Stent range transducers

Abstract
A system for delivering and positioning a stent within a bifurcated body lumen includes a stent delivery system including a catheter, an expansion device, and an ultrasound transducer. The ultrasound transducer is configured for transmitting and receiving signals and for imaging of a body lumen so as to locate an ostium of a branch vessel and facilitate alignment of the stent side hole with the ostium.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is related to U.S. patent application Ser. No. 09/668,687, entitled “Differentially Expanding Stent and Methods of Use”; and U.S. patent application Ser. No. 09/668,832, entitled, “Bifurcation Stent Systems and Methods,” the complete disclosures of which are incorporated herein by reference.


BACKGROUND OF THE INVENTION

A type of endoprosthesis device, commonly referred to as a stent, may be placed or implanted within a vein, artery or other hollow body organ or lumen for treating occlusions, stenoses, or aneurysms of a vessel by reinforcing the wall of the vessel or by expanding the vessel. Stents have been used to treat dissections in blood vessel walls caused by balloon angioplasty of the coronary arteries as well as peripheral arteries and to improve angioplasty results by preventing elastic recoil and remodeling of the vessel wall. Two randomized multicenter trials have recently shown a lower restenosis rate in stent treated coronary arteries compared with balloon angioplasty alone (Serruys, P W et al., New England Journal of Medicine 331: 489-495 (1994) and Fischman, D L et al. New England Journal of Medicine 331:496-501 (1994)). Stents have been successfully implanted in the urinary tract, the bile duct, the esophagus and the tracheo-bronchial tree to reinforce those body organs, as well as implanted into the neurovascular, peripheral vascular, coronary, cardiac, and renal systems, among others. The term “stent” as used in this Application is a device which is intraluminally implanted within bodily vessels to reinforce collapsing, dissected, partially occluded, weakened, diseased or abnormally dilated or small segments of a vessel wall.


One of the drawbacks of conventional stents is that they are difficult to position. In general, positioning a stent involves moving the stent to the desired position and then maintaining the position while the stent is deployed. Accurate positioning is critical to proper operation of the stent. For example, the use of such stents to treat diseased vessels at or near a bifurcation (branch point) of a vessel requires very accurate positioning otherwise, there is a potential for compromising the degree of patency of the main vessel and/or its branches, or the bifurcation point. Compromising the bifurcation point limits the ability to insert a branch stent into the side branch if the result of treatment of the main vessel is suboptimal. Suboptimal results may occur as a result of several mechanisms, such as displacing diseased tissue, plaque shifting, vessel spasm, dissection with or without intimal flaps, thrombosis, and embolism.


In light of the foregoing, it would be desirable to provide methods, apparatus and/or systems to increase stent positioning accuracy, particularly when used with bifurcated body lumens.


SUMMARY OF THE INVENTION

The present invention provides exemplary apparatus, systems and methods for accurately delivering and positioning a stent within a body lumen, particularly within a bifurcated body lumen. In one embodiment, a stent delivery system according to the present invention includes a catheter comprising a catheter body having a distal end, a proximal end, a longitudinal axis and a lumen. An expansion device, which in one embodiment is a balloon, is disposed near the catheter body distal end, and a stent having a side hole is disposed over the expansion device. An ultrasound transducer is disposed near the catheter body distal end and positioned for transmitting and receiving ultrasound signals through the side hole. In this manner, an intravascular ultrasound catheter and system is used to help properly position the stent, and properly align the stent side hole with a branch vessel.


The ultrasound transducer is disposed inside the expansion device, or between the expansion device and stent in alternative embodiments. Preferably, the ultrasound transducer is adapted to be axially translated along the longitudinal axis and/or rotated relative to the longitudinal axis. In this manner, the ultrasound transducer may be used to image surrounding fluids and tissue to assure proper stent alignment.


In some embodiments, the stent delivery system further includes a transducer housing to which the transducer is coupled. The housing has distal and proximal ends, with a passageway passing therethrough. The passageway has a guidewire partially disposed therein in one embodiment. The housing proximal end is coupled to a drive cable, which in one embodiment is adapted to rotate the housing relative to the catheter distal end. A controller may be included, coupled to the transducer, to facilitate system operation.


The present invention further provides methods of positioning a stent having a side opening. In one embodiment, the method includes providing a stent delivery system ostensibly as described herein, positioning the stent delivery system in a body lumen, imaging the body lumen with the transducer to locate an ostium of a branch vessel, and aligning the stent side hole with the ostium. In this manner, the use of ultrasound imaging facilitates proper stent side hole alignment with the branch vessel.


In one embodiment, the ultrasound transducer is adapted to rotate relative to the longitudinal axis. The imaging further includes rotating the transducer to image a cross section of the body lumen. Similarly, in one embodiment, aligning the stent side hole includes axially translating the stent along the longitudinal axis and/or rotating the stent about the longitudinal axis. In some embodiments, a body lumen guidewire is introduced, and the catheter is advanced over the guidewire to be near the branch vessel.


In one embodiment, the stent delivery system is conveniently part of a kit, which includes instructions for use setting forth a method for positioning the stent in a bifurcated body lumen so that the side hole is substantially aligned with an ostium of a branch vessel.


Other objects, features and advantages of the present invention will become more fully apparent from the following detailed description, the appended claims and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an overall view of a stent according to the present invention disposed in a body lumen;



FIG. 2 depicts an overall view of a stent delivery apparatus according to the present invention;



FIGS. 3A, 3B and 3C provide side and front cross-sectional views of embodiments of the apparatus shown in FIG. 2;



FIGS. 4A and 4B depict an overall view and a side cross-sectional view, respectively, of an ultrasound imaging device according to the present invention;



FIGS. 5A and 5B depict simplified views of a stent delivery system according to the present invention disposed in a body lumen;



FIGS. 5C and 5D plot transmitted and received ultrasound energy signals as a function of time for stent delivery systems positioned according to FIGS. 5A and 5B, respectively;



FIGS. 6A and 6B depict ultrasound images of a stent within a body lumen;



FIGS. 7A-7C depict simplified cross-sectional images of a vessel having a stent delivery system according to the present invention disposed therein;



FIGS. 8A-8C depict simplified views of a stent delivery system disposed in a body lumen in positions which correspond to the images shown in FIGS. 7A-7C;



FIG. 9 depicts a simplified schematic of a stent delivery system according to the present invention;



FIG. 10 depicts a simplified schematic of imaging catheter electronics for use with the present invention; and



FIG. 11 depicts a kit including apparatus and instructions for use according to the present invention.





DESCRIPTION OF THE SPECIFIC EMBODIMENTS


FIG. 1 depicts a simplified view showing a stent 10 disposed within a main vessel 14. Main vessel 14 may comprise an artery, a vein or a wide range of body lumens into which it is desirable to dispose stent 10. Stent 10 includes a side hole 12, which is in registry with an ostium of a branch vessel 16. The stent wall is comprised of struts and connectors forming multiple passageways. In many cases, it is desirable to have side hole 12 aligned with the ostium of branch vessel 16 to, for example, permit the introduction of a branch stent or second stent (not shown) into branch vessel 16. The alignment of side hole 12 with branch vessel 16 is often crucial to the proper use of stent 10, and prior art methods for alignment are replete with problems. Apparatus, systems and methods of the present invention are directed, in part, to properly aligning side hole 12 with branch vessel 16 by using an image transducer or catheter with stent 10.


Turning now to FIGS. 2, 3A, 3B, 4A and 4B, an exemplary stent delivery system 15 according to the present invention will be described. Stent 10 is shown in a non-expanded state, crimped around a balloon 20. Balloon 20 provides a mechanism for expanding stent 10 when stent 10 is placed at a desired location within a body lumen. It will be appreciated by those skilled in the art that other methods of expanding stent 10 fall within the scope of the present invention. System 15 further includes a transducer 22 to provide an imaging capability to help properly position side hole 12. Transducer 22 typically comprises piezoelectric materials for the conversion of electrical signals into mechanical energy, more specifically, sound energy. As best shown in FIG. 3A, transducer 22 is coupled to a housing 24. In one embodiment, housing 24 is disposed within balloon 20, as shown in FIG. 3A. Transducer housing 24 is positioned so that ultrasound signals transmitted from transducer 22 pass through side hole 12 into the surrounding fluid or tissue. In this manner, and as further described below, transducer 22 may be used to indicate when side hole 12 is properly aligned with a branch vessel 16 as opposed to facing a wall of main vessel 14. In an alternative embodiment (not shown), transducer 22 is mounted on an outer surface of balloon 20 or positioned between balloon 20 and stent 10. For example, transducer 22 may be mounted on balloon 20 within sidehole 12. In one embodiment, a guidewire 18 is disposed through balloon 20, and is used to help guide the stent delivery system to a desired region within a body lumen.


Turning now to FIG. 3B, a cross-sectional view taken along line 3B-3B is shown. Stent 10 comprises a plurality of struts 26 configured in a desired relationship. It will be appreciated by those skilled in the art that the precise configuration of stent struts 26 may vary widely within the scope of the present invention. Further, the present invention may use stent configurations disclosed in U.S. application Ser. Nos. 09/668,687 and 09/668,832 the complete disclosures of which have been previously incorporated by reference. Stent 10, including struts 26, are crimped around balloon 20. The imaging catheter, which includes transducer 22, is disposed within a balloon lumen 30 inside balloon 25. The imaging apparatus has an outer member 32 and an inner member 34 defining a wire lumen 38 therebetween. A passageway 40 is formed within inner member 34. Wire lumen 38 is used to maintain transducer wires 36, which typically connect opposing faces of transducer 22 with a controller (not shown). Passageway 40, in one embodiment, defines a guidewire lumen 40 through which guidewire 18 extends. In this manner, guidewire 18 extends through housing 24 to facilitate proper alignment between transducer 22 and stent 10.


Transducer housing 24 is adapted to be translated axially along a longitudinal axis 200. In one embodiment, the axial translation of transducer housing 24 is made relative to stent 10. Alternatively, balloon 20 and transducer housing 24 are disposed such that they move in parallel, maintaining the proper configuration of transducer 22 with respect to side hole 12.



FIGS. 4A and 4B depict additional details of transducer 22 and housing 24. In one embodiment, a drive cable 44 is coupled to a proximal end of housing 24. FIG. 4A further depicts passageway 40, which extends through housing 24. In one embodiment, drive cable 44 comprises two counterwound cables made of stainless steel, nitinol or the like. Such a drive cable facilitates its introduction into tortuous vasculatures. Drive cable 44 further permits rotation of housing 24, and hence the rotation of transducer 22. Preferably, such rotation is made relative to longitudinal axis 200.



FIG. 4B is a side cross-sectional view of a portion of the imaging catheter. As shown, an optional sheath 46 may be used to enclose drive cable 44. Sheath 46 operates to protect balloon 20 during rotation of drive cable 44. Further, sheath 46 provides a substantially smooth outer surface for embodiments in which the imaging apparatus is translated axially relative to balloon 20 and/or stent 10. Sheath 46 may comprise polyethylene, as well as a wide range of other materials. In one embodiment, sheath 46, drive cable 44 and an inner sleeve 48 correspond to outer member 32 depicted in FIG. 3B.


Drive cable 44 defines guidewire lumen 38 into which transducer wires 36 are disposed. Inner member 34 maintains transducer wires 36 within wire lumen 38. Further, inner member 34 defines passageway 40 through which guidewire 18 may be disposed. In an alternative embodiment, guidewire 18 passes through balloon lumen 30, adjacent to drive cable 44 or sheath 46.



FIGS. 5A and 5B depict a simplified view of the imaging of a body lumen with transducer 22. Similarly, FIGS. 5C and 5D depict the intensity of transmitted and reflected signals when transducer 22 is activated at the positions shown in FIGS. 5A and 5B, respectively. For example, in FIG. 5A, a voltage is applied across transducer 22 to generate ultrasound signals 42 which are transmitted from transducer 22 to surrounding fluids and tissue. When signals 42 encounter a change in medium, and more specifically a change in the density of the material through which the signals are passing, at least a portion of signals 42 is reflected back toward transducer 22. Transducer 22 receives the reflected signal and transmits a corresponding voltage through wires 36 to a controller (not shown) for processing. When transducer 22 is positioned as shown in FIG. 5A, signals 42 travel down a portion of the branch vessels 16 before being reflected by a vessel wall, occlusion, or the like. Hence, as can be seen in FIG. 5C, the reflected signal is received after some time delay relative to the initial signal pulse. Additionally, the travel time for the reflected signal results in much of the sound energy being lost in blood or other fluid. Hence a comparatively weak signal is returned to transducer 22. Correspondingly, if transducer 22 is disposed adjacent a wall 80, such as shown in FIG. 5B, the reflected signal is received much sooner and occurs at a greater intensity than the alignment shown in FIG. 5A. The stronger echo or return signal is depicted in FIG. 5D. In this manner, ultrasound imaging, including the calculated time delay between the original pulse and the reflected signal, can be used to determine whether transducer 22 is in alignment with branch vessel 16.


Turning now to FIGS. 6A and 6B, cross-sectional ultrasound images of a stent disposed in a body lumen are shown. FIG. 6A depicts a two-dimensional image showing stent struts 26 disposed about a center catheter or transducer 22. The imaging performed by transducer 22 reveals blood speckles 68, guidewire 18 and a guidewire shadow 64, as well as a plaque 66 or other vessel wall imperfections. FIG. 6A depicts a generally uniform strut 26 structure and may exemplify the cross-sectional view of a stent that does not have a side hole, or the cross-sectional view of stent 10 when transducer 22 is not aligned with side hole 12. For example, transducer 22 may be located proximal or distal to side hole 12. FIG. 6B depicts a similar view as shown in 6A, except the imaging transducer 22 is aligned with side hole 12. As a result, a gap 62 is seen in the strut 26 pattern. It is the imaging of gap 62 which helps align side hole 12 with branch vessel 16 according to one embodiment of the present invention.


Images depicted in FIGS. 6A and 6B may be created in several ways according to the present invention. In one embodiment as previously described, transducer 22 is rotated about the longitudinal axis 200 by drive cable 44. In this manner, a single transducer 22 can produce a two dimensional, 360 degree image plane as shown in FIGS. 6A and 6B. In an alternative embodiment, a ring of transducer elements (not shown) are disposed in the catheter distal end to produce a two dimensional, 360 degree image plane without the need to rotate the ring of elements, although the elements may be rotated in another embodiment. The fixed ring of transducer elements may be disposed on an outer surface of balloon 25, between balloon 25 and stent 10. Preferably, such an embodiment has at least some of the transducer elements disposed on balloon 25 where sidehole 12 overlies. In this manner, some of the transducer elements will produce gap 62 as shown in FIG. 6B. In an alternative embodiment, the ring of transducer elements are disposed on the outer surface of a sheath, similar to outer member 32 shown in FIG. 3B. In this embodiment, the ring of transducer elements are disposed inside balloon lumen 30. In still another embodiment, the ring of transducer elements are not used to produce an image as in FIGS. 6A and 6B, but instead are used to indicate side hole to branch vessel alignment in accordance with the discussion accompanying FIG. 10.



FIG. 7, in conjunction with FIG. 8, are helpful in explaining methods of the present invention. FIGS. 7A-7C depict simplified ultrasound cross-sectional images of a stent delivery apparatus disposed within a body lumen, such as main vessel 14. The images shown in FIGS. 7A-7C correspond to the stent and ultrasound transducer 22 positions shown in FIGS. 8A-8C. For example, FIGS. 7A and 8A depict stent 10 disposed within main vessel 14 where stent 10 is not adjacent to or aligned with branch vessel 16. Hence, the image of FIG. 7A shows a generally uniform main vessel wall 80 not adjacent to the bifurcation. As a result, gap 62 corresponding to side hole 12 is not aligned with branch vessel 16. In such a configuration, it is desirable to axially translate transducer 22 and stent 10 to continue to search for the desired branch vessel 16.



FIGS. 7B and 8B depict stent 10 in axial or longitudinal alignment with branch vessel 16, however, side hole 12 is facing away from the ostium of branch vessel 16. The image shown in FIG. 7B has an extended region 70 corresponding to the delayed signal return associated with the signals traveling at least partially down branch vessel 16. In other words, the branch vessel 16 opening is now in view of transducer 22. However, as shown in FIG. 7B, gap 62 is still depicted facing main vessel wall 80. In such a configuration, it is then desirable to rotate stent 10 to properly align side hole 12 with the ostium of branch vessel 16. The desired configuration showing the alignment of side hole 12 with the ostium of branch vessel 16 is shown in FIGS. 7C and 8C. FIG. 7C now depicts gap 62 in registry with extended region 70. Such an image corresponds with the alignment of side hole 12 with the ostium of branch vessel 16, as shown in FIG. 8C. In this manner, the use of ultrasound imaging helps facilitate the alignment of side hole 12 with branch vessel 16. Preferably, ultrasound transducer 22 is aligned with side hole 12 at all times, so ultrasound signals are transmitted to and from transducer 22 through side hole 12. In this manner, gap 62 will be seen on the ultrasound images. Alternatively, transducer 22 may move freely relative to stent 10. In such an embodiment, it may be desirable to first image with transducer 22 to locate side hole 12, with reference to the images of FIGS. 6A and 6B as guidance.



FIG. 9 depicts an exemplary stent delivery system 100 according to the present invention. Delivery system 100 includes a console 110 having a controller 120 and a display 130. Controller 120 is coupled to a drive motor 140, which in one embodiment is used to rotate an ultrasound transducer 180. Transducer 180 is similar to transducer 22 described in conjunction with earlier Figures. Further, transducer 180 may be an array of transducers as previously described. As shown in FIG. 9, a catheter 150 is provided having a proximal end 152 and a distal end 154 to which transducer 180 is coupled. Catheters for delivering stents according to the present invention are described in further detail in U.S. application Ser. No. 09/663,111, entitled “Catheter with Side Sheath And Methods”, and U.S. application Ser. No. 09/600,348 entitled “Extendible Stent Apparatus,” the complete disclosures of which are incorporated herein by reference.


As shown, system 100 includes a guidewire 190 over which a balloon 170 and a stent 160 are disposed. A control circuitry, as shown in FIG. 10, is used to transmit an electrical signal from a voltage source to transducer 180 to generate imaging ultrasound signals as is well known in the art. Transducer 180 is then used to position stent 160 such that a side hole (not shown) of stent 160 is properly aligned with an ostium of a branch vessel.



FIG. 10 depicts a simplified schematic of one embodiment of control circuitry 300 for use with the present invention. A high voltage source 310 is coupled to an RF pulse generator 320 which generates an electrical pulse for transmission to transducer 330 by way of a transmit/receive switch 340. Transducer 330 receives the electrical signal as voltage applied across opposing surfaces of transducer 330. The transducer material, preferably piezoelectric material, generates a soundwave, which propagates from the surface of transducer 330. As previously noted, the soundwaves reflect off changes in medium density, such as the wall of a vascular vessel, and a portion of the signal returns to transducer 330. Transducer 330 then transmits the received signal to transmit/receive switch 340 and a receiver filter 350. Timing control and logic circuitry 360 coordinates RF pulse generator 320, transmit/receive switch 340 and receiver filter 350 operation.


As previously described, the time delay of signals received from echoes off the branch vessel are greater than the time delay from signals received off of the main vessel walls. In one embodiment, receiver filter 350 may be used to indicate to a user of system 100 that side hole 12 is aligned, or not aligned, with branch vessel 16. For example, one or more indicator lights 380 may be used to indicate side hole alignment (green) or non-alignment (red). In some embodiments, circuitry 300 does not produce a visual image of the body lumen. Instead, the signals received from transducer 330 are used to indicate sidehole to branch vessel alignment. A power supply 370 facilitates operation of the individual electrical components.


As shown in FIG. 11, stent, catheter and/or system 410 may be conveniently included as part of a kit 400. Kit 400 includes instructions for use 420 which set forth various procedures for deploying stent 10 and imaging using transducer 22 using any of the techniques previously described. Instructions for use 420 may be in written or in machine readable form. Further, it will be appreciated that kit 400 may alternatively include any of the other elements described herein, such as imaging catheter 15, balloon 20, and the like. Further, instructions 420 may describe use of any of the other elements.


The invention has now been described in detail for purposes of clarity of understanding. However, it will be appreciated that certain changes and modifications may be practiced within the scope of the appended claims. For example, while transducer 22 is generally described as coupled to a drive cable 44 facilitating transducer rotation, transducer 22 also may be fixed relative to stent 10. In such an embodiment, transducer 22 would comprise a side-looking transducer facing side hole 12. In this manner, transducer 22 would be aligned with side hole 12 to facilitate side hole 12 alignment with branch vessel 16. Such a configuration would produce images similar to that shown in FIG. 6B, but comprising a pie-shaped portion of the image. Rotation of transducer 22 could then occur by rotating stent 10, with transducer 22 maintaining a vigilant eye towards side hole 12.

Claims
  • 1. A stent delivery system, said system comprising: a catheter comprising a catheter body having a distal end, a proximal end and a lumen;a balloon disposed near said catheter body distal end;a stent having a wall comprising struts and connectors forming multiple passageways and further comprising a side hole, said stent disposed over said balloon;an ultrasound transducer housing having a distal end, a proximal end, and a passage extending through a central portion of said housing between said distal and proximal ends, said housing having a transducer coupled thereto; anda positioning guidewire at least partially disposed in said catheter lumen, said guidewire passing through said transducer housing passage.
Parent Case Info

This application is a Continuation of U.S. patent application Ser. No. 09/669,060, filed Sep. 22, 2000, now U.S. Pat. No. 6,689,156. This application claims priority to U.S. application Ser. No. 09/669,060 to the extent appropriate under the law. U.S. patent application Ser. No. 09/669,060 claims priority to U.S. Provisional Application No. 60/155,611 filed on Sep. 23, 1999, to the extent appropriate under the law. The complete disclosures of U.S. patent application Ser. No. 09/669,060 and U.S. provisional application Ser. No. 09/669,060 are incorporated herein by reference.

US Referenced Citations (340)
Number Name Date Kind
1596754 Moschelle Aug 1926 A
3657744 Ersek Apr 1972 A
3872893 Roberts Mar 1975 A
4140126 Choudhury Feb 1979 A
4309994 Grunwald Jan 1982 A
4410476 Redding et al. Oct 1983 A
4413989 Schjeldahl et al. Nov 1983 A
4421810 Rasmussen Dec 1983 A
4453545 Inoue Jun 1984 A
4503569 Dotter Mar 1985 A
4552554 Gould et al. Nov 1985 A
4681570 Dalton Jul 1987 A
4689174 Lupke Aug 1987 A
4731055 Melinyshyn et al. Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4759748 Reed Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4769029 Patel Sep 1988 A
4819664 Nazari Apr 1989 A
4872874 Taheri Oct 1989 A
4878495 Grayzel Nov 1989 A
4896670 Crittenden Jan 1990 A
4900314 Quackenbush Feb 1990 A
4906244 Pinchuk et al. Mar 1990 A
4909258 Kuntz et al. Mar 1990 A
4957501 Lahille et al. Sep 1990 A
4957508 Kaneko et al. Sep 1990 A
4964850 Bouton et al. Oct 1990 A
4983167 Sahota Jan 1991 A
4994071 MacGregor Feb 1991 A
5042976 Ishitsu et al. Aug 1991 A
5054501 Chuttani et al. Oct 1991 A
5059177 Towne et al. Oct 1991 A
5061240 Cherian Oct 1991 A
5064435 Porter Nov 1991 A
5102403 Alt Apr 1992 A
5102417 Palmaz Apr 1992 A
5104404 Wolff Apr 1992 A
5117831 Jang Jun 1992 A
5122125 Deuss Jun 1992 A
5135536 Hillstead Aug 1992 A
5147317 Shank et al. Sep 1992 A
5159920 Condon et al. Nov 1992 A
5176617 Fischell et al. Jan 1993 A
5192297 Hull Mar 1993 A
5217440 Frassica Jun 1993 A
5244619 Burnham Sep 1993 A
5257974 Cox Nov 1993 A
5263932 Jang Nov 1993 A
5282472 Companion et al. Feb 1994 A
5304220 Maginot Apr 1994 A
5320605 Sahota Jun 1994 A
5324257 Osborne et al. Jun 1994 A
5337733 Bauerfeind et al. Aug 1994 A
5338300 Cox Aug 1994 A
5342295 Imran Aug 1994 A
5342297 Jang Aug 1994 A
5350395 Yock Sep 1994 A
5383892 Cardon et al. Jan 1995 A
5387235 Chuter Feb 1995 A
5395332 Ressemann et al. Mar 1995 A
5395334 Keith et al. Mar 1995 A
5404887 Prather Apr 1995 A
5409458 Khairkhahan et al. Apr 1995 A
5413581 Goy May 1995 A
5413586 Dibie et al. May 1995 A
5417208 Winkler May 1995 A
5437638 Bowman Aug 1995 A
5443497 Venbrux Aug 1995 A
5445624 Jimenez Aug 1995 A
5449373 Pinchasik et al. Sep 1995 A
5449382 Dayton Sep 1995 A
5456694 Marin et al. Oct 1995 A
5456712 Maginot Oct 1995 A
5456714 Owen Oct 1995 A
5458605 Klemm Oct 1995 A
5462530 Jang Oct 1995 A
5489271 Andersen Feb 1996 A
5489295 Piplani et al. Feb 1996 A
5496292 Burnham Mar 1996 A
5505702 Arney Apr 1996 A
5507768 Lau Apr 1996 A
5507769 Marin et al. Apr 1996 A
5514154 Lau et al. May 1996 A
5522801 Wang Jun 1996 A
5531788 Dibie et al. Jul 1996 A
5545132 Fagan et al. Aug 1996 A
5549553 Ressemann et al. Aug 1996 A
5549554 Miraki Aug 1996 A
5562620 Klein et al. Oct 1996 A
5562724 Vorwerk et al. Oct 1996 A
5562725 Schmitt et al. Oct 1996 A
5569295 Lam Oct 1996 A
5571087 Ressemann et al. Nov 1996 A
5575771 Walinsky Nov 1996 A
5575818 Pinchuk Nov 1996 A
5591228 Edoga Jan 1997 A
5593442 Klein Jan 1997 A
5607444 Lam Mar 1997 A
5609625 Piplani et al. Mar 1997 A
5609627 Goicoechea et al. Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5613949 Miraki Mar 1997 A
5613980 Chauhan Mar 1997 A
5613981 Boyle et al. Mar 1997 A
5617878 Taheri Apr 1997 A
5626600 Horzewski et al. May 1997 A
5628788 Pinchuk May 1997 A
5632762 Myler May 1997 A
5632763 Glastra May 1997 A
5632772 Alcime et al. May 1997 A
5634902 Johnson et al. Jun 1997 A
5639278 Dereume et al. Jun 1997 A
5643340 Nunokawa Jul 1997 A
5653743 Martin Aug 1997 A
5662614 Edoga Sep 1997 A
5669924 Shaknovich Sep 1997 A
5669932 Fischell et al. Sep 1997 A
5676696 Morcade Oct 1997 A
5676697 McDonald Oct 1997 A
5679400 Tuch Oct 1997 A
5690642 Osborne et al. Nov 1997 A
5693084 Chutter Dec 1997 A
5693086 Goicoechea et al. Dec 1997 A
5697971 Fischell et al. Dec 1997 A
5707354 Salmon Jan 1998 A
5709713 Evans et al. Jan 1998 A
5716365 Goicoechea et al. Feb 1998 A
5718683 Ressemann et al. Feb 1998 A
5718724 Goicoechea et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5723004 Dereume et al. Mar 1998 A
5724977 Yock et al. Mar 1998 A
5728158 Lau et al. Mar 1998 A
5733303 Israel et al. Mar 1998 A
5735893 Lau et al. Apr 1998 A
5746766 Edoga May 1998 A
5749825 Fischell et al. May 1998 A
5749848 Jang et al. May 1998 A
5755734 Richter et al. May 1998 A
5755735 Richter et al. May 1998 A
5755770 Ravenscroft May 1998 A
5755771 Penn et al. May 1998 A
5755778 Kleshinski May 1998 A
5762631 Klein Jun 1998 A
5776101 Goy Jul 1998 A
5776161 Globerman Jul 1998 A
5776180 Goicoechea et al. Jul 1998 A
5800450 Lary et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5814061 Osborne et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5824036 Lauterjung Oct 1998 A
5824040 Cox et al. Oct 1998 A
5824044 Quiachon et al. Oct 1998 A
5827320 Richter et al. Oct 1998 A
5833650 Imran Nov 1998 A
5836966 St. Germain Nov 1998 A
5837008 Berg et al. Nov 1998 A
5843031 Hermann et al. Dec 1998 A
5843160 Rhodes Dec 1998 A
5843164 Frantzen et al. Dec 1998 A
5846204 Solomon Dec 1998 A
5851210 Torossian Dec 1998 A
5851464 Davila et al. Dec 1998 A
5855600 Alt Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5865178 Yock Feb 1999 A
5868777 Lam Feb 1999 A
5871537 Holman et al. Feb 1999 A
5891133 Murphy-Chutorian Apr 1999 A
5897588 Hull et al. Apr 1999 A
5906640 Penn et al. May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5913895 Burpee et al. Jun 1999 A
5913897 Corso, Jr. et al. Jun 1999 A
5921958 Ressemann et al. Jul 1999 A
5922020 Klein et al. Jul 1999 A
5928248 Acker Jul 1999 A
5938682 Hojeibane et al. Aug 1999 A
5938696 Goicoechea et al. Aug 1999 A
5948016 Jang Sep 1999 A
5951599 McCrory Sep 1999 A
5961548 Shmulewitz Oct 1999 A
5967986 Cimochowski et al. Oct 1999 A
5972018 Israel et al. Oct 1999 A
6007517 Anderson Dec 1999 A
6013054 Juin Yan Jan 2000 A
6013091 Ley et al. Jan 2000 A
6017363 Hojeibane Jan 2000 A
6030414 Taheri Feb 2000 A
6033434 Borghi Mar 2000 A
6033435 Penn et al. Mar 2000 A
6036682 Lange et al. Mar 2000 A
6039749 Marin et al. Mar 2000 A
6042597 Kveen et al. Mar 2000 A
6045557 White et al. Apr 2000 A
6048361 Von Oepen Apr 2000 A
6056775 Borghi et al. May 2000 A
6059823 Holman et al. May 2000 A
6059824 Taheri May 2000 A
6066168 Lau et al. May 2000 A
6068655 Seguin et al. May 2000 A
6071285 Lashinski et al. Jun 2000 A
6086611 Duffy et al. Jul 2000 A
6090127 Globerman Jul 2000 A
6090128 Douglas Jul 2000 A
6096073 Webster et al. Aug 2000 A
6099497 Adams et al. Aug 2000 A
6117117 Mauch Sep 2000 A
6117156 Richter et al. Sep 2000 A
6129738 Lashinski et al. Oct 2000 A
6129754 Kanesaka et al. Oct 2000 A
6142973 Carleton et al. Nov 2000 A
6152945 Bachinski et al. Nov 2000 A
6165195 Wilson et al. Dec 2000 A
6165197 Yock Dec 2000 A
6179867 Cox Jan 2001 B1
6183509 Dibie Feb 2001 B1
6190403 Fischell et al. Feb 2001 B1
6203569 Wijay Mar 2001 B1
6210380 Mauch Apr 2001 B1
6210429 Vardi et al. Apr 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217608 Penn et al. Apr 2001 B1
6221080 Power Apr 2001 B1
6221090 Wilson Apr 2001 B1
6221098 Wilson et al. Apr 2001 B1
6231563 White et al. May 2001 B1
6231598 Berry et al. May 2001 B1
6231600 Zhong May 2001 B1
6235051 Murphy May 2001 B1
6241762 Shanley Jun 2001 B1
6258073 Mauch Jul 2001 B1
6258099 Mareiro et al. Jul 2001 B1
6258116 Hojeibane Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6261273 Ruiz Jul 2001 B1
6261305 Marotta et al. Jul 2001 B1
6261319 Kveen et al. Jul 2001 B1
6264682 Wilson et al. Jul 2001 B1
6273911 Cox et al. Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6287314 Lee et al. Sep 2001 B1
6290673 Shanley Sep 2001 B1
6293967 Shanley Sep 2001 B1
6299634 Bergeron Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6309412 Lau et al. Oct 2001 B1
6309414 Rolando et al. Oct 2001 B1
6312459 Huang et al. Nov 2001 B1
6325821 Gaschino et al. Dec 2001 B1
6325826 Vardi et al. Dec 2001 B1
6334870 Her et al. Jan 2002 B1
6346089 Dibie Feb 2002 B1
6361544 Wilson et al. Mar 2002 B1
6361555 Wilson Mar 2002 B1
6383215 Sass May 2002 B1
6387120 Wilson et al. May 2002 B2
6395018 Castaneda May 2002 B1
6398792 O'Connor Jun 2002 B1
6398804 Spielberg Jun 2002 B1
6428570 Globerman Aug 2002 B1
6432133 Lau et al. Aug 2002 B1
6436104 Hojeibane Aug 2002 B2
6436134 Richter et al. Aug 2002 B2
6478816 Kveen et al. Nov 2002 B1
6482211 Choi Nov 2002 B1
6485511 Lau et al. Nov 2002 B2
6494905 Zedler et al. Dec 2002 B1
6511504 Lau et al. Jan 2003 B1
6511505 Cox et al. Jan 2003 B2
6520988 Colombo et al. Feb 2003 B1
6527799 Shanley Mar 2003 B2
6540719 Bigus et al. Apr 2003 B2
6540779 Richter et al. Apr 2003 B2
6572647 Supper et al. Jun 2003 B1
6579309 Loos et al. Jun 2003 B1
6579312 Wilson et al. Jun 2003 B2
6582394 Reiss et al. Jun 2003 B1
6582459 Lau et al. Jun 2003 B1
6596022 Lau et al. Jul 2003 B2
6599316 Vardi et al. Jul 2003 B2
6706062 Vardi et al. Mar 2004 B2
20010012927 Mauch Aug 2001 A1
20010016767 Wilson et al. Aug 2001 A1
20010016768 Wilson et al. Aug 2001 A1
20010027291 Shanley Oct 2001 A1
20010027338 Greenberg Oct 2001 A1
20010029396 Wilson et al. Oct 2001 A1
20010037116 Wilson et al. Nov 2001 A1
20010037138 Wilson et al. Nov 2001 A1
20010037146 Lau et al. Nov 2001 A1
20010037147 Lau et al. Nov 2001 A1
20010039395 Mareiro et al. Nov 2001 A1
20010039448 Dibie Nov 2001 A1
20010047201 Cox et al. Nov 2001 A1
20010049552 Richter et al. Dec 2001 A1
20010056297 Hojeibane Dec 2001 A1
20020013618 Marotta et al. Jan 2002 A1
20020013619 Shanley Jan 2002 A1
20020022874 Wilson Feb 2002 A1
20020026232 Marotta et al. Feb 2002 A1
20020032478 Bockstegers et al. Mar 2002 A1
20020035392 Wilson Mar 2002 A1
20020042650 Vardi et al. Apr 2002 A1
20020052648 McGuckin et al. May 2002 A1
20020058990 Jang May 2002 A1
20020072790 McGuckin et al. Jun 2002 A1
20020107564 Cox et al. Aug 2002 A1
20020111675 Wilson Aug 2002 A1
20020123790 White et al. Sep 2002 A1
20020123797 Majercak Sep 2002 A1
20020123798 Burgermeister Sep 2002 A1
20020151959 Von Oepen Oct 2002 A1
20020156516 Vardi et al. Oct 2002 A1
20020156517 Perouse Oct 2002 A1
20020165604 Shanley Nov 2002 A1
20020173835 Bourang et al. Nov 2002 A1
20020173840 Brucker et al. Nov 2002 A1
20020177892 Globerman Nov 2002 A1
20020183763 Callol et al. Dec 2002 A1
20020193872 Trout et al. Dec 2002 A1
20020193873 Brucker et al. Dec 2002 A1
20030004535 Musbach et al. Jan 2003 A1
20030009209 Hojeibane Jan 2003 A1
20030009214 Shanley Jan 2003 A1
20030014102 Hong et al. Jan 2003 A1
20030023301 Cox et al. Jan 2003 A1
20030050688 Fischell et al. Mar 2003 A1
20030074047 Richter Apr 2003 A1
20030093109 Mauch May 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030114915 Mareiro et al. Jun 2003 A1
20030125791 Sequin et al. Jul 2003 A1
20030125799 Limon et al. Jul 2003 A1
20030125802 Callol et al. Jul 2003 A1
20040015227 Vardi et al. Jan 2004 A1
Foreign Referenced Citations (53)
Number Date Country
2318314 Jul 1999 CA
29701758 May 1997 DE
0684022 Nov 1995 EP
804907 May 1997 EP
876805 Nov 1998 EP
0884028 Dec 1998 EP
0891751 Jan 1999 EP
0897698 Feb 1999 EP
0897700 Feb 1999 EP
0904745 Mar 1999 EP
1031328 Aug 2000 EP
1031330 Aug 2000 EP
2678508 Jan 1993 FR
WO 8806026 Aug 1988 WO
WO 9013332 Nov 1990 WO
WO 9112779 Sep 1991 WO
WO 9219308 Nov 1992 WO
WO 9521592 Aug 1995 WO
WO 9641592 Dec 1996 WO
WO 9709946 Mar 1997 WO
WO 9716217 May 1997 WO
WO 9726936 Jul 1997 WO
WO 9733532 Sep 1997 WO
WO 9741803 Nov 1997 WO
WO 9745073 Dec 1997 WO
WO 9817204 Apr 1998 WO
WO 9819628 May 1998 WO
WO 9835634 Aug 1998 WO
WO 9836709 Aug 1998 WO
WO 9837833 Sep 1998 WO
WO 9844871 Oct 1998 WO
WO 9848733 Nov 1998 WO
WO 9852497 Nov 1998 WO
WO 9915103 Apr 1999 WO
WO 9917680 Apr 1999 WO
WO 9934749 Jul 1999 WO
WO 9936002 Jul 1999 WO
WO 9939661 Aug 1999 WO
WO 9958059 Nov 1999 WO
WO 9965419 Dec 1999 WO
WO 0000104 Jan 2000 WO
WO 0012166 Mar 2000 WO
WO 0013613 Mar 2000 WO
WO 0053122 Sep 2000 WO
WO 0074595 Dec 2000 WO
WO 0121095 Mar 2001 WO
WO 0121109 Mar 2001 WO
WO 0121244 Mar 2001 WO
WO 0170299 Sep 2001 WO
WO 02068012 Sep 2002 WO
WO 02076333 Oct 2002 WO
WO 02094336 Nov 2002 WO
WO 03055414 Jul 2003 WO
Related Publications (1)
Number Date Country
20040148006 A1 Jul 2004 US
Provisional Applications (1)
Number Date Country
60155611 Sep 1999 US
Continuations (1)
Number Date Country
Parent 09669060 Sep 2000 US
Child 10758020 US