The disclosure relates generally to the field of implantable medical devices. More particularly, the disclosure relates to stents for placement within body vessels, such as the esophagus.
Minimally invasive techniques and instruments for placement of intraluminal medical devices have developed over recent years. A wide variety of treatment devices that utilize minimally invasive technology has been developed and includes stents, stent grafts, occlusion devices, infusion catheters and the like. Stents—frame-like structures placed within a body vessel to provide support to and maintain patency of the vessel—became especially popular with the introduction of coronary stents to the U.S. market in the early 1990s. Since that time, both coronary and peripheral stents have been proven to provide a superior means of maintaining vessel patency, and have become widely accepted in the medical community.
The use of stents has been extended to treatments that target other body vessels. For example, esophageal stents are now widely used to maintain patency of the esophagus from a point within the vessel, such as in the treatment of a stricture that threatens closure of this vessel.
Stenting of the esophagus provides unique challenges not faced by stents intended for other vessels, such as vessels of the vasculature. For example, the muscles that form the esophagus generate peristaltic action—a wavelike series of contractions that forces food through the esophagus and into to the stomach. Stents placed in the esophagus must be able to retain function while resisting migration in this dynamic environment. Furthermore, the lower esophageal sphincter—a muscle near the junction with the stomach—is normally closed to block stomach acid from entering the esophagus. Normally, this muscle only opens during swallowing to allow food to pass into the stomach. After a stent is placed across this muscle, however, the sphincter can remain open in response to the intraluminal support provided by the stent, reducing the ability of the muscle to block acid entry into the esophagus. Over time, acid passage into the esophagus can cause tissue damage, aspiration pneumonia, and other undesirable outcomes.
Thus, a need exists for improved stents.
Various exemplary stents are described and illustrated herein.
An exemplary stent comprises a main body having a longitudinal axis, a first end, a second end, an outer surface, and an inner surface. The main body defines a lumen extending from the first end to the second end. A protrusion is disposed on and extends inward from the inner surface of the main body. The protrusion extends along a helical path on the inner surface.
In exemplary embodiments, the pitch of the helical path is constant along the axial length of the helical path. In other exemplary embodiments, the pitch of the helical path varies along the axial length of the helical path.
In exemplary embodiments, the depth of the protrusion is constant along the length of the protrusion. In other exemplary embodiments, the depth of the protrusion varies along the length of the protrusion.
In exemplary embodiments, the protrusion has a rectangular cross-sectional shape. In other exemplary embodiments, the protrusion has a curvilinear cross-sectional shape, such as a u-shape.
Additional understanding of these exemplary devices can be obtained with review of the detailed description, below, and the appended drawings.
The following detailed description and the appended drawings describe and illustrate various exemplary stents and methods of treatment. The description and drawings are exemplary in nature and are provided to enable one skilled in the art to make and use one or more exemplary stent and/or to practice one or more exemplary method. They are not intended to limit the scope of the claims in any manner.
As used herein, the term “helical” refers to a path orbiting about a central axis while undergoing translation along the axis. The term does not require any specific or constant pitch, angle, or other parameter.
As used herein, the term “pitch” refers to the width of one complete turn of a protrusion extending along a path on an inner surface of a body, measured parallel to the axis of the body. The term does not require that the path be of any particular configuration.
As used herein, the term “flared end” refers to an end portion of a body having an inner diameter and/or outer diameter that is greater than an inner diameter and/or outer diameter of another portion of the body. The term only requires this relative dimensioning and does not require any particular structure. As such, the term includes various structures that meet the required relative dimensioning, such as conical flares, flanges, stepped flanges, and the like.
The stent 10 is an expandable stent having radially compressed and radially expanded configurations. The radially compressed configuration is typically used for storage and delivery of the stent 10 to a point of treatment within a body vessel using a delivery device, such as a catheter, as is known in the art. The radially expanded configuration is typically used in vivo, following placement of the stent 10 at the point of treatment within the body vessel. In
As illustrated in
As illustrated in
The path 26 can also have any suitable path length—the actual length of the path as it extends along the inner surface about the axis of the stent. The path 26 can have any suitable path length, including a path length that is less than the axial length of the main body, a path length that is equal to the axial length of the main body, a path length that is substantially equal to the axial length of the main body, and a path length that is greater than the axial length of the main body. A skilled artisan will be able to determine an appropriate path length for the path in a stent according to a particular embodiment based on various considerations, including the body vessel within which and the point of treatment at which the stent is intended to be used. Examples of lengths considered suitable for the path length of the protrusion include a length that is equal to between about 5% and about 1000% of the axial length of the main body 12 is considered suitable, particularly for stents intended to be deployed within the esophagus. A length that is equal to between about 50% and about 500% of the axial length of the main body 12 is also considered suitable, particularly for stents intended to be deployed within the esophagus. A length that is equal to between about 100% and about 250% of the axial length of the main body 12 is also considered suitable, particularly for stents intended to be deployed within the esophagus.
As illustrated in
As illustrated in
In this embodiment, the main body 112 includes first 130 and second 132 flared ends, and a central portion 134 extending between the flared ends 130, 132. Each of the flared ends 130, 132 has an inner diameter that is greater than an inner diameter of the central portion 134 of the main body 112 when the stent is in the expanded configuration. Also, as illustrated in
While the stent 110 illustrated in
In the embodiment illustrated in
Similar to the stent 10 described above and illustrated in
The inventors have determined that various configurations of the pitch of the path, the depth of the protrusion, and the configuration of the protrusion provide desired properties for particular stents. Examples of such configurations are described below and illustrated in the referenced figures. In each of
In all embodiments, the path along with the protrusion extends can have any suitable pitch. A skilled artisan will be able to determine an appropriate pitch for the path in a stent according to a particular embodiment based on various considerations, including a desired number of turns for the protrusion over the length of the path on the inner surface of the main body of the stent. The inventors have determined that any suitable number of turns can be used, including less than one turn, a single turn, and more than one turn. Furthermore, a whole number of turns is considered suitable, as is any number of turns that includes a partial turn, either as less than a single turn or more than a single turn. In some embodiments, the pitch of the path is selected to match a helical pitch of the main body of the stent. This matching of pitches is considered advantageous in some embodiments at least because it is believed to provide desirable collapsibility and flexibility properties for the overall stent. Furthermore, the pitch need not be constant along the entire protrusion as it extends along the path. A varying pitch can be used and may be desirable for stents according to particular embodiments.
In the embodiment illustrated in
The inventors have determined that a pitch that produces one complete turn of the protrusion is suitable for stents intended to be implanted within the esophagus at least because such a configuration is expected to provide the desired impedance to backflow of stomach acid through the stent while conferring minimal additional rigidity onto the stent as a result of inclusion of the protrusion. Furthermore, the inventors have determined that such a configuration is particularly well suited for esophageal stents intended to be implanted across the lower esophageal sphincter. A pitch that produces a greater number of turns of the protrusion can be used if an increased impedance to backflow of stomach acid is desired. While inclusion of such a pitch is expected to confer additional rigidity onto the stent, the benefit provided by such a pitch may outweigh this effect in certain situations. Examples of suitable numbers of turns for the protrusion along the stent include less than one turn (e.g., 0.25, 0.5, and 0.75 turns), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 turns. Even higher numbers of turns can be used if appropriate.
In all embodiments, the protrusion can have any suitable depth. A skilled artisan will be able to determine an appropriate depth for the protrusion in a stent according to a particular embodiment based on various considerations, including a desired degree to which the stent impedes backflow of fluid, such as stomach acid, through the stent and the resulting impact on the overall flexibility of the stent.
As described above, the depth need not be constant along the entire protrusion as it extends along the path. A varying depth can be used and may be desirable for stents according to particular embodiments. For example, the stent 410 illustrated in
At a first end 440 of the protrusion 424, the protrusion 424 has a first depth d1. At a second end 442 of the protrusion 424, the protrusion 424 has a second depth d2. At a midpoint 444 of the protrusion 424, the protrusion 424 has a third depth d3. In this embodiment, d1 is equal to d2 and d3 is less than both d1 and d1. Furthermore, d3 is equal to about ½ of each of d1 and d2. The depth of the protrusion gradually diminishes from d1 at the first end 440, to d3 at the midpoint 444 of the protrusion 424, and gradually increases from d3 at the midpoint 444 of the protrusion 424 to d2 at the second end 442. As best illustrated in
This arrangement of different depths is exemplary in nature, and any suitable arrangement can be used, including the inverse arrangement in which two smaller depths are placed at the ends of the protrusion and a larger depth is placed at a point in between the ends, an arrangement in which the depth gradually reduces from a relatively large depth at one end of the protrusion to a relatively small depth at the second end of the protrusion, and an arrangement in which the depth gradually increases from a relatively small depth at one end of the protrusion to a relatively large depth at the second end of the protrusion. A skilled artisan will be able to determine an appropriate arrangement of varying depths of the protrusion in a stent according to a particular embodiment based on various considerations, including a desired degree to which the stent impedes backflow of fluid, such as stomach acid, through the stent and the resulting impact on the overall flexibility of the stent.
In all embodiments, the protrusion can have any suitable cross-sectional shape. Furthermore, the protrusion be disposed on the inner surface of the main body in any suitable arrangement. A skilled artisan will be able to determine an appropriate cross-sectional shape and arrangement relative to the inner surface of the main body in a stent according to a particular embodiment based on various considerations, including a desired degree to which the stent impedes backflow of fluid, such as stomach acid, through the stent and the resulting impact on the overall flexibility of the stent.
In
In
The main body includes first 630 and second 632 flared ends, and a central portion 634 extending between the first 630 and second 632 flared ends. In the illustrated embodiment, the protrusion 624 extends along the entire axial length of the central portion 634, but does not extend into either of the first 632 or second 634 flared ends. The helical path 626 has a pitch that produces a single complete turn of the protrusion 624 as it extends along the axial length of the central portion 634 of the main body 612. In the illustrated embodiment, the protrusion 624 has a curvilinear, u-shaped cross-sectional shape.
In this embodiment, the protrusion 724 comprises a series 790 of independent projections 792 extending from the inner surface 722. Each of the projections 722 is independent of all other projections 722 in the series such that a space is disposed between the projection 722 and its neighbor(s). Alternatively, a series of projections can be formed in which the projections are independent of each other along the free edge 728 of the protrusion 724, but that are joined together at the point of interface with the inner surface 722. Such series of projections can be used as an alternative to a single protrusion in any given embodiment. Indeed, in all embodiments, a single protrusion, two protrusions, or a series of protrusions can be used.
In this embodiment, a series 890 of protrusions 824a, 824b, and 824c is disposed on the inner surface 822. Each protrusion 824a, 824b, 824c is independent of all other protrusions in the series 890 and extends along a path on the inner surface 822 that is distinct from the path along which the other protrusions extend. In the illustrated embodiment, each of the protrusions 824a, 824b, and 824c comprises a ring-shaped member with a central opening. It is noted, however, that any suitable shape can be used in a stent according to a particular embodiment. Also, while the illustrated embodiment includes three protrusions 824a, 824b, and 824c, any suitable number of protrusions can be used in a stent according to a particular embodiment, and a skilled artisan will be able to select an appropriate number of protrusions based on various considerations, including the length and any desired flexibility of the stent.
Ring-shaped protrusions can be positioned at any point along the length of the stent 810. While the illustrated stent 810 includes ring-shaped protrusions 824a, 824b, 824c positioned along the main body 812 and not within the flared ends, it is noted that one or more ring-shaped protrusions can be disposed within one or both flared end of a stent according to a particular embodiment. In these embodiments, the protrusions can be positioned at any point within the flared end, including at the respective stent end or at a point between the respective stent end and the interface between the flared end and the main body.
In another exemplary embodiment, one or more ring-shaped protrusions are included, as in the embodiment illustrated in
In all embodiments, the stent and its components can be formed of any suitable material, including presently known and later-developed materials considered suitable for use in long-term in vivo medical device implants. A skilled artisan will be able to select appropriate material or materials for a stent according to a particular embodiment based on various considerations, including the nature of the vessel within which the stent is intended to be implanted. Examples of suitable materials include, but are not limited to, stainless steel, nitinol, nickel-cobalt-chromium alloys, nickel-cobalt-chromium-molybdenum alloys, polymeric materials, such as silicone-based materials, polyurethanes, and other polymeric materials, and other biocompatible materials. Nickel-cobalt-chromium-molybdenum alloys, such as MP35N (Carpenter Technology, Wyomissing, Pa.; MP35N is a registered trademark of SPS Technologies, Inc.), are considered particularly advantageous at least because of the relatively high tensile strength provided by these materials.
In all embodiments, the stent can be self-expandable in nature, in which the stent transitions from a radially compressed configuration to a radially expanded configuration without an input of force following the removal of a constraining force, or can require the input of a radially-outward directed force to affect expansion. Thus, in all embodiments, the stent can comprise a self-expandable stent, a balloon expandable stent, or any other suitable configuration.
For embodiments in which the stent is intended to be implanted in the esophagus of a patient, the inventors have determined that a self-expandable stent formed of a single polymeric material is considered advantageous at least because such materials allow for formation and/or manufacturing of the stent as a unitary member, such as by conventional molding and other techniques.
In all embodiments, the stent and its components can be formed from a single material or multiple materials. For example, a stent according to an embodiment can be formed by molding an appropriate polymeric or other material into the desired configuration such that the main body, with or without flared ends, and the protrusion are integrally formed with each other and of the same material. Alternatively, different materials can be used. For example, a protrusion formed of one material can be attached to a main body formed of another material to form a composite stent.
Furthermore, in all embodiments, the stent can be coated with one or more suitable polymeric or other materials, as is known in the art. For example, stents can be sprayed, dipped rolled, or otherwise exposed to a polymeric material in a manner that produces a desired coating on the stent, either on a portion of a surface, on an entire surface, or on all surfaces of the stent. Additionally, in all embodiments, a sleeve can be placed around the stent as is known in the art, such as a polymeric sleeve.
Also alternatively, the stent can include one or more wire members braided together to form a mesh, such as for the main body. In these embodiments, a separate protrusion can be attached to the inner surface of the main body using suitable attachment techniques and/or components, such as welding, adhering with an adhesive, attaching with mechanical attachment members, and any other suitable technique and/or components.
The foregoing detailed description refers to exemplary occlusion devices and includes the best mode for practicing the invention. The description and the appended drawings illustrating the described devices are intended only to provide examples and not to limit the scope of the claims in any manner.
This application claims the benefit of U.S. Provisional Application No. 61/552,187, filed on Oct. 27, 2011. The entire contents of this related application are incorporated into this disclosure by reference.
Number | Date | Country | |
---|---|---|---|
61552187 | Oct 2011 | US |