1. Field of the Invention
The present invention is generally related to a stent having improved flexibility along the length of the stent, and a method for manufacturing a stent having improved flexibility along the length of the stent.
2. Background of the Invention
A stent is typically a hollow, generally cylindrical device that is deployed in a body lumen from a radially contracted configuration into a radially expanded configuration, which allows it to contact and support a vessel wall. A plastically deformable stent can be implanted during an angioplasty procedure by using a delivery system that includes a balloon catheter bearing a compressed or “crimped” stent, which has been loaded onto the balloon. The stent radially expands as the balloon is inflated, forcing the stent into contact with the body lumen, thereby forming a support for the vessel wall. Deployment is effected after the stent has been introduced percutaneously, transported transluminally, and tracked and positioned at a desired location by means of the balloon catheter.
Stents may be formed from wire(s), may be cut from a tube, or may be cut from a sheet of material and then rolled into a tube-like structure. While some stents may include a plurality of connected rings that are substantially parallel to each other and are oriented substantially perpendicular to a longitudinal axis of the stent, others may include a helical coil that is wrapped around the longitudinal axis at a non-perpendicular angle.
It is desirable to provide a stent that is flexible to minimize the tracking effort through tortuous vessel anatomy, and a stent that is conformable to the vessel wall, yet provides adequate radial strength to support the vessel.
In an embodiment of the present invention, a stent includes a continuous wave form wrapped around a longitudinal axis of the stent at a pitch angle to define a helix comprising a plurality of turns. The wave form includes a plurality of struts and a plurality of crowns. Each crown connects adjacent struts within a turn to define the continuous wave form. The stent also includes a plurality of connections configured to connect selected crowns of adjacent turns. Unconnected crowns of adjacent turns that substantially face each other are spaced from each other and define a gap therebetween. The gap between the unconnected crowns of adjacent turns is variable around a circumference of the stent.
In an embodiment of the present invention, there is provided a method of manufacturing a stent. The method includes forming a wave form comprising a plurality of struts and a plurality of crowns. Each crown connects adjacent struts. The method also includes wrapping the wave form around a longitudinal axis at a pitch angle relative to the longitudinal axis to define a helix that includes a plurality of turns substantially centered about the longitudinal axis, connecting selected crowns of adjacent turns, and forming a variable gap between unconnected crowns of adjacent turns that substantially face each other around a circumference of the stent along the pitch angle.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which:
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and use of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
When the stent 10 of
To overcome the decrease in flexibility and yet still track the stent 10 through a curve in the lumen, the operator typically increases the amount of force applied to the delivery system so that an additional amount of force may be applied to the interfering crowns 24 to generally conform the interfering crowns with the curve in the lumen.
The connections 130 may be created by fusing the selected crowns 124 together. As used herein, “fusing” is defined as heating the target portions of materials to be fused together, without adding any additional material, to a level where the material in the target portions flow together, intermix with one another, and form a fusion when the materials cool down to, for example, room temperature. A suitable laser may be used to create the fusion.
In an embodiment, the connections 130 may be created by welding or soldering the selected crowns 124 together. As used herein, “welding” and “soldering” are defined as heating an additional material that is separate from the selected crowns and applying the heated additional material to the selected crowns 124 so that when the additional material cools, the selected crowns 124 are welded or soldered together.
In an embodiment, the connections 130 may be created by fusing, welding, or soldering an additional piece of material (not shown) that extends between selected crowns 124. The additional piece of material may resemble a strut or a portion of a strut, and may be sized to provide spacing between the selected crowns of two adjacent turns, if desired. In an embodiment, the stent 110 may be cut from a tube, and the connections 130 may include material from the tube. The illustrated embodiments are not intended to be limiting in any way.
In contrast to the stent 10 of
It has been found that the stent 110 illustrated in
As illustrated in
As illustrated in
The stent 210 also includes a plurality of connections 240 that are configured to connect selected crowns 232 of adjacent turns 222 so that when the stent is in an unexpanded condition, the plurality of connections 240 generally lie along a connection helix CH defined by a connection helical angle β relative to the longitudinal axis LA. As illustrated in
Like the connections 130 discussed above, the connections 240 may be created by fusing the selected crowns 232 together, as “fusing” is defined above. In an embodiment, the connections 240 may be created by welding or soldering the selected crowns 232 together, as “welding” and “soldering” are defined above. In an embodiment, the connections 240 may be created by fusing, welding, or soldering an additional piece of material (not shown) that extends between selected crowns 232. The additional piece of material may resemble a strut or a portion of a strut, and may be sized to provide spacing between the selected crowns of two adjacent turns, if desired. The illustrated embodiments are not intended to be limiting in any way.
The size of the connections 240 may also be varied according to the desired flexibility and rate of expansion for a given area of the stent 210. In general, the larger the connection 240, i.e. the larger the fusion or weld, the greater the stiffness.
As illustrated in
A more detailed view of the end portion 228 of the stent 210 of
A method that may be used to create the gaps 250 between unconnected crowns 232 of adjacent turns 220 is to vary the length of the struts 230 and/or size of the crowns 232 in the wave form 212. By varying the length of the struts 230, the amplitude of the waves of the wave form may be varied. For example, to increase the gap 250 between unconnected crowns 232 of adjacent turns 220, a longer strut 230a than average and/or a larger crown than average may be used to form a so-called extended crown 232. Extended crowns are discussed in further detail below with respect to
Another method that may be used to create the gaps 250 between unconnected crowns 232 of adjacent turns 220 is to electro-polish the crowns 232 after the crowns 232 have been formed. This may be done by electro-polishing the stent 210 for a pre-determined amount of time until the desire spacing, or gap 250, is achieved between each pair of unconnected crowns 232. The pre-electro-polished dimensions of the crowns should be equal to the desired crown dimensions plus the desired spacing. The desired spacing can vary based on the physical characteristics of the stent, such as strut length, crown design, stent diameter, strut diameter, and other characteristics. In an embodiment, the spacing may be in the range from just above zero, i.e., greater than zero, to as high as a distance that is equal to the length of the longest strut, i.e., less than or equal to the length of the longest strut. In an embodiment, the spacing may be in the range of between about 0.0005″ and about 0.010″. In an embodiment, the spacing may be in the range of between about 0.001″ and about 0.003″.
Another method that may be used to create spaces between crowns is to customize the kerf of a laser. When laser cutting stents, the width of the beam of the laser can be used to create extended crowns. The kerf may be adjusted by power, speed, and focus of the laser. A wider kerf may be used just between the crowns and a smaller kerf may be used to cut the remaining parts of the stent. This method may be used in conjunction with electro-polishing.
In accordance with an embodiment of the present invention, a stent 510 includes a plurality of turns 520 that are oriented at a pitch angle α relative to the longitudinal axis LA of the stent 510 to define a first helix FH, as illustrated in
In the embodiments illustrated in
The variable gap 750 may be created by varying the amplitude of waves of the wave form 712 within each of the turns 720 (a wave being defined by two adjacent crowns and two adjacent struts connected to the adjacent crowns). The amplitudes of the waves of the wave form 712 may be varied by varying the lengths of the struts 730 and/or varying the size of the crowns 732. For example, the outer radius of one crown 732 facing the gap 750 may be larger or smaller than the outer radius of the next crown 732 that faces the gap 750 within the same turn 720. The radii of the crowns 732 may be altered via electro-polishing, as described above. The radii of the crowns may also be altered during the forming process. Also, other ways of creating/changing the variable spacing include: changing the way that the crowns are connected such as using bars/bridges between crowns, including bars with sinusoidal shapes between crowns, using additional material for welds, or by having smaller crown radii on the crowns that are being fused.
Other variations of the embodiments illustrated by
The embodiments of the stents discussed above may be formed from a wire or a strip of suitable material. In certain embodiments, the stents may be formed, i.e., etched or cut, from a thin tube of suitable material, or from a thin plate of suitable material and rolled into a tube. Suitable materials for the stent include but are not limited to stainless steel, iridium, platinum, gold, tungsten, tantalum, palladium, silver, niobium, zirconium, aluminum, copper, indium, ruthenium, molybdenum, niobium, tin, cobalt, nickel, zinc, iron, gallium, manganese, chromium, titanium, aluminum, vanadium, and carbon, as well as combinations, alloys, and/or laminations thereof. For example, the stent may be formed from a cobalt alloy, such as L605 or MP35N®, Nitinol (nickel-titanium shape memory alloy), ABI (palladium-silver alloy), Elgiloy® (cobalt-chromium-nickel alloy), etc. It is also contemplated that the stent may be formed from two or more materials that are laminated together, such as tantalum that is laminated with MP35N®. The stents may also be formed from wires having concentric layers of different metals, alloys, or other materials. Embodiments of the stent may also be formed from hollow tubes, or tubes that have been filled with other materials. The aforementioned materials and laminations are intended to be examples and are not intended to be limiting in any way.
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient roadmap for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of members described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.
This application claims the benefit of priority from U.S. Provisional Patent Application Ser. No. 61/243,592, filed on Sep. 18, 2009, the entire content of which is incorporated herein by reference. This application also claims the benefit of priority from U.S. Provisional Patent Application Ser. Nos. 61/243,578, 61/243,581, 61/243,582, 61/243,597, and 61/243,600, all filed on Sep. 18, 2009, the entire contents of all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61243592 | Sep 2009 | US | |
61243578 | Sep 2009 | US | |
61243581 | Sep 2009 | US | |
61243582 | Sep 2009 | US | |
61243597 | Sep 2009 | US | |
61243600 | Sep 2009 | US |