The present invention relates generally to implantable medical devices, and particularly to vascular implants.
Stents are commonly used in percutaneous coronary revascularization procedures, as well as in treating stenoses in peripheral vasculature, such as in the carotid vessels, organs and extremities. The stent is inserted through the vascular system in a contracted state, until it reaches the desired treatment location, and is then expanded in situ to press outward against the vessel wall. Stents typically comprise a mesh of large apertures, which can damage the surrounding stenotic vessel during expansion and can release dangerous emboli into the bloodstream. The damaged tissue is prone to form new scar tissue, which protrudes through the mesh of the stent and can lead to restenosis.
Some stents are fitted with a tubular, flexible jacket for preventing restenosis and reducing the risk of emboli. For example, PCT International Publication WO 2008/062414, whose disclosure is incorporated herein by reference, describes a stent assembly with a stent jacket, comprising an expandable fiber mesh structure fastened around an expandable stent. When the stent is expanded in a blood vessel, the jacket encourages formation of a stable layer of endothelial cells covering the fibers, while reducing platelet aggregation. WO 2008/062414 shows and describes a number of ways in which the stent jacket can be mounted to the stent, including both adhesive and sliding connections, made by knots.
Embodiments of the present invention that are described herein provide improved jackets for implantable devices, and particular improved methods for attachment of a jacket to a device.
There is therefore provided, in accordance with an embodiment of the present invention, a stent assembly, including a stent and a fiber mesh sleeve covering the stent. A wire runs along the stent over the sleeve and fastened to the stent at multiple points so as to attach the sleeve to the stent.
The wire may be point-welded to the stent at the multiple points. In a disclosed embodiment, the stent includes multiple struts, and the wire is fastened to the stent along an outermost strut of the stent. Typically, the wire includes first and second wires, which are fastened to the stent over the sleeve at first and second ends of the stent, respectively, without additional fastening of the sleeve to the stent between the first and second ends.
In one embodiment, the sleeve includes a knit having multiple eyes, and the points at which the wire is fastened to the sleeve are inside the eyes of the knit.
There is also provided, in accordance with an embodiment of the present invention, a method for producing a stent assembly, which includes positioning a fiber mesh sleeve over a stent. A wire is run along the stent over the sleeve and is fastened to the stent at multiple points so as to attach the sleeve to the stent.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
The inventors have found that for optimal performance of a stent jacket of the type described above, it is desirable that the jacket be mounted on the stent in a manner that allows the fibers of the jacket to slide over the stent as the stent expands. Embodiments of the present invention provide means and methods for such mounting.
After aligning sleeve 24 with stent 22, a metal wire 28 is used to attach the sleeve to the stent. Wire 28 is typically made from a biocompatible metal, such as stainless steel, Nitinol, CoCr or any other suitable biocompatible metal alloy, and has a diameter in the range of 10-100 microns. As shown in the figure, wire 28 runs along an outermost strut 32, at the end of stent 22, over the fibers of sleeve 24. The wire is fastened to the radial surface of the underlying strut, typically by multiple point-welds 30, which may be produced by a laser micro-welder, for example. Alternatively, other methods of metal-to-metal fastening may be used. Typically, to hold the sleeve securely and prevent unraveling, one point-weld is made inside each eye 26 of the sleeve that overlies the strut. A similar welded-wire connection is made at the opposite end of the stent assembly (not shown). To allow the sleeve to slide freely over the stent during expansion of the stent, there is typically no additional fastening of the sleeve to the stent between the two ends.
Alternatively, other weld patterns may be used. For example, point-welds 30 may be more closely spaced, with two or more point-welds in at least some of eyes 26. On the other hand, the point-welds may be more widely spaced, at least in some locations, skipping over at least some of the eyes.
The point-welding technique illustrated in
In an alternative embodiment (not shown in the figures), wire 28 runs along the axial, external edge of the outer strut of stent 22 and is point-welded to the edge, rather than to the radial surface as shown in
It will thus be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
This application is a continuation of U.S. patent application Ser. No. 13/994,739, filed Jun. 13, 2013, now pending, which is a national stage of PCT/IB2001/55758, filed Dec. 18, 2011, now expired, which claims the benefit of U.S. Provisional Patent Application 61/424,650, filed Dec. 19, 2010, the entire contents of each of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61424650 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13994739 | Jun 2013 | US |
Child | 14315001 | US |