main graft body portion 184, a first graft branch portion 185, and a second graft branch portion 186. Similarly, the stent 182 can have a main stent body portion 187, a first stent branch portion 188, and a second stent branch portion 189. The stent 182, or any other stent embodiment disclosed herein, can provide substantially continuous scaffolding along the length thereof, or can be formed in segments or discrete portions that can be interconnected directly to other stent segments portions or can be held in the desired position by attachment to the graft material. In some embodiments, the stent 182, or segments or portions thereof, can be sutured or otherwise attached to the graft 181. In some embodiments, as in the illustrated embodiment, the proximal portion 182a of the stent 182 can extend proximal to the proximal end 181a of the graft 181 so that such proximal portion 182a of the stent 182 is not covered by the graft 181.


One or more openings 190 can be formed in the graft 181. In the illustrated embodiment, one opening 190 is formed laterally through a side wall of the main graft body portion 184 of the graft 181. The opening 190 can be formed in any desired position of the graft 181. As illustrated, in some embodiments, the opening 190 can be positioned so that blood can flow through the one or more opening 190, similar to the openings 37 described above with reference to FIGS. 5 and 6. The opening or openings 190, or any other openings disclosed herein, can be positioned in the graft 181 so as to be positioned between the struts, wires, or other members of the stent which the graft covers.


With reference to FIG. 21A, the stent graft system 180, or any other stent graft system disclosed herein, can have a second graft member 200 having a tabbed or flap portion 202 (also referred to herein as a flap member, valve cover, or just cover). As will be discussed in greater detail, the openings 190 and covers 202 can form single directional flow valves to permit flow into the space surrounding the graft 184 and second graft member 200. The second graft member 200 can have a tubular shape and can be configured to surround at least a portion of the length of the stent 182 around all or a portion of the circumference of the stent 182. As illustrated in FIG. 21B, the second graft member 200 can be configured to be positioned over the outside surface of the proximal portion 182a of the stent 182, and can be sized and configured so that the tabbed portion 202 can cover the opening 190. In some embodiments, the second graft member 200 can be sutured or otherwise attached to the graft 181. For example, without limitation, the second graft member 200 can be fixed to the graft 181 using one or more sutures 206 circumferentially positioned around the stent graft system 180, as illustrated in FIG. 21B.


In some embodiments, the flap member 202 can be formed on or affixed to the main graft body portion 184 of the graft 181. Without limitation, the flap member 202 can cover a portion of the length of the stent 182 and all or a portion of the circumference of the stent 182. In some arrangements, the flap member 202 can be stitched, sutured, adhered, or otherwise attached to the outside surface of the main graft body portion 184 of the graft 181.


An outer graft member 212 can be positioned over an outside surface of the main graft body portion 184 and the second graft member 200. The outer graft member 212 can be sealingly fixed to the main graft body portion 184 and the second graft member 200 so that a substantially sealed space 214 is created between the outer graft member 212 and the main graft body portion 184 and/or the second graft member 200. The stent graft system 180 can be configured so that blood can pass from the inside of the main graft body 184 through the opening 190 and into the space 210 formed inside the outer graft member 212, but so that the tabbed portion 202 inhibits or substantially prevents blood from flowing from the space 214 back through the opening 190.


In this arrangement, similar to other embodiments described above, blood in the aorta can pass through the openings 190 into the space 214 formed inside the outer graft member 212, causing the outer graft cover 212 to inflate until it substantially fills or approximately completely fills an aneurysm sac. The blood in the space 214 can ultimately coagulate and form a thrombus.


The graft 181, second graft member 200, the outer graft member 212, or any other graft embodiment disclosed herein can be formed from PTFE, ePTFE, or any other suitable material. The stent 182, or any other stent embodiment disclosed herein, can be formed from Nitinol, stainless steel, a shape memory or heat activated material, or any other suitable material. The stent 182, or any other stent embodiment disclosed herein, can be self-expandable, balloon expandable, or expandable by any other mechanical or other means such as, without limitation, heat.



FIG. 22A illustrates some of the components of another embodiment of a stent graft 180′, showing the components in an unassembled state. FIG. 22B illustrates the embodiment of the stent graft 180′ of FIG. 22A, showing the components in the assembled state. With reference to FIGS. 22A and 22B, the stent graft system 180′ can have a graft 181′ and a stent 182. The stent graft system 180′ can have any of the same features, configurations, or other details of the stent graft system 180 described above, except as described below.


With reference to FIGS. 22A, 22B, the main graft body portion 184′ of the graft 181′ can have two or more openings 190′ formed therein (two openings 190′ being illustrated). Additionally, the second graft member 200′ can have a tabbed or flap portion 202′ that can be configured to cover each of the two or more openings 190′. Although not required, in some embodiments, the tabbed portion 202′ can have a slit 203′ between the portions of the tabbed portion 202′ that cover each of the openings 190′.



FIG. 23A is a perspective view of a portion of the layer or layers comprising an embodiment of a porous or perforated inner graft 230. FIG. 23B is a top view of a portion of the layer or layers comprising the embodiment of a porous or perforated inner graft 230 of FIG. 23A. In some embodiments, with reference to FIGS. 23A, 23B, the inner graft 230 can have a base layer 232 and an outer layer 234 and one or more flow direction valve members, as will be described in greater detail. In some embodiments, the base layer 232 can be porous or otherwise pervious, or can be impervious and define a plurality of openings therethrough. The base layer 232 can be made from PTFE, ePTFE, polyester, or any other suitable material, and can be woven, wrapped or otherwise formed from a sheet, or otherwise. In some embodiments, the base layer 232 can be substantially impervious, and the tubules 238 and openings 240 can be formed directly in the base layer 232.


The outer layer 234 can be formed from a substantially or completely impervious material having one or more channels or tubules 238 projecting away from the base layer, the tubules 238 each having an opening 240 in a distal end 238a thereof. The tubules 238 can be formed from a thin cylinder or cone of material so that the walls of said tubules 238 are tapered. The tubules 238 can be configured to permit fluid flow therethrough in only one direction (for example, in the direction indicated by arrow “F” in FIG. 23A), and can be configured to prevent or substantially inhibit the flow of fluid (such as blood) in the opposite direction. For example, as discussed above, the tubules 238 can be formed on an outside surface of any embodiments of the inner graft disclosed herein so as to project outwardly away from the outside surface of the inner graft 230. In some embodiments, the outer layer 234 can cover substantially all of the porous or pervious base layer 232 so that substantially the entire inner graft 230 comprises one-way flow control.


The tubules 238 can have a thickness (represented by “T” in FIG. 23B), opening diameter or size (represented by “D” in FIG. 23A), and height (represented by “H” in FIG. 23B) configured such that the tubules 238 collapse or otherwise substantially close when a fluid pressure acting against an outside surface 242 of the inner graft 230 is greater than a fluid pressure acting against an opposite, inside surface of the inner graft. The material chosen for the film or outer layer 232 (or the inner layer 234 if the tubules 238 are formed therein) can affect the optimal thickness T, diameter D, and/or height H of the tubules 238.


In some embodiments, the diameter or size D of the openings 240 can range from approximately 20 μm or less to 2 mm or more, and can have a height H from approximately one half of the diameter D to 5 times the diameter D, and a thickness T from approximately 2 μm or less to approximately 100 μm or more. Further, depending on the desired flow rate through the inner graft 230 and number of tubules 238 formed in the inner graft 230, the tubules 238 can be spaced apart by distance “L” shown in FIG. 23B that can range from approximately 120 μm or less to approximately 5 mm or more.


Thrombosis of the blood in the space between the inner graft cover and the outer graft cover can stop or significantly reduce the communication of the pressure in the flow lumen to the vessel wall. The blood in the space can coagulate and thrombose once the blood is stagnant. The coagulation process can be accelerated by placing a thrombotic agent into the space between the inner and outer graft cover. Suitable agents can include, but are not limited to, salts, silk, albumin, and fibrin. The agents can be placed in the space in powder form or coating of the inner surfaces of the inner and outer graft cover. The opening into the space can be treated with a thrombotic agent to seal off the opening after the outer graft cover has been inflated. For example, a section of the inner graft cover can be made from a woven or knitted porous silk fabric.


Although the inventions have been disclosed in the context of a preferred embodiments and examples, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It can be also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments can be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combine with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it can be intended that the scope of the present disclosure herein disclosed should not be limited by the particular disclosed embodiments described above.

Claims
  • 1. A stent graft, comprising: a main body;branch grafts that extend from an end of the main body;an inner graft cover; andan outer graft cover that covers at least a portion of the inner graft cover and that is completely uncovered by the branch grafts;wherein the inner graft cover is made of a blood-impermeable non-porous material perforated to have one or more openings formed by punching therein to allow fluid communication of blood between an inner lumen of the main body and a space between the inner graft cover and the outer graft cover.
  • 2. The stent graft of claim 1, wherein the outer graft cover is made from a same material as the inner graft cover.
  • 3. The stent graft of claim 1, wherein the outer graft cover has one or more radiopaque markers thereon to provide visualization of a position or level of inflation of the outer graft cover during deployment.
  • 4. The stent graft of claim 1, wherein a diameter of the outer graft cover is larger than a diameter of the inner graft cover.
  • 5. The stent graft of claim 1, wherein the inner graft cover and the outer graft cover are connected at distal and proximal ends to form the space between the inner graft cover and the outer graft cover.
  • 6. The stent graft of claim 1, wherein each of the one or more openings in the inner graft cover are large enough to allow blood cells to enter the space between the inner graft cover and the outer graft cover from the lumen of the main body.
  • 7. The stent graft of claim 6, wherein each of the one or more openings in the inner graft cover are small enough to prevent flow patterns to form in the space that would delay blood coagulation.
  • 8. The stent graft of claim 1, wherein each of the one or more openings in the inner graft cover has a length of between 20 μm and 5 mm.
  • 9. The stent graft of claim 1, wherein each of the one or more openings in the inner graft cover has a length of between 100 μm and 2 mm.
  • 10. The stent graft of claim 1, wherein the one or more openings in the inner graft cover include two or more openings in the inner graft cover.
  • 11. The stent graft of claim 1, wherein the one or more openings in the inner graft cover are one or more holes in a graft material of the inner graft cover.
  • 12. The stent graft of claim 1, wherein the one or more openings in the inner graft cover are configured to only allow one directional fluid flow.
  • 13. The stent graft of claim 1, wherein the one or more openings in the inner graft cover are configured to permit fluid to flow from the inner lumen of the main body to the space between the inner graft cover and the outer graft cover and to prevent the flow of fluid from flowing in an opposite direction.
  • 14. The stent graft of claim 1, wherein the outer graft cover is configured to only cover a portion of the inner graft cover.
  • 15. The stent graft of claim 1, wherein the outer graft cover is configured to only cover a distal portion of the inner graft cover.
  • 16. The stent graft of claim 1, wherein the outer graft cover is configured to only cover a proximal portion of the inner graft cover.
  • 17. The stent graft of claim 1, wherein the outer graft cover is configured to only cover a mid-section of the inner graft cover.
  • 18. A stent graft, comprising: a main body;branch grafts that extend from an end of the main body;an inner graft cover; andan outer graft cover that covers at least a portion of the inner graft cover and that is completely uncovered by the branch grafts;wherein the inner graft is made from a non-porous material comprising at least two circumferentially aligned openings, said openings configured to allow fluid communication of blood between an inner lumen of the main body and a space between the inner graft cover and the outer graft cover.
  • 19. The stent graft of claim 18, wherein the non-porous material is blood impermeable.
PRIORITY INFORMATION AND INCORPORATION BY REFERENCE

This application is a continuation of U.S. patent application Ser. No. 14/461,308, filed on Aug. 15, 2014, which is a divisional of U.S. patent application Ser. No. 13/397,952, filed Feb. 16, 2012, now U.S. Pat. No. 8,821,564, which is a continuation of U.S. patent application Ser. No. 12/844,266, filed on Jul. 27, 2010, now U.S. Pat. No. 8,118,856, which claims priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/228,938, filed Jul. 27, 2009, and U.S. Provisional Application No. 61/248,105, filed Oct. 2, 2009, all of which applications are hereby incorporated by reference as if fully set forth herein.

US Referenced Citations (588)
Number Name Date Kind
2127903 Bowen Aug 1938 A
2437542 Krippendorf May 1944 A
2845959 Sidebotham Aug 1958 A
2990605 Demsyk Jul 1961 A
3029819 Starks Apr 1962 A
3096560 Liebig Jul 1963 A
3769336 Lee, Jr. et al. Oct 1973 A
3805301 Liebig Apr 1974 A
3983083 Kaetsu et al. Sep 1976 A
3996938 Clark, III Dec 1976 A
4362156 Feller, Jr. et al. Dec 1982 A
4473067 Schiff Sep 1984 A
4497074 Ray et al. Feb 1985 A
4501263 Harbuck Feb 1985 A
4503568 Madras Mar 1985 A
4525157 Vaillancourt Jun 1985 A
4562596 Kornberg Jan 1986 A
4580568 Gianturco Apr 1986 A
4590068 Berthet et al. May 1986 A
4592754 Gupte et al. Jun 1986 A
4617932 Kornberg Oct 1986 A
4641653 Rockey Feb 1987 A
4650466 Luther Mar 1987 A
4756307 Crownshield Jul 1988 A
4800882 Gianturco Jan 1989 A
4816028 Kapadia et al. Mar 1989 A
4840940 Sottiurai Jun 1989 A
4856516 Hillstead Aug 1989 A
4878906 Lindemann et al. Nov 1989 A
4907336 Gianturco Mar 1990 A
4922905 Strecker May 1990 A
4950068 Mizuta Aug 1990 A
4981478 Evard et al. Jan 1991 A
4981947 Tomagou et al. Jan 1991 A
4994069 Ritchrt et al. Feb 1991 A
4994071 MacGregor Feb 1991 A
4998539 Delsanti Mar 1991 A
5015232 Maglinte May 1991 A
5019090 Pinchuk May 1991 A
5034001 Garrison et al. Jul 1991 A
5035706 Giantureo et al. Jul 1991 A
5041093 Chu Aug 1991 A
5064435 Porter Nov 1991 A
5078726 Kreamer Jan 1992 A
5102417 Palmaz Apr 1992 A
5104399 Lazarus Apr 1992 A
5104404 Wolff Apr 1992 A
5108424 Hoffman, Jr. et al. Apr 1992 A
5116349 Aranyi May 1992 A
5123917 Lee Jun 1992 A
5133732 Wiktor Jul 1992 A
5135535 Kramer Aug 1992 A
5135536 Hillstead Aug 1992 A
5145620 Sakai et al. Sep 1992 A
5147334 Moss Sep 1992 A
5156619 Ehrenfeld Oct 1992 A
5156620 Pigott Oct 1992 A
5178634 Martinez Jan 1993 A
5197976 Herweck et al. Mar 1993 A
5201757 Heyn et al. Apr 1993 A
5207960 Moret de Rocheprise May 1993 A
5211658 Clouse May 1993 A
5246452 Sinnott Sep 1993 A
5256141 Gancheff et al. Oct 1993 A
5275622 Lazarus et al. Jan 1994 A
5282860 Matsuno et al. Jan 1994 A
5282824 Gianturco Feb 1994 A
5304200 Spaulding Apr 1994 A
5314444 Gianturco May 1994 A
5314472 Fontaine May 1994 A
5316023 Palmaz et al. May 1994 A
5320602 Karpeil Jun 1994 A
5330500 Song Jul 1994 A
5330528 Lazim Jul 1994 A
5338298 McIntyre Aug 1994 A
5342387 Summers Aug 1994 A
5354308 Simon et al. Oct 1994 A
5360443 Barone et al. Nov 1994 A
5366504 Andersen et al. Nov 1994 A
5370683 Fontaine Dec 1994 A
5370691 Samson Dec 1994 A
5383892 Cardon et al. Jan 1995 A
5387235 Chuter Feb 1995 A
5397355 Marin et al. Mar 1995 A
5405377 Cragg Apr 1995 A
5415664 Pinchuk May 1995 A
5423886 Arru et al. Jun 1995 A
5425765 Tiefenbrun et al. Jun 1995 A
5443477 Marin et al. Aug 1995 A
5443498 Fontaine Aug 1995 A
5443500 Sigwart Aug 1995 A
5449372 Schmaltz et al. Sep 1995 A
5458575 Wang Oct 1995 A
5458615 Klemm et al. Oct 1995 A
5462530 Jang Oct 1995 A
5464419 Glastra Nov 1995 A
5464450 Buscemi et al. Nov 1995 A
5484444 Braunschweiler et al. Jan 1996 A
5489295 Piplani et al. Feb 1996 A
5496365 Sgro Mar 1996 A
5507767 Maeda et al. Apr 1996 A
5507769 Marin et al. Apr 1996 A
5507770 Turk Apr 1996 A
5507771 Gianturco Apr 1996 A
5514154 Lau et al. May 1996 A
5514379 Weissleder et al. May 1996 A
5522880 Barone et al. Jun 1996 A
5522881 Lentz Jun 1996 A
5522883 Slater et al. Jun 1996 A
5530528 Houki et al. Jun 1996 A
5534024 Rogers et al. Jul 1996 A
5545211 An et al. Aug 1996 A
5545118 Fang Sep 1996 A
5554180 Turk Sep 1996 A
5554181 Das Sep 1996 A
5562697 Christiansen Oct 1996 A
5562726 Chuter Oct 1996 A
5562727 Turk et al. Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5571173 Parodi Nov 1996 A
5575816 Rudnick et al. Nov 1996 A
5575818 Pinchuk Nov 1996 A
5578071 Parodi Nov 1996 A
5578072 Barone et al. Nov 1996 A
5591197 Orth et al. Jan 1997 A
5591198 Boyle et al. Jan 1997 A
5591199 Porter et al. Jan 1997 A
5591229 Parodi Jan 1997 A
5591230 Horn et al. Jan 1997 A
5593417 Rhodes Jan 1997 A
5604435 Foo et al. Feb 1997 A
5607445 Summers Mar 1997 A
5609625 Piplani et al. Mar 1997 A
5609627 Goicoechea et al. Mar 1997 A
5609628 Keranen Mar 1997 A
5628783 Quiachon et al. May 1997 A
5628786 Banas et al. May 1997 A
5628788 Pinchuk May 1997 A
5630829 Lauterjung May 1997 A
5630830 Verbeek May 1997 A
5632763 Glastra May 1997 A
5632772 Alcime et al. May 1997 A
5639278 Dereume et al. Jun 1997 A
5641373 Shannon et al. Jun 1997 A
5643171 Bradshaw et al. Jul 1997 A
5643278 Wijay Jul 1997 A
5643312 Fischell et al. Jul 1997 A
5647857 Anderson et al. Jul 1997 A
5649952 Lam Jul 1997 A
5651174 Schwartz et al. Jul 1997 A
5653727 Wiktor Aug 1997 A
5653743 Martin Aug 1997 A
5653746 Schmitt Aug 1997 A
5653747 Dereume Aug 1997 A
5662580 Bradshaw et al. Sep 1997 A
5662614 Edoga Sep 1997 A
5662675 Polanskyj Stockert et al. Sep 1997 A
5662700 Lazarus Sep 1997 A
5662701 Plaia et al. Sep 1997 A
5662702 Keranen Sep 1997 A
5662703 Yurek et al. Sep 1997 A
5665115 Cragg Sep 1997 A
5665117 Rhodes Sep 1997 A
5669880 Solar Sep 1997 A
5669924 Shaknovich Sep 1997 A
5669934 Sawyer Sep 1997 A
5674241 Bley et al. Oct 1997 A
5674276 Andersen et al. Oct 1997 A
5676685 Razaivi Oct 1997 A
5676696 Marcade Oct 1997 A
5676697 McDonald Oct 1997 A
5679400 Tuch Oct 1997 A
5681345 Tuteneuer Oct 1997 A
5681346 Orth et al. Oct 1997 A
5683448 Cragg Nov 1997 A
5683449 Marcade Nov 1997 A
5683450 Goicoechea et al. Nov 1997 A
5683451 Lenker et al. Nov 1997 A
5683452 Barone et al. Nov 1997 A
5683453 Palmaz Nov 1997 A
5690642 Osborne et al. Nov 1997 A
5690643 Wijay Nov 1997 A
5690644 Yurek et al. Nov 1997 A
5693066 Rupp et al. Dec 1997 A
5693084 Chuter Dec 1997 A
5693086 Goicoechea et al. Dec 1997 A
5693087 Parodi Dec 1997 A
5693088 Lazarus Dec 1997 A
5695516 Fischell et al. Dec 1997 A
5695517 Marin et al. Dec 1997 A
5697948 Marin et al. Dec 1997 A
5697968 Rogers et al. Dec 1997 A
5709703 Lukic et al. Jan 1998 A
5713917 Leonhardt Feb 1998 A
5716365 Goicoechea et al. Feb 1998 A
5716393 Lindenberg et al. Feb 1998 A
5718724 Goicoechea et al. Feb 1998 A
5718973 Lewis et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5720776 Chuter et al. Feb 1998 A
5723004 Dereume et al. Mar 1998 A
5725535 Hegde et al. Mar 1998 A
5733303 Israel et al. Mar 1998 A
5733325 Robinson et al. Mar 1998 A
5746776 Smith et al. May 1998 A
5749880 Banas et al. May 1998 A
5752974 Rhee et al. May 1998 A
5755770 Ravenscroft May 1998 A
5755771 Penn et al. May 1998 A
5755777 Chuter May 1998 A
5769882 Fogarty et al. Jun 1998 A
5769885 Quiachon et al. Jun 1998 A
5769887 Brown et al. Jun 1998 A
5782855 Lau et al. Jul 1998 A
5782909 Quiachon et al. Jul 1998 A
5785679 Abolfathi et al. Jul 1998 A
5800407 Eldor Sep 1998 A
5800456 Maeda et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5800526 Anderson et al. Sep 1998 A
5810836 Hussein et al. Sep 1998 A
5824037 Fogarty et al. Oct 1998 A
5824039 Piplani et al. Oct 1998 A
5824040 Cox et al. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5843160 Rhodes Dec 1998 A
5843162 Inoue Dec 1998 A
5843164 Frantzen et al. Dec 1998 A
5843167 Dwyer et al. Dec 1998 A
5846261 Kotula et al. Dec 1998 A
5851228 Pinheiro Dec 1998 A
5855565 Bar-Cohen et al. Jan 1999 A
5855599 Wan Jan 1999 A
5860998 Robinson et al. Jan 1999 A
5867432 Toda Feb 1999 A
5868783 Tower Feb 1999 A
5871536 Lazarus Feb 1999 A
5871537 Holman et al. Feb 1999 A
5874500 Rhee et al. Feb 1999 A
5879321 Hill Mar 1999 A
5879366 Shaw et al. Mar 1999 A
5891193 Robinson et al. Apr 1999 A
5893887 Jayaraman Apr 1999 A
5902334 Dwyer et al. May 1999 A
5906640 Penn et al. May 1999 A
5906641 Thompson et al. May 1999 A
5916263 Goicoceha et al. Jun 1999 A
5919225 Lau et al. Jul 1999 A
5925075 Myers et al. Jul 1999 A
5928279 Shannon et al. Jul 1999 A
5931866 Frantzen Aug 1999 A
5935161 Robinson et al. Aug 1999 A
5938696 Goicoechea et al. Aug 1999 A
5948018 Dereume et al. Sep 1999 A
5957901 Mottola et al. Sep 1999 A
5957973 Quiachon et al. Sep 1999 A
5961546 Robinson et al. Oct 1999 A
5961548 Shmulewitz Oct 1999 A
5980552 Pinchasik et al. Nov 1999 A
6001125 Golds et al. Dec 1999 A
6004347 McNamara et al. Dec 1999 A
6004348 Banas et al. Dec 1999 A
6007575 Samuels Dec 1999 A
6015431 Thornton et al. Jan 2000 A
6017363 Hojeibane Jan 2000 A
6022359 Frantzen Feb 2000 A
6027779 Campbell et al. Feb 2000 A
6027811 Campbell et al. Feb 2000 A
6030415 Chuter Feb 2000 A
6039749 Marin et al. Mar 2000 A
6039755 Edwin et al. Mar 2000 A
6039758 Quiachon et al. Mar 2000 A
6045557 White et al. Apr 2000 A
6051020 Goicoechea et al. Apr 2000 A
6053932 Daniel et al. Apr 2000 A
6053940 Wijay Apr 2000 A
6063113 Kavteladze May 2000 A
6070589 Keith et al. Jun 2000 A
6074398 Leschinsky Jun 2000 A
6077296 Shokoohi et al. Jun 2000 A
6077297 Robinson et al. Jun 2000 A
6083259 Frantzen Jul 2000 A
6086611 Duffy et al. Jul 2000 A
6090128 Douglas Jul 2000 A
6093203 Uflacker Jul 2000 A
6096053 Bates Aug 2000 A
6106548 Reubin et al. Aug 2000 A
6117167 Goicoechea et al. Sep 2000 A
6123715 Amplatz Sep 2000 A
6123722 Fogarty et al. Sep 2000 A
6123723 Konya et al. Sep 2000 A
6124523 Banas et al. Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6129756 Kugler et al. Oct 2000 A
6139573 Sogard et al. Oct 2000 A
6152943 Sawhney Nov 2000 A
6152957 Jang Nov 2000 A
6165201 Sawhney et al. Dec 2000 A
6168610 Marin et al. Jan 2001 B1
6171281 Zhang Jan 2001 B1
6183481 Lee et al. Feb 2001 B1
6183509 Dibie Feb 2001 B1
6187034 Frantzen Feb 2001 B1
6187036 Shaolian Feb 2001 B1
6192944 Greenhalgh Feb 2001 B1
6197049 Shaolian et al. Mar 2001 B1
6203735 Edwin et al. Mar 2001 B1
6214022 Taylor et al. Apr 2001 B1
6221102 Baker et al. Apr 2001 B1
6231562 Khosravi et al. May 2001 B1
6231563 White et al. May 2001 B1
6245099 Edwin et al. Jun 2001 B1
6261316 Shaolian et al. Jul 2001 B1
6267775 Clerc et al. Jul 2001 B1
6273909 Kugler et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6280467 Leonhardt Aug 2001 B1
6283991 Cox et al. Sep 2001 B1
6299597 Buscemi et al. Oct 2001 B1
6312407 Zadno-Azizi et al. Nov 2001 B1
6312462 McDermott et al. Nov 2001 B1
6325819 Pavcnik et al. Dec 2001 B1
6344053 Boneau Feb 2002 B1
6348066 Pinchuk et al. Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352553 Van der Burg et al. Mar 2002 B1
6352561 Leopold et al. Mar 2002 B1
6355060 Lenker et al. Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6361637 Martin et al. Mar 2002 B2
6375666 Mische Apr 2002 B1
6375675 Dehdashtian et al. Apr 2002 B2
6395017 Dwyer et al. May 2002 B1
6395018 Castaneda May 2002 B1
6395019 Chobotov May 2002 B2
6398807 Chouinard et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6409757 Trout, III et al. Jun 2002 B1
6413273 Baum et al. Jul 2002 B1
6416474 Penner et al. Jul 2002 B1
6416542 Marcade et al. Jul 2002 B1
6432131 Ravenscroft Aug 2002 B1
6432134 Anson et al. Aug 2002 B1
6436135 Goldfarb Aug 2002 B1
6440171 Doubler et al. Aug 2002 B1
6464721 Marcade et al. Oct 2002 B1
6475166 Escano Nov 2002 B1
6475170 Doron et al. Nov 2002 B1
6491719 Fogrty et al. Dec 2002 B1
6500202 Shaolian et al. Dec 2002 B1
6508833 Pavcnick et al. Jan 2003 B2
6508835 Shaolian et al. Jan 2003 B1
6511325 Lalka et al. Jan 2003 B1
6514281 Blaeser et al. Feb 2003 B1
6514282 Inoue Feb 2003 B1
6517572 Kugler et al. Feb 2003 B2
6517573 Pollock et al. Feb 2003 B1
6520988 Colombo et al. Feb 2003 B1
6524335 Hartley et al. Feb 2003 B1
6524336 Papazolgou Feb 2003 B1
6533763 Schneiter Mar 2003 B1
6533811 Ryan et al. Mar 2003 B1
6551350 Thornton et al. Apr 2003 B1
6558396 Inoue May 2003 B1
6558414 Layne May 2003 B2
6562063 Euteneurer et al. May 2003 B1
6565596 White et al. May 2003 B1
6565597 Fearnot et al. May 2003 B1
RE38146 Palmaz et al. Jun 2003 E
6572645 Leonhardt Jun 2003 B2
6576009 Ryan et al. Jun 2003 B2
6582460 Cryer Jun 2003 B1
6585758 Chouinard et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6592615 Marcade et al. Jul 2003 B1
6605294 Sawhney Aug 2003 B2
6610087 Zarbatany et al. Aug 2003 B1
6613073 White et al. Sep 2003 B1
6614026 Adamec Sep 2003 B1
6616675 Evard et al. Sep 2003 B1
6626939 Burnside et al. Sep 2003 B1
6638468 Hill et al. Oct 2003 B1
6652579 Cox et al. Nov 2003 B1
6669718 Besselink Dec 2003 B2
6673042 Samson et al. Jan 2004 B1
6673105 Chen Jan 2004 B1
6689157 Madrid et al. Feb 2004 B2
6692512 Jang Feb 2004 B2
6695833 Frantzen Feb 2004 B1
6695875 Stelter et al. Feb 2004 B2
6699276 Sogard et al. Mar 2004 B2
6706064 Anson Mar 2004 B1
6719797 Ferree Apr 2004 B1
6729356 Baker et al. May 2004 B1
6730119 Smalling May 2004 B1
6733523 Shaolian et al. May 2004 B2
6748953 Sherry et al. Jun 2004 B2
6756007 Pletzer et al. Jun 2004 B2
6761733 Chobotov et al. Jul 2004 B2
6767359 Weadock Jul 2004 B2
6770091 Richter et al. Aug 2004 B2
6818014 Brown et al. Nov 2004 B2
6818018 Sawhney Nov 2004 B1
6821292 Pazienza et al. Nov 2004 B2
6858037 Penn et al. Feb 2005 B2
6899728 Phillips et al. May 2005 B1
6923829 Boyle et al. Aug 2005 B2
6929661 Bolduc et al. Aug 2005 B2
6932837 Amplatz et al. Aug 2005 B2
6939371 Kugler et al. Sep 2005 B2
6939377 Jayaraman et al. Sep 2005 B2
6942691 Chuter Sep 2005 B1
6942692 Landau et al. Sep 2005 B2
6942693 Chouinard et al. Sep 2005 B2
6953475 Shaolian et al. Oct 2005 B2
6960217 Bolduc Nov 2005 B2
6969373 Schwartz et al. Nov 2005 B2
6981982 Armstrong et al. Jan 2006 B2
6984244 Perez et al. Jan 2006 B2
6994722 DiCarlo Feb 2006 B2
7004964 Thompson et al. Feb 2006 B2
7004967 Chouinard et al. Feb 2006 B2
7014653 Ouriel et al. Mar 2006 B2
7025779 Elliott Apr 2006 B2
7029494 Soun et al. Apr 2006 B2
7029496 Rakos et al. Apr 2006 B2
7033389 Sherry Apr 2006 B2
7063707 Bose et al. Jun 2006 B2
7074213 McGuckin, Jr. et al. Jul 2006 B2
7074236 Rabkin et al. Jul 2006 B2
7094255 Penn et al. Aug 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7122051 Dallara et al. Oct 2006 B1
7122052 Greenhalgh Oct 2006 B2
7125464 Chobotov et al. Oct 2006 B2
7147660 Chobotov et al. Dec 2006 B2
7160318 Greenberg et al. Jan 2007 B2
7163715 Kramer Jan 2007 B1
7175652 Cook et al. Feb 2007 B2
7175657 Khan et al. Feb 2007 B2
7189256 Smith Mar 2007 B2
7192441 Sherry Mar 2007 B2
7201770 Johnson et al. Apr 2007 B2
7217255 Boyle et al. May 2007 B2
7235095 Haverkost et al. Jun 2007 B2
7241308 Andreas et al. Jul 2007 B2
7244444 Bates Jul 2007 B2
7261733 Brown et al. Aug 2007 B1
7264631 DeCarlo Sep 2007 B2
7264632 Wright et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7270675 Chun et al. Sep 2007 B2
7314483 Landau et al. Jan 2008 B2
7320703 DiMatteo et al. Jan 2008 B2
7329414 Fisher et al. Feb 2008 B2
7331980 Dubrul et al. Feb 2008 B2
7347850 Sawhney Mar 2008 B2
7402168 Acosta et al. Jul 2008 B2
7435253 Hartley et al. Oct 2008 B1
7476232 Deal Jan 2009 B2
7491230 Holman et al. Feb 2009 B2
7520895 Douglas et al. Apr 2009 B2
7530988 Evans et al. May 2009 B2
7553324 Andreas et al. Jun 2009 B2
7572289 Sisken et al. Aug 2009 B2
7588825 Bell et al. Sep 2009 B2
7618408 Yandell Nov 2009 B2
7623909 Sanghera et al. Nov 2009 B2
7637932 Bolduc et al. Dec 2009 B2
7651519 Dittman Jan 2010 B2
7666220 Evans et al. Feb 2010 B2
7666333 Lanphere et al. Feb 2010 B2
7674284 Melsheimer Mar 2010 B2
7682383 Robin Mar 2010 B2
7691135 Shaolian et al. Apr 2010 B2
7722657 Hartley May 2010 B2
7727228 Abboud et al. Jun 2010 B2
7766959 DiMatteo et al. Aug 2010 B2
7790273 Lee et al. Sep 2010 B2
7799046 White et al. Sep 2010 B2
7803178 Whirley et al. Sep 2010 B2
7833259 Boatman Nov 2010 B2
7872068 Khosravi et al. Jan 2011 B2
7879081 DeMatteo et al. Feb 2011 B2
7897086 Khairkhahan et al. Mar 2011 B2
7909794 Briscoe et al. Mar 2011 B2
7910129 Kennedy et al. Mar 2011 B2
8034100 Shaolian et al. Oct 2011 B2
8118856 Schreck et al. Feb 2012 B2
8216295 Bemjamin et al. Jul 2012 B2
8568466 Shaolian et al. Oct 2013 B2
8821564 Schreck et al. Sep 2014 B2
20020049412 Madrid et al. Apr 2002 A1
20020169497 Wholey et al. Nov 2002 A1
20030004560 Chobotov et al. Jan 2003 A1
20030014075 Rosenbluth et al. Jan 2003 A1
20030051735 Pavcnik et al. Mar 2003 A1
20030097169 Brucker et al. May 2003 A1
20030194505 Milbocker Oct 2003 A1
20030223957 Schwartz et al. Dec 2003 A1
20030225453 Murch Dec 2003 A1
20040016997 Ushio Jan 2004 A1
20040098096 Eton May 2004 A1
20040116997 Taylor et al. Jun 2004 A1
20040167597 Costantino et al. Aug 2004 A1
20040167618 Shaolian et al. Aug 2004 A1
20040176832 Hartley et al. Sep 2004 A1
20040186471 Trieu Sep 2004 A1
20040193245 Deem et al. Sep 2004 A1
20040215322 Kerr Oct 2004 A1
20050004660 Rosenbluth et al. Jan 2005 A1
20050027238 Fago et al. Feb 2005 A1
20050038494 Eidenschink Feb 2005 A1
20050058327 Pieper Mar 2005 A1
20050059994 Walak et al. Mar 2005 A1
20050060025 Mackiewicz et al. Mar 2005 A1
20050080476 Gunderson et al. Apr 2005 A1
20050090804 Chobotov et al. Apr 2005 A1
20050113693 Smith et al. May 2005 A1
20050113905 Greenberg et al. May 2005 A1
20050119731 Brucker et al. Jun 2005 A1
20050121120 Van Dijk et al. Jun 2005 A1
20050155608 Pavcnik et al. Jul 2005 A1
20050158272 Whirley et al. Jul 2005 A1
20050159803 Lad et al. Jul 2005 A1
20050165480 Jordan et al. Jul 2005 A1
20050171598 Schaeffer Aug 2005 A1
20050203206 Trieu Sep 2005 A1
20050216047 Kumoyama et al. Sep 2005 A1
20050220848 Bates Oct 2005 A1
20050228480 Douglas et al. Oct 2005 A1
20050240153 Opie Oct 2005 A1
20050240258 Bolduc et al. Oct 2005 A1
20050240260 Bolduc Oct 2005 A1
20050271727 Yao Dec 2005 A1
20060030911 Letort Feb 2006 A1
20060074481 Vardi et al. Apr 2006 A1
20060167538 Rucker Jul 2006 A1
20060210635 Laurent et al. Sep 2006 A1
20060212112 Evans et al. Sep 2006 A1
20060233990 Humphrey et al. Oct 2006 A1
20060233991 Humphrey et al. Oct 2006 A1
20060292206 Kim Dec 2006 A1
20070016243 Ramaiah et al. Jan 2007 A1
20070027467 Ortiz et al. Feb 2007 A1
20070050008 Kim et al. Mar 2007 A1
20070055346 Chu et al. Mar 2007 A1
20070142817 Hurt Jun 2007 A1
20070150041 Evans et al. Jun 2007 A1
20070156084 Belhe et al. Jul 2007 A1
20070203571 Kaplan et al. Aug 2007 A1
20070208367 Fiorella et al. Sep 2007 A1
20070213804 Schaeffer et al. Sep 2007 A1
20070213805 Schaeffer et al. Sep 2007 A1
20070299497 Shaolian et al. Dec 2007 A1
20080009936 Kim et al. Jan 2008 A1
20080039923 Taylor et al. Feb 2008 A1
20080132993 Rasmussen Jun 2008 A1
20080172122 Mayberry et al. Jul 2008 A1
20080187591 Rhee et al. Aug 2008 A1
20080188923 Chu Aug 2008 A1
20080215087 Pavcnik et al. Sep 2008 A1
20080228259 Chu Sep 2008 A1
20080253987 Rehor et al. Oct 2008 A1
20080275536 Zarins et al. Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080294237 Chu Nov 2008 A1
20080300672 Kassab et al. Dec 2008 A1
20090068279 Richard Mar 2009 A1
20090081275 Rolfes et al. Mar 2009 A1
20090112305 Goldmann et al. Apr 2009 A1
20090117070 Daniloff et al. May 2009 A1
20090117188 Gershkovich et al. May 2009 A1
20090216315 Schreck et al. Aug 2009 A1
20090238815 Udipi et al. Sep 2009 A1
20090259298 Mayberry et al. Oct 2009 A1
20090287145 Cragg et al. Nov 2009 A1
20090294049 Udipi et al. Dec 2009 A1
20090318949 Ganpath et al. Dec 2009 A1
20090319029 Evans et al. Dec 2009 A1
20100004728 Rao et al. Jan 2010 A1
20100004730 Benjamin et al. Jan 2010 A1
20100036360 Herbowy et al. Feb 2010 A1
20100094409 Barker et al. Apr 2010 A1
20100100115 Soetermans et al. Apr 2010 A1
20110054586 Mayberry et al. Mar 2011 A1
20110054587 Mayberry et al. Mar 2011 A1
20110054594 Mayberry et al. Mar 2011 A1
Foreign Referenced Citations (78)
Number Date Country
2220141 Nov 1996 CA
2133530 Jan 1999 CA
295 21 548 Feb 1995 DE
295 21 776 Feb 1995 DE
0 177 330 Jun 1991 EP
0 596 145 May 1994 EP
0 621 015 Oct 1994 EP
0 659 389 Jun 1995 EP
0 688 545 Dec 1995 EP
0 689 806 Jan 1996 EP
0 712 614 May 1996 EP
0 732 088 Sep 1996 EP
0 732 088 Sep 1996 EP
0 740 928 Nov 1996 EP
0 740 928 Nov 1996 EP
0 747 020 Dec 1996 EP
0 775 470 May 1997 EP
0 782 841 Jul 1997 EP
0 783 873 Jul 1997 EP
0 783 873 Jul 1997 EP
0 783 874 Jul 1997 EP
0 783 874 Jul 1997 EP
0 762 856 Sep 1998 EP
0 880 948 Dec 1998 EP
0 904 745 Mar 1999 EP
0 974 314 Jan 2000 EP
0 732 088 Apr 2000 EP
1 054 648 Nov 2000 EP
0 846 450 Dec 2001 EP
0 846 449 Jan 2002 EP
0 846 452 Jan 2002 EP
1 214 020 Jun 2002 EP
1 433 438 Jun 2004 EP
1 181 901 Nov 2005 EP
1 110 515 Mar 2006 EP
0 828 461 Jul 2006 EP
1 181 902 Mar 2009 EP
1 038 606 Jul 1998 ES
1038606 Jul 1998 ES
2 834 199 Jul 2003 FR
04-25755 Jan 1992 JP
08-336597 Dec 1996 JP
9-511160 Nov 1997 JP
2000-500047 Jan 2000 JP
2003-250907 Sep 2003 JP
WO 9313825 Jul 1993 WO
WO 9424961 Nov 1994 WO
WO 9521592 Aug 1995 WO
WO 9618427 Jun 1996 WO
WO 9634580 Nov 1996 WO
WO 9639999 Dec 1996 WO
WO 9641589 Dec 1996 WO
WO 9710757 Mar 1997 WO
WO 9710777 Mar 1997 WO
WO 9714375 Apr 1997 WO
WO 9719652 Jun 1997 WO
WO 9726936 Jul 1997 WO
WO 9729716 Aug 1997 WO
WO 97033532 Sep 1997 WO
WO 97045072 Dec 1997 WO
WO 9802100 Jan 1998 WO
WO 9841167 Sep 1998 WO
WO 9853761 Dec 1998 WO
WO 99029262 Jun 1999 WO
WO 9944536 Sep 1999 WO
WO 9947077 Sep 1999 WO
WO 9958084 Nov 1999 WO
WO 0051522 Sep 2000 WO
WO 0166038 Sep 2001 WO
WO 0187184 Nov 2001 WO
WO 0193782 Dec 2001 WO
WO 0200139 Jan 2002 WO
WO 02102282 Dec 2002 WO
WO 04037116 May 2004 WO
WO 04045393 Jun 2004 WO
WO 05037076 Apr 2005 WO
WO 07000790 Jan 2007 WO
WO-2008107885 Sep 2008 WO
Non-Patent Literature Citations (10)
Entry
US 6,413,270 B1, 07/2002, Thornton et al. (withdrawn)
European Extended & Supplemental Searth Report re EP App. No. 10806904.8, dated Nov. 13, 2012.
Harris, J. Milton et al., Poly (ethylene glycol) Chemistry and Biological Applications, ACS Symposium Series, American Chemical Society, Washington DC, Developed from a symposium sponsored by the Division of Polymer Chemistry, Inc., at the 213th National Meeting of the American Chemical Society, San Francisco, CA, Apr. 13-17, 1997, Chapter 1; 12 pages.
International Search Report and Written Opinion re PCT/US2010/043432, dated Apr. 22, 2011.
Menger, et al., “Quantitative analysis of neovascularization of different PTEE-implants,” European Journal of Cardiothoracic Surgery, (1990) 4:191-196.
Final Office Action dated Nov. 3, 2016, from U.S. Appl. No. 14/461,308.
Final Office Action dated Oct. 27, 2015, from U.S. Appl. No. 14/461,308.
International Report on Patentability and Written Opinion for PCT/US2010/043432, dated Jan. 31, 2012, dated Feb. 9, 2012.
Non-final Office Action dated Apr. 16, 2015, from U.S. Appl. No. 14/461,308.
Non-final Office Action dated Apr. 21, 2016, from U.S. Appl. No. 14/461,308.
Related Publications (1)
Number Date Country
20180193131 A1 Jul 2018 US
Provisional Applications (2)
Number Date Country
61228938 Jul 2009 US
61248105 Oct 2009 US
Divisions (1)
Number Date Country
Parent 13397952 Feb 2012 US
Child 14461308 US
Continuations (2)
Number Date Country
Parent 14461308 Aug 2014 US
Child 15911629 US
Parent 12844266 Jul 2010 US
Child 13397952 US