This invention relates to a radially-expansible annular stent comprising a plurality of stenting turns around a lumen centered on a longitudinal axis, with adjacent turns being joined by connector struts, the stent annulus having a wall thickness that is related to the material of which it is formed.
In the field of radially expansible annular stents that are called upon, in use, to resist a radially inwardly directed force from surrounding bodily tissue, in order to maintain a bodily lumen patent, there is a contradictory design requirement. On the one hand, the stent must be strong enough to keep the lumen patent. On the other hand, the stent prosthesis must be flexible enough to accommodate movement of surrounding bodily tissue.
There are two archetypal stent forms. One of them has a stack of closed loop stenting rings, the length direction of the stent being along the length of the longitudinal axis of the annulus of the stent. The other archetype is the helical stent, in which the pattern of struts in the stent matrix performs a spiral path around the longitudinal axis, to create an annulus from one end of the stent to the other. Typically, each of the stenting loops is composed of closed periphery repeating unit cells. See EP-A-481365,
Such a stent is typically made from a seamless straight tubular workpiece so that its disposition, at rest, and relaxed, is that of a tubular cylindrical annulus. Typically, after implantation in the body, it is called upon to conform to an arcuate configuration of the bodily lumen in which it is placed. Such a change of shape necessitates the occurrence of strain within the matrix. That strain might not be homogeneously distributed throughout the matrix. Important for flexibility of the stent, after placement in the body, is a capacity for tolerating enough strain to give the stent, as such, enough flexibility to move with the body.
Another aspect of flexibility that is desirable when placing a stent is “radial conformability” by which is meant the ease with which succeeding turns of the stent can take or, after placement in tissue, different diameters clearly, when the struts connecting adjacent stenting rings have enhanced flexibility, an increase of radial conformability is in prospect.
Closed periphery unit cells of the stenting matrix are inherently rather well-adapted to provide the required resistance to the radially inwardly pressing force of the bodily tissue. In consequence, it is desirable for any connectors of unit cells, within the matrix, to deliver at least a substantial portion of the strain needed to allow the stent matrix to move with the body. Such flexibility in the connector links is not detrimental to the capability of the stenting loops to push the bodily tissue radially outwardly. For this reason, current stent designs often exhibit unit cells with simple straight strut peripheral portions, connected by connector struts that are not short and straight but long and thin. They are often meandering or arcuate or serpentine. There is discussed below, with reference to
It is an object of the present invention to ameliorate these difficulties.
According to the present invention, a stent as identified above is improved by arranging that, for the connector struts, the thickness of the struts is smaller than the ambient wall thickness of the stent.
Typically, stents are made from a seamless tubular workpiece of constant wall thickness. The description which follows will provide at least one way to produce a stent in accordance with the present invention from a seamless tubular workpiece of constant wall thickness.
Nickel-titanium shape memory alloy is a popular material from which to build self-expanding transluminally delivered bodily prostheses such as stents. Typically, they are made from the tubular workpiece by computer controlled laser cutting of slits in the workpiece, thereby to produce a matrix of struts. An attractive way to build stents in accordance with the present invention is by use of this laser cutting technique, known per se.
The conventional laser cutting process for making stents is with a laser beam arranged on a line that extends through the longitudinal axis of the stent annulus. However, the state of the art does include proposals, not only from the present applicant in WO 03/075797, WO 2006/010636 and WO 2006/010638 but also from others, such as Langhans et al in US 2006/0064153, to orient the laser beam on a line that does not pass through the longitudinal axis of the annulus. It is this step which is relied upon, in the presently preferred embodiment and best mode known to the inventor, as described in detail below. The concept can be conveniently designated “off-axis cutting”.
As will be seen below, an attractive feature of using off-axis laser cutting of the connectors is that one can provide the connectors with a transverse cross-section that is in some way asymmetric in comparison with a “conventional” on-axis laser-cut strut. Thus, the connectors in accordance with the present invention may have a transverse cross-section that includes a luminal apex at the intersection of two straight lines, that apex being the closest approach of the connector to the longitudinal axis. It can also create a connector having a transverse cross-section that includes an abluminal apex at the intersection of two straight lines, the apex being the point on the connector furthest away from the longitudinal axis. Such cross-sections through the connector can reveal a lack of mirror symmetry about a plane that includes the length direction of the connector and the longitudinal axis of the stent annulus. In other words, we can have a connector in which the transverse cross-section reveals a luminal apex and an abluminal apex, and the line passing through both of these apices does not also pass through the longitudinal axis of the annulus of the stent.
As will be seen below, an attractive feature of the present invention is that it enables the creation of stent matrices that combine good radial force against bodily tissue with good flexibility both in the radially expanded and in the radially compressed dispositions in a design in which the connectors are simple, short, substantially straight struts.
The stiffness of a strut of a stent matrix is proportional to the strut width but, in relation to the strut thickness, it goes up with the cube of the thickness. A small reduction of strut thickness can therefore yield large gains in flexibility. This property is utilised in the present invention by providing connector struts with a smaller radial wall thickness than that of the stent annulus.
For a better understanding of the present invention and to show more clearly how the same may be carried into effect, reference will now be made, by way of example, to the accompanying drawings. These are incorporated herein and constitute part of this specification. They illustrate presently preferred embodiments of the invention and, together with the general description above, and the detailed description below, serve to explain the features of the invention.
Looking first at
Turning to
We turn now to
Looking first at
It is important to grasp that the drawing is schematic. A moment's thought from the reader will reveal that the trapezium T with sides 50, 52, 54 and 56 is not an accurate representation of a sector of a transverse section through an annular workpiece which is the precursor of the stent matrix. Sides 52 and 56 are correctly shown as straight lines, being in a plane that passes through the longitudinal axis of the annular workpiece, straight line 50 ought to be arcuate, being a portion of the luminal wall of the cylindrical lumen defined by the annular workpiece. Likewise, straight line 54 ought to be an arc of a circle with a somewhat larger radius than that of the luminal surface of the annular workpiece, to correspond with a portion of the abluminal surface of that workpiece.
However, showing sides 50 and 54 as straight lines serves the objective of clarity.
Readers will know that, when laser cutting an annular workpiece, with the beam of the laser on the axis of the annulus, planar flat surfaces, represented by lines 52 and 56, are the usual result.
However, once the possibility is taken up, to orient the laser beam “off-axis” so that the beam direction does not pass through the longitudinal axis of the annular workpiece and instead passes through a lumen of the workpiece, but offset from the longitudinal axis, then connector portions or strut cross-sections that are much smaller in area can readily be produced.
The connector strut section R is bounded by four cut-lines of the off-axis laser, namely, lines 60, 62, 64 and 66. This strut cross-section is truly a diamond rather than a sector of an annulus. Cross-section S is another possibility, with off-axis laser cut-lines 70, 72, 74 and 76.
In both cases, these connector strut cross-sections are symmetrical about a plane that extends through the longitudinal axis of the annulus of the workpiece, and the luminal apex 68 where cut-lines 64 and 66 intersect, and the abluminal apex 69 where cut-lines 60 and 62 intersect. In section S, the luminal apex is marked 78 and the abluminal apex is marked 80. In both cases, the luminal apex 68, 78 is further away from the longitudinal axis of the annulus than the luminal surface of the workpiece, and the abluminal apex 69, 80 is closer to the longitudinal axis than the abluminal surface of the annular workpiece. A reduction in the radial thickness has a particularly strong contribution to increasing flexibility. The flatter of the two connector struts marked S may, therefore, be more advantageous if flexibility is key.
Finally, turning to
One distinctive aspect of stent technology is how the strut matrix responds to expansion from a radially compact transluminal delivery disposition to a radially expanded deployed disposition. Reverting back to
In some applications of stents, a high degree of plaque control is called for. Stents for the carotid artery is an example. Control is achieved by use of closed cell matrix structures, with a small mesh size and a relatively large number of connectors between adjacent stenting turns. An increasing number of connector struts reduces stent flexibility. The present invention offers a way to mitigate the flexibility problem without reducing the number of connector struts and thus can be particularly helpful in such applications.
The method of manufacture takes an appropriately sized tubular workpiece. Stenting turns are cut from this workpiece using a laser in the conventional way. That is, the laser beam follows a predetermined design pattern to form stenting struts to produce the stenting turns. In producing the stenting struts, the laser beam will be aimed to pass through the longitudinal axis of the tubular workpiece. The connector struts are cut by aiming the laser beam in an offset manner from the longitudinal axis of the workpiece. The cut is such that the radial wall thickness is reduced as compared to the radial wall thickness of the stenting struts. This may be achieved as in embodiments discussed above by creating a luminal or abluminal apex.
Readers of this specification are persons skilled in the art of stent design, who will find many other embodiments, once given the concept of the present invention in the description above. The description above is exemplary, but not limiting.
Where undulations are embodied in the form of zig-zag struts, the zig-zag struts may include a repeating pattern made of a unit of four generally linear members that extend oblique to the longitudinal axis to intersect each other at three apices spaced apart circumferentially and axially. Also, the prosthesis can utilize not only the circumferential bridges but also other bridge configurations in combination. Alternatively, the bridge directly connects a peak of one circumferential section to another peak of an adjacent circumferential section. In yet another alternative, the bridge may connect a peak of one circumferential section to a trough of an adjacent circumferential section. In a further alternative, the bridge can connect a trough of one circumferential section to a trough of an adjacent circumferential section. Moreover, the undulations can be wave-like in pattern. The wave-like pattern can also be generally sinusoidal in that the pattern may have the general form of a sine wave, whether or not such wave can be defined by a mathematical function. Alternatively, any wave-like forms can be employed so long as it has amplitude and displacement. For example, a square wave, saw tooth wave, or any applicable wave-like pattern defined by the struts where the struts have substantially equal lengths or unequal lengths. And as used herein, the term “implantable prosthesis” is intended to cover not only a bare stent but also coated, covered, encapsulated, bio-resorbable stent or any portion of similar stents.
Bio-active agents can be added to the prosthesis (e.g., either by a coating or via a carrier medium such as resorbable polymers) for delivery to the host's vessel or duct. The bio-active agents may also be used to coat the entire stent. A material forming the stent or coupled to the stent may include one or more (a) non-genetic therapeutic agents, (b) genetic materials, (c) cells and combinations thereof with (d) other polymeric materials.
(a) Non-genetic therapeutic agents include anti-thrombogenic agents such as heparin, heparin derivatives, urokinase, and PPack (dextrophenylalanine proline arginine chloromethylketone); anti-proliferative agents such as enoxaprin, angiopeptin, or monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid; anti-inflammatory agents such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, and mesalamine; antineoplastic/antiproliferative/anti-miotic agents such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, endostatin, angiostatin and thymidine kinase inhibitors; anesthetic agents such as lidocaine, bupivacaine, and ropivacaine; anti-coagulants, an RGD peptide-containing compound, heparin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet peptides; vascular cell growth promoters such as growth factor inhibitors, growth factor receptor antagonists, transcriptional activators, and translational promoters; vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; cholesterol-lowering agents; vasodilating agents; and agents which interfere with endogenous vascoactive mechanisms.
(b) Genetic materials include anti-sense DNA and RNA, DNA coding for, anti-sense RNA, tRNA or rRNA to replace defective or deficient endogenous molecules, angiogenic factors including growth factors such as acidic and basic fibroblast growth factors, vascular endothelial growth factor epidermal growth factor, transforming growth factor alpha and beta, platelet-derived endothelial growth factor, platelet-derived growth factor, tumor necrosis factor alpha, hepatocyte growth factor and insulin like growth factor, cell cycle inhibitors including CD inhibitors, thymidine kinase (“TK”) and other agents useful for interfering with cell proliferation the family of bone morphogenic proteins (“BMPrs”), BlVfiP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (0P-1), BMP-8, BMP-9, BMP-10, BMP-1, BMP-12, BMP-13, BMP-14, BMP-15, and BMP-16. Desirable BMP's are any of BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 and BMP-7. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Alternatively or, in addition, molecules capable of inducing an upstream or downstream effect of a BMP can be provided. Such molecules include any of the “hedgehog” proteins, or the DNA's encoding them.
(c) Cells can be of human origin (autologous or allogeneic) or from an animal source (xenogeneic), genetically engineered if desired to deliver proteins of interest at the deployment site. The cells may be provided in a delivery media. The delivery media may be formulated as needed to maintain cell function and viability.
(d) Suitable polymer materials as a coating or the base material may include polycarboxylic acids, cellulosic polymers, including cellulose acetate and cellulose nitrate, gelatin, polyvinylpyrrolidone, cross-linked polyvinylpyrrolidone, polyanhydrides including maleic anhydride polymers, polyamides, polyvinyl alcohols, copolymers of vinyl monomers such as EVA, polyvinyl ethers, polyvinyl aromatics, polyethylene oxides, glycosaminoglycans, polysaccharides, polyesters including polyethylene terephthalate, polyacrylamides, polyethers, polyether sulfone, polycarbonate, polyalkylenes including polypropylene, polyethylene and high molecular weight polyethylene, halogenated polyalkylenes including polytetrafluoroethylene, polyurethanes, polyorthoesters, proteins, polypeptides, silicones, siloxane polymers, polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate valerate and blends and copolymers thereof, coatings from polymer dispersions such as polyurethane dispersions (for example, BAYHDROL fibrin, collagen and derivatives thereof, polysaccharides such as celluloses, starches, dextrans, alginates and derivatives, hyaluronic acid, squalene emulsions. Polyacrylic acid, available as HYDROPLUS (Boston Scientific Corporation, Natick, Mass.), and described in U.S. Pat. No. 5,091,205, the disclosure of which is hereby incorporated herein by reference, is particularly desirable. Even more desirable is a copolymer of polylactic acid and polycaprolactone.
While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. The method used in the present invention is not limited to the preferred method discussed above, as will be apparent from the claims. Further, the improved flexibility of the stents of the present invention may be achieved by methods other than the preferred one given above, as will be apparent to the skilled person. In addition, where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art will recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Therefore, to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well. Finally, all publications and patent applications cited in this specification are herein incorporated by reference in their entirety as if each individual publication or patent application were specifically and individually put forth herein.
Number | Date | Country | Kind |
---|---|---|---|
0622465.3 | Nov 2006 | GB | national |
This application is a division of U.S. patent application Ser. No. 12/514,177, filed May 8, 2009, now U.S. Pat. No. 8,551,156, which was filed as a U.S. national stage application under 35 USC §371 of International Application No. PCT/EP2007/062155, filed Nov. 9, 2007, which claims priority to U.K. Patent Application No. 0622465.3, filed Nov. 10, 2006, each of which is incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
5091205 | Fan | Feb 1992 | A |
5464419 | Glastra | Nov 1995 | A |
5527353 | Schmitt | Jun 1996 | A |
5591223 | Lock et al. | Jan 1997 | A |
5645532 | Horgan | Jul 1997 | A |
5725572 | Lam et al. | Mar 1998 | A |
5741327 | Frantzen | Apr 1998 | A |
5759192 | Saunders | Jun 1998 | A |
5800511 | Mayer | Sep 1998 | A |
5824042 | Lombardi et al. | Oct 1998 | A |
5824059 | Wijay | Oct 1998 | A |
5824077 | Mayer | Oct 1998 | A |
5843118 | Sepetka et al. | Dec 1998 | A |
5858556 | Eckert et al. | Jan 1999 | A |
5861027 | Trapp | Jan 1999 | A |
5868783 | Tower | Feb 1999 | A |
5922020 | Klein et al. | Jul 1999 | A |
6022374 | Imran | Feb 2000 | A |
6053940 | Wijay | Apr 2000 | A |
6056187 | Acciai et al. | May 2000 | A |
6086611 | Duffy et al. | Jul 2000 | A |
6099561 | Alt | Aug 2000 | A |
6174329 | Callol et al. | Jan 2001 | B1 |
6241762 | Shanley | Jun 2001 | B1 |
6270524 | Kim | Aug 2001 | B1 |
6293966 | Frantzen | Sep 2001 | B1 |
6312456 | Kranz et al. | Nov 2001 | B1 |
6334871 | Dor et al. | Jan 2002 | B1 |
6355057 | DeMarais et al. | Mar 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6387123 | Jacobs et al. | May 2002 | B1 |
6409752 | Boatman et al. | Jun 2002 | B1 |
6451047 | McCrea et al. | Sep 2002 | B2 |
6471721 | Dang | Oct 2002 | B1 |
6475233 | Trozera | Nov 2002 | B2 |
6478816 | Kveen et al. | Nov 2002 | B1 |
6540777 | Stenzel et al. | Apr 2003 | B2 |
6547818 | Rourke et al. | Apr 2003 | B1 |
6562065 | Shanley | May 2003 | B1 |
6585757 | Callol | Jul 2003 | B1 |
6605110 | Harrison | Aug 2003 | B2 |
6629994 | Gomez et al. | Oct 2003 | B2 |
6676700 | Jacobs et al. | Jan 2004 | B1 |
6770089 | Hong et al. | Aug 2004 | B1 |
6797217 | McCrea et al. | Sep 2004 | B2 |
6827734 | Fariabi | Dec 2004 | B2 |
6878162 | Bales et al. | Apr 2005 | B2 |
6979346 | Hossainy et al. | Dec 2005 | B1 |
7060093 | Dang et al. | Jun 2006 | B2 |
7135038 | Limon | Nov 2006 | B1 |
7175654 | Bonsignore et al. | Feb 2007 | B2 |
7462190 | Lombardi | Dec 2008 | B2 |
7468071 | Edwin et al. | Dec 2008 | B2 |
7479157 | Weber et al. | Jan 2009 | B2 |
7691461 | Prabhu | Apr 2010 | B1 |
7771463 | Ton et al. | Aug 2010 | B2 |
7772659 | Rodmacq et al. | Aug 2010 | B2 |
8043364 | Lombardi et al. | Oct 2011 | B2 |
8152842 | Schlun | Apr 2012 | B2 |
8292950 | Dorn et al. | Oct 2012 | B2 |
8322593 | Wack | Dec 2012 | B2 |
8403978 | Schlun et al. | Mar 2013 | B2 |
8475520 | Wack et al. | Jul 2013 | B2 |
8500793 | Zipse et al. | Aug 2013 | B2 |
8518101 | Dreher | Aug 2013 | B2 |
8551156 | Wack et al. | Oct 2013 | B2 |
20020007212 | Brown et al. | Jan 2002 | A1 |
20020116044 | Cottone et al. | Aug 2002 | A1 |
20020116051 | Cragg | Aug 2002 | A1 |
20020138136 | Chandresekaran et al. | Sep 2002 | A1 |
20020193867 | Gladdish et al. | Dec 2002 | A1 |
20020193869 | Dang | Dec 2002 | A1 |
20020198589 | Leong | Dec 2002 | A1 |
20030055485 | Lee et al. | Mar 2003 | A1 |
20030135254 | Curcio et al. | Jul 2003 | A1 |
20030144725 | Lombardi | Jul 2003 | A1 |
20030216807 | Jones et al. | Nov 2003 | A1 |
20030225448 | Gerberding | Dec 2003 | A1 |
20040015228 | Lombardi et al. | Jan 2004 | A1 |
20040015229 | Fulkerson et al. | Jan 2004 | A1 |
20040034402 | Bales et al. | Feb 2004 | A1 |
20040044401 | Bales et al. | Mar 2004 | A1 |
20040073290 | Chouinard | Apr 2004 | A1 |
20040073291 | Brown et al. | Apr 2004 | A1 |
20040117002 | Girton et al. | Jun 2004 | A1 |
20040230293 | Yip et al. | Nov 2004 | A1 |
20040236400 | Edwin et al. | Nov 2004 | A1 |
20040236409 | Pelton et al. | Nov 2004 | A1 |
20040254637 | Yang et al. | Dec 2004 | A1 |
20050049682 | Leanna et al. | Mar 2005 | A1 |
20050060025 | Mackiewicz et al. | Mar 2005 | A1 |
20050149168 | Gregorich | Jul 2005 | A1 |
20050172471 | Vietmeier | Aug 2005 | A1 |
20050182477 | White | Aug 2005 | A1 |
20050222667 | Hunt | Oct 2005 | A1 |
20050278019 | Gregorich | Dec 2005 | A1 |
20060030934 | Hogendijk et al. | Feb 2006 | A1 |
20060064153 | Langhans et al. | Mar 2006 | A1 |
20060216431 | Kerrigan | Sep 2006 | A1 |
20060241741 | Lootz | Oct 2006 | A1 |
20060265049 | Gray et al. | Nov 2006 | A1 |
20070112421 | O'Brien | May 2007 | A1 |
20070219624 | Brown et al. | Sep 2007 | A1 |
20080051885 | Llanos et al. | Feb 2008 | A1 |
20080188924 | Prabhu | Aug 2008 | A1 |
20090125092 | McCrea et al. | May 2009 | A1 |
20090125099 | Weber et al. | May 2009 | A1 |
20090200360 | Wack | Aug 2009 | A1 |
20090204201 | Wack | Aug 2009 | A1 |
20090204203 | Allen et al. | Aug 2009 | A1 |
20090264982 | Krause et al. | Oct 2009 | A1 |
20100016949 | Wack | Jan 2010 | A1 |
20100070021 | Wack et al. | Mar 2010 | A1 |
20100114298 | Dorn et al. | May 2010 | A1 |
20100191321 | Schlun et al. | Jul 2010 | A1 |
20100204784 | Molaei et al. | Aug 2010 | A1 |
20100211161 | Dreher | Aug 2010 | A1 |
20100234936 | Schlun | Sep 2010 | A1 |
20100249903 | Wack et al. | Sep 2010 | A1 |
20100298921 | Schlun et al. | Nov 2010 | A1 |
20110196473 | McCrea et al. | Aug 2011 | A1 |
20110198327 | Prabhu | Aug 2011 | A1 |
20110245905 | Weber et al. | Oct 2011 | A1 |
20110319977 | Pandelidis et al. | Dec 2011 | A1 |
20120041542 | Lombardi et al. | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
04130431 | Mar 1993 | DE |
29621207 | Jan 1997 | DE |
19728337 | Jan 1999 | DE |
29904817 | May 1999 | DE |
10201151 | Jul 2003 | DE |
202004014789 | Jan 2005 | DE |
102004045994 | Mar 2006 | DE |
0481365 | Apr 1992 | EP |
0709068 | May 1996 | EP |
0800800 | Oct 1997 | EP |
0847733 | Jun 1998 | EP |
0870483 | Oct 1998 | EP |
1029517 | Aug 2000 | EP |
1034751 | Sep 2000 | EP |
1157673 | Nov 2001 | EP |
1190685 | Mar 2002 | EP |
1212991 | Jun 2002 | EP |
1245203 | Oct 2002 | EP |
1255507 | Nov 2002 | EP |
1356789 | Oct 2003 | EP |
1433438 | Jun 2004 | EP |
1488763 | Dec 2004 | EP |
1767240 | Mar 2007 | EP |
2134301 | Dec 2009 | EP |
2626046 | Jul 1989 | FR |
453944 | Sep 1936 | GB |
07315147 | Dec 1995 | JP |
2004-506477 | Mar 2004 | JP |
2007-504891 | Mar 2007 | JP |
4827965 | Nov 2011 | JP |
4933018 | May 2012 | JP |
9417754 | Aug 1994 | WO |
9503010 | Feb 1995 | WO |
9626689 | Sep 1996 | WO |
9733534 | Sep 1997 | WO |
9820810 | May 1998 | WO |
9915108 | Apr 1999 | WO |
9938457 | Aug 1999 | WO |
9949928 | Oct 1999 | WO |
9955253 | Nov 1999 | WO |
0045742 | Aug 2000 | WO |
0049971 | Aug 2000 | WO |
0064375 | Nov 2000 | WO |
0101889 | Jan 2001 | WO |
0132102 | May 2001 | WO |
0158384 | Aug 2001 | WO |
0176508 | Oct 2001 | WO |
0215820 | Feb 2002 | WO |
0249544 | Jun 2002 | WO |
03055414 | Jul 2003 | WO |
03075797 | Sep 2003 | WO |
03101343 | Dec 2003 | WO |
2004019820 | Mar 2004 | WO |
2004028408 | Apr 2004 | WO |
2004032802 | Apr 2004 | WO |
2004058384 | Jul 2004 | WO |
2005067816 | Jul 2005 | WO |
2005072652 | Aug 2005 | WO |
2005104991 | Nov 2005 | WO |
2005032403 | Dec 2005 | WO |
2006010636 | Feb 2006 | WO |
2006010638 | Feb 2006 | WO |
2006014768 | Feb 2006 | WO |
2006025847 | Mar 2006 | WO |
2006036912 | Apr 2006 | WO |
2006047977 | May 2006 | WO |
2006064153 | Jun 2006 | WO |
2007073413 | Jun 2007 | WO |
2006026778 | Nov 2007 | WO |
2007131798 | Nov 2007 | WO |
2007135090 | Nov 2007 | WO |
2008006830 | Jan 2008 | WO |
2008022949 | Feb 2008 | WO |
2008022950 | Feb 2008 | WO |
2008025762 | Mar 2008 | WO |
2008028964 | Mar 2008 | WO |
2008055980 | May 2008 | WO |
2008068279 | Jun 2008 | WO |
2008101987 | Aug 2008 | WO |
2008119837 | Oct 2008 | WO |
2009030748 | Mar 2009 | WO |
Entry |
---|
U.S. Appl. No. 12/594,531, filed Oct. 2, 2009 Non-Final Office Action dated Oct. 2, 2012. |
U.S. Appl. No. 12/676,584, filed Mar. 4, 2010 Non-Final Office Action dated May 24, 2013. |
U.S. Appl. No. 13/279,189, filed Oct. 21, 2011 Final Office Action dated May 2, 2013. |
U.S. Appl. No. 13/279,189, filed Oct. 21, 2011 Non-Final Office Action dated Oct. 17, 2012. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Office Action dated Aug. 2, 2006. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Office Action dated Dec. 10, 2007. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Office Action dated Feb. 23, 2010. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Office Action dated Jan. 10, 2006. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Office Action dated Jul. 15, 2009. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Office Action dated Jun. 23, 2005. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Office Action dated Jun. 5, 2007. |
U.S. Appl. No. 12/300,985, filed Aug. 6, 2010 Final Office Action dated Aug. 15, 2012. |
U.S. Appl. No. 12/300,985, filed Aug. 6, 2010 Non-Final Office Action dated Mar. 15, 2012. |
U.S. Appl. No. 12/300,985, filed Aug. 6, 2010 Notice of Allowance dated Nov. 16, 2012. |
U.S. Appl. No. 12/301,019, filed Feb. 2, 2009 Advisory Action dated Apr. 27, 2011. |
U.S. Appl. No. 12/301,019, filed Feb. 2, 2009 Final Office Action dated Feb. 7, 2011. |
U.S. Appl. No. 12/301,019, filed Feb. 2, 2009 Non-Final Office Action dated Sep. 3, 2010. |
U.S. Appl. No. 12/373,116, filed Jul. 14, 2009 Advisory Action dated Jul. 26, 2011. |
U.S. Appl. No. 12/373,116, filed Jul. 14, 2009 Examiner's Answer dated Jan. 3, 2013. |
U.S. Appl. No. 12/373,116, filed Jul. 14, 2009 Final Office Action dated Apr. 27, 2011. |
U.S. Appl. No. 12/373,116, filed Jul. 14, 2009 Final Office Action dated Mar. 29, 2012. |
U.S. Appl. No. 12/373,116, filed Jul. 14, 2009 Non-Final Office Action dated Nov. 10, 2010. |
U.S. Appl. No. 12/373,116, filed Jul. 14, 2009 Non-Final Office Action dated Nov. 18, 2011. |
U.S. Appl. No. 12/373,116, filed Jul. 14, 2009 Notice of Panel Decision dated Aug. 20, 2012. |
U.S. Appl. No. 12/438,102, filed Feb. 19, 2009 Non-Final Office Action dated Nov. 15, 2010. |
U.S. Appl. No. 12/438,330, filed Feb. 20, 2009 Advisory Action dated Oct. 14, 2010. |
U.S. Appl. No. 12/438,330, filed Feb. 20, 2009 Advisory Action dated Oct. 20, 2011. |
U.S. Appl. No. 12/438,330, filed Feb. 20, 2009 Final Office Action dated Aug. 11, 2011. |
U.S. Appl. No. 12/438,330, filed Feb. 20, 2009 Non-Final Office Action dated Jun. 7, 2012. |
U.S. Appl. No. 12/438,330, filed Feb. 20, 2009 Notice of Allowance dated Sep. 25, 2012. |
U.S. Appl. No. 12/438,330, filed Feb. 20, 2009 Office Action dated Aug. 5, 2010. |
U.S. Appl. No. 12/438,330, filed Feb. 20, 2009 Office Action dated Mar. 16, 2010. |
U.S. Appl. No. 12/438,330, filed Feb. 20, 2009 Office Action dated Mar. 4, 2011. |
U.S. Appl. No. 12/438,527, filed Feb. 23, 2009 Advisory Action dated May 24, 2012. |
U.S. Appl. No. 12/438,527, filed Feb. 23, 2009 Final Office Action dated Mar. 7, 2012. |
U.S. Appl. No. 12/438,527, filed Feb. 23, 2009 Non-Final Office Action dated Jul. 11, 2011. |
U.S. Appl. No. 12/440,415, filed Mar. 6, 2009 Final Office Action dated Jan. 10, 2013. |
U.S. Appl. No. 12/440,415, filed Mar. 6, 2009 Non-Final Office Action dated Jul. 2, 2012. |
U.S. Appl. No. 12/440,415, filed Mar. 6, 2009 Notice of Allowance dated Apr. 3, 2013. |
U.S. Appl. No. 12/514,177, filed May 8, 2009 Advisory Action dated Sep. 10, 2012. |
U.S. Appl. No. 12/514,177, filed May 8, 2009 Final Office Action dated Apr. 27, 2011. |
U.S. Appl. No. 12/514,177, filed May 8, 2009 Final Office Action dated Jul. 11, 2012. |
U.S. Appl. No. 12/514,177, filed May 8, 2009 Non-Final Office Action dated Jan. 5, 2011. |
U.S. Appl. No. 12/514,177, filed May 8, 2009 Non-Final Office Action dated Mar. 13, 2012. |
U.S. Appl. No. 12/517,096, filed Jun. 1, 2009 Final Office Action dated Oct. 31, 2011. |
U.S. Appl. No. 12/517,096, filed Jun. 1, 2009 Non-Final Office Action dated Jun. 18, 2012. |
U.S. Appl. No. 12/517,096, filed Jun. 1, 2009 Non-Final Office Action dated May 6, 2011. |
U.S. Appl. No. 12/517,096, filed Jun. 1, 2009 Non-Final Office Action dated Nov. 28, 2012. |
U.S. Appl. No. 12/517,096, filed Jun. 1, 2009 Notice of Panel Decision dated Mar. 23, 2012. |
U.S. Appl. No. 12/528,289, filed Aug. 26, 2009 Non-Final Office Action dated Jan. 27, 2012. |
U.S. Appl. No. 12/594,531, filed Oct. 2, 2009 Advisory Action dated Jan. 10, 2012. |
U.S. Appl. No. 12/594,531, filed Oct. 2, 2009 Final Office Action dated Nov. 4, 2011. |
U.S. Appl. No. 12/594,531, filed Oct. 2, 2009 Non-Final Office Action dated Dec. 17, 2010. |
U.S. Appl. No. 12/594,531, filed Oct. 2, 2009 Non-Final Office Action dated May 12, 2011. |
Database Wikipedia, Sep. 11, 2007, “Lumen (anatomy)” XP 002453737 abstract. |
EP 07787316.4 filed Jul. 10, 2007 Examination Report dated Dec. 23, 2011. |
EP 07802603.6 filed Aug. 14, 2007 Office Action dated Dec. 13, 2010. |
EP 07820066.4 filed Mar. 31, 2009 Examination Report dated Dec. 27, 2011. |
EP 09177588 filed Aug. 14, 2007 Search Report dated Aug. 12, 2011. |
EP 12174308.2 filed Apr. 3, 2008 European Search Report dated Sep. 10, 2012. |
JP 2010-523512 filed Sep. 5, 2008 Office Action dated Sep. 25, 2012. |
PCT/EP2001/009467 International Preliminary Examination Report Sep. 17, 2002. |
PCT/EP2001/009467 International Search Report dated Feb. 18, 2002. |
PCT/EP2007/004407 filed May 16, 2007 International Preliminary Report on Patentability dated Sep. 29, 2008. |
PCT/EP2007/004407 filed May 16, 2007 Search Report dated Sep. 26, 2007. |
PCT/EP2007/004407 filed May 16, 2007 Written Opinion dated Sep. 26, 2007. |
PCT/EP2007/054822 filed on May 18, 2007 International Preliminary Report on Patentability dated Nov. 18, 2008. |
PCT/EP2007/054822 filed on May 18, 2007 Search Report dated Sep. 18, 2007. |
PCT/EP2007/054822 filed on May 18, 2007 Written Opinion dated Nov. 18, 2008. |
PCT/EP2007/057041 filed Jul. 10, 2007 International Preliminary Report on Patentability dated Jan. 13, 2009. |
PCT/EP2007/057041 filed Jul. 10, 2007 International Search Report dated Oct. 18, 2007. |
PCT/EP2007/057041 filed Jul. 10, 2007 Written Opinion Jan. 10, 2009. |
PCT/EP2007/058415 filed on Aug. 14, 2007 International Preliminary Report on Patentability dated Feb. 24, 2009. |
PCT/EP2007/058415 filed on Aug. 14, 2007 Search Report dated Nov. 30, 2007. |
PCT/EP2007/058415 filed on Aug. 14, 2007 Written Opinion dated Nov. 30, 2007. |
PCT/EP2007/058416 filed Aug. 14, 2007 International Preliminary Report on Patentability dated Feb. 24, 2009. |
PCT/EP2007/058416 filed Aug. 14, 2007 International Search Report dated Nov. 22, 2007. |
PCT/EP2007/058416 filed Aug. 14, 2007 Written Opinion dated Feb. 23, 2009. |
PCT/EP2007/058912 filed on Aug. 28, 2007 International Preliminary Report on Patentability dated Nov. 5, 2008. |
PCT/EP2007/058912 filed on Aug. 28, 2007 Search Report dated Nov. 12, 2007. |
PCT/EP2007/058912 filed on Aug. 28, 2007 Written Opinion dated Nov. 12, 2007. |
PCT/EP2007/059407 filed Sep. 7, 2007 International Preliminary Report on Patentability and Written Opinion dated Mar. 10, 2009. |
PCT/EP2007/059407 filed Sep. 7, 2007 International Search Report dated Jul. 3, 2008. |
PCT/EP2007/059407 filed Sep. 7, 2007 Written Opinion dated Mar. 10, 2009. |
PCT/EP2007/062155 filed on Nov. 9, 2007 Search Report dated Mar. 12. 2008. |
PCT/EP2007/062155 filed on Nov. 9, 2007 Written Opinion dated Mar. 12, 2009. |
PCT/EP2007/062155 filed on Nov. 9, 2007 International Preliminary Report on Patentability dated Oct. 15, 2008. |
PCT/EP2007/063347 filed Dec. 5, 2007 Search Report dated Jun. 10, 2009. |
PCT/EP2007/063347 filed Dec. 5, 2007 Written Opinion mailed Jun. 10, 2009. |
PCT/EP2007/063347 filed on Dec. 5, 2007 Search Report mailed Feb. 4, 2008. |
PCT/EP2008/052121 filed Feb. 21, 2008 International Preliminary Report on Patentability dated Aug. 26, 2009. |
PCT/EP2008/052121 filed Feb. 21, 2008 International Search Report dated May 19, 2008. |
PCT/EP2008/052121 filed Feb. 21, 2008 Written Opinion dated May 9, 2008. |
PCT/EP2008/054007 filed Apr. 3, 2008 International Preliminary Report on Patentability dated Jul. 27, 2009. |
PCT/EP2008/054007 filed Apr. 3, 2008 Search Report dated Jan. 30, 2009. |
PCT/EP2008/054007 filed Apr. 3, 2008 Written Opinion dated Jan. 30, 2009. |
PCT/EP2008/061775 filed Sep. 5, 2008 International Search Report dated Apr. 22, 2009. |
PCT/EP2008/061775 filed Sep. 5, 2008 Written Opinion dated Apr. 22, 2009. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Advisory Action dated Dec. 16, 2010. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Advisory Action dated Jan. 9, 2009. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Advisory Action dated Nov. 29, 2006. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Final Office Action dated Aug. 30, 2010. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Notice of Allowance dated Jun. 22, 2011. |
U.S. Appl. No. 10/362,040, filed Jun. 27, 2003 Office Action dated Aug. 18, 2008. |
Number | Date | Country | |
---|---|---|---|
20140033790 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12514177 | US | |
Child | 14045603 | US |