This application claims the benefit under 35 U.S.C. Section 371, of PCT International Application No. PCT/JP2010/066100, filed Sep. 16, 2010, which claimed priority to Japanese Application No. 2009-215464, filed Sep. 17, 2009 in the Japanese Patent Office, the disclosures of which are hereby incorporated by reference.
The present invention relates to a stent used in order to reduce stenosis of an aperture, such as a blood vessel, in the living body, and in particular, relates to a stent which is excellent in durability and has a bending flexibility.
In the practice of the present invention, the term “stent” referred to hereinabove and hereinafter is intended to mean an instrument formed from a biocompatible material, the instrument which is used to expand an aperture, such as a blood vessel, in the living body and to maintain the size of the aperture to be expanded.
In general, a stent is introduced to a desired aperture position in the body with an inflation-type balloon. As the balloon is inflated, the stent is also expanded to reopen the aperture where stenosis occurs.
As a conventionally stent structure, a stent shown in
Moreover, as other stent structures, structures shown in
Furthermore, referring to a stent 1 (S-Stent) shown in
In recent years, stent treatment has become widely and rapidly used and served as good news for patients. In the treatment, an affected portion (or lumen) of artery which became narrow by advance of arteriosclerosis is expanded mechanically with a balloon catheter and a metal stent is placed in the lumen so as to recover the blood flow of the artery. The stent used for this treatment needs to satisfy the following three requirements. In the first place, a compressed stent is mounted around a balloon which is attached to the distal end of a balloon catheter, and is allowed to be passed through a patient's winding artery to be conveyed to a lesion part or a stenosis part while passing along a guide wire which was inserted into the artery in advance. Accordingly, such a stent must be flexible in order to pass through a winding and narrow artery. In the second place, the stent in the expanded state needs to have strength sufficient for supporting an artery wall or maintaining a stenosis part in the dilation. Furthermore, in spite that the stent receives repeated bending loads according to the beat of the heart, it must have durability to withstand the load. In the third place, when the stent is expanded by inflating the balloon of a balloon catheter, the full length of the stent after expansion becomes shorter than the length in the compressed state. If the length of the expanded stent becomes short, such a short stent may fail to cover an affected area as planned by a doctor. Accordingly, it is desirable that there is little change in length of the stent before and after expansion.
As a result of intensive studies conducted by the inventors of the present invention, the inventors found that the stents disclosed by Patent Documents 1 and 2 had uniform flexibility and sufficient strength to maintain the dilation of a stenosis part, whereas they had the following disadvantages. That is, the finite element analysis revealed that when such stents received a bending load, the maximum stress occurred at the top of the bending part 13 constituting an S-shaped connecting element. Further, the results of a fatigue durability test showed that the bending durability of the top of the bending part 13 was inferior to the bending durability of cells 11 and 11′ disposed oppositely as well as bending durability of substantially linear part which constituted S-shaped connecting element. From the viewpoint of durability in the stent treatment, it should be avoided that excessive stress occurs at the top of the arc constituting the bending part 13 when the stent is subjected to very complicated deformation loads such as bending and torsion in a blood vessel. Therefore, the stents disclosed by Patent Documents 1 and 2 still remain the problems to be solved at this point.
Evaluation of physical properties of stent described in Patent Document 3 revealed that although the stent had sufficient bending durability when a bending load was received, this stent was hardly expansible because of its higher standard distension pressure at the time of stent expansion than those of stents disclosed in Patent Documents 1 and 2, for example the stent in FIG. 7 of Patent Document 2. Therefore, there is a subject in respect of expansibility in the stent disclosed in Patent Document 3. Moreover, as is the case with the stent disclosed in Patent Document 3, stents commercially available from other companies shown in
Therefore, the object of the present invention is to provide a stent having a high flexibility which can be easily conveyed through winding thin artery, being excellent in expansibility at the time of expansion, having sufficient strength to maintain the dilation of a stenosis part in support of an artery wall, and being excellent in durability which bears the repetitive bending load of the artery resulting from the heart beat.
As a result of intensive studies conducted by the inventors of the present invention with respect to the bending durability of the substantially circular arc part of a cell, it has been finally found that (i) the maximum stress in substantially circular arc part of the cell occurs at the time of the stent expansion by the balloon as well as under the repetitive bending load of the heart beat after placement of the stent, and the strength of the maximum stress greatly depends on the structure of the connecting element of the cell and that (ii) optimization of the structure of the connecting element between cells disposed oppositely greatly raises a bending durability, without spoiling expansibility.
The inventors have further proceeded with the study and confirmed that where the curvature radius of the top of the arc constituting the substantially circular arc part of a cell is larger than that of the tangent circle formed at the edges of the two substantially linear parts on the circular arc part side of the cell, when the stent receives a bending load, stress and strain are almost uniformly distributed in the stent, and that the stent is not only excellent in a bending durability due to the most reduced load to the cell but also excellent in expansive uniformity because of decreased standard distension pressure, and therefore the present inventors have reached the present invention.
That is, the present invention provides a stent comprising a tubular body comprising a plurality of ring units being arranged in the axis direction and bridged by a connecting element, each of the ring units comprising a plurality of cells connected with each other, each of the cells having a substantially U-shaped form, comprising two substantially linear parts and a substantially circular arc part between the substantially linear parts, and opening toward one end along the axis direction, and the tubular body being capable of expanding in the radius direction from its inside, wherein the ring units comprise a first ring unit and a second ring unit, the first ring unit and the second ring unit being alternatively arranged so that the central axis of the stent is surrounded, the first ring unit comprising a first cell group in which a plurality of first cells are connected with each other in the circumferential direction, the second ring unit comprising a second cell group in which a plurality of second cells are connected with each other in the circumferential direction, and the first cells in the first ring unit being disposed oppositely to the second cells in the second ring unit adjacent to the first ring unit; the shapes of the first and second cells are axisymmetrical of the stent about the connecting element; pairs of the oppositely disposed first and second cells are only partly bridged by the connecting element, the connecting element creating connection between the substantially circular arc parts of the oppositely disposed cells; and wherein the curvature radius of the top of the arc constituting the substantially circular arc part of the cells in substantially all of the cells constituting the stent, is 1.1 to 1.5 times larger than the curvature radius of each of the tangent circles formed at the edges of two substantially linear parts of the cell.
In the above stent, the curvature radius of the top of the arc constituting the substantially circular arc part of the cell is preferably within the range of 1.2 to 1.4 times of the curvature radius of each of the tangent circles formed at the edges of two substantially linear parts of the cell.
In the above stent, the substantially linear parts of the cells bridged by the connecting element preferably have the same length with each other, and preferably are slightly longer than those of the unbridged cells. In general, the substantially linear parts of the cells bridged by the connecting element are longer than those of the unbridged cells by 10 to 25%, and where the length of the cell is 1.2 mm, the length of the connecting element is about 0.1 to 0.3 mm.
In the above stent, each of the ring unit may comprise 6 to 10 cells, and 1 to 3 cells out of the 6 to 10 cells preferably have a connecting element between disposed oppositely cells.
In the above stent, the connecting element may comprise a short linear material between substantially arc part parts in the oppositely disposed cells. In a preferable embodiment, the substantially circular arc parts of oppositely disposed cells are directly joined with each other to form the connecting element. In particular, the connecting element preferably shares both of vertexes of the central circular arc of the substantially circular arc parts of the oppositely disposed cells. Both the cell and the connecting element preferably have a constant width and thickness.
In the above stent, a material constituting the stent is preferably a cobalt chromium alloy or a stainless steel, or preferably a biodegradable metal or a biodegradable polymer. The biodegradable metal is preferably pure magnesium; a magnesium alloy; malleable iron; or an iron alloy.
In the conventional stent, cells were bridged by the substantially S-shaped connecting element (connecting element 14 in
Hereafter, the present invention is described in detail, referring to the drawings showing the concrete embodiment of the stent of the present invention.
In the stent of the present invention, the first and the second ring units 3 and 3′ are alternatively connected to form a tubular body. The first ring unit 3 comprises a group of first cells in the way that a plurality of the first cells 2 are connected in the circumferential direction. The second ring unit 3′ also comprises a group of second cells in the way that a plurality of the second cells 2 are connected in the circumferential direction. The first cells 2 and the second cells 2′ are symmetrical about the connecting element 4. A plurality of cells in the ring unit 3 are disposed oppositely to a plurality of cells in the ring unit 3′, and part of each of the cells are bridged by a connecting element 4 (partial link type). Since the oppositely disposed cells are only partly bridged (at not all of pairs), a stent having flexibility is obtained compared with the stent (all link type) where all pairs of the oppositely disposed cells are bridged. Preferably, the connecting elements 4 bridging the first ring unit 3 and the second ring unit 3′ may be arranged together with the connecting elements 4′ bridging the first ring unit 3″ and the second ring unit 3′″ along lines a, a′ in the axis direction C1 so that the cells in the expanded state may not be easily imbalanced in the axis direction at the time of expansion of the stent. Although tops of the substantially circular arc parts in the oppositely disposed cells may be bridged by an unbent short linear material with 0.1 to 0.3 mm in length, each of the substantially linear parts of the cells bridged by the connecting element 4 is preferably longer than the substantially linear parts of the unbridged cells so that each of the tops of the substantially circular arc parts 5 in the bridged cells contacts to be directly joined together. When oppositely disposed cells are bridged by a short linear material, bending load may cause the maximum stress in the central part of the linear connecting element which may be disadvantageous in respect of bending durability, whereas in directly bridged cells, the maximum stress will occur in four places (refer to symbol 22 in
(Configuration of Substantially Circular Arc Part of Cell)
In the stent of the present invention, the curvature radius of the top of the arc constituting the substantially circular arc part 5 of the cell, which constitutes the stent, is 1.1 to 1.5 times larger, preferably 1.2 to 1.4 times larger, than the curvature radius of the tangent circles 21, 21′ formed at the edges of two substantially linear parts in the cells 2, 2′ on the circular arc part side (see
(Dimension of Stent)
In the present invention, the size of the stent (length and diameter of unexpanded stent) is not particularly limited to a specific one, and may be in the same range of the conventionally used stents. The length and diameter of unexpanded stent may be preferably within the range between about 9 mm and about 40 mm and the range between about 0.8 mm and about 2 mm, respectively. The length of the ring unit of the stent is preferably within the range between about 0.5 mm and about 3.0 mm. The length of the connecting element (the length of the space between the unbridged cells in the axis direction) may be preferably within the range between about 0.05 mm and about 1 mm, and more preferably within the range between about 0.1 mm and about 0.3 mm.
Moreover, the number of arranged cells 2, 2′ in the circumference direction is preferably not less than 4 pieces. Further, when the stent has a diameter of not smaller than 3.0 mm after expansion, the number of arranged cells 2, 2′ in the circumference direction is preferably not less than 6 pieces, usually within the range between 6 pieces and 12 pieces. Moreover, as to the ring units 3 and 3′, the number of pairs of ring units 3 and 3′ to be arranged in the stent is preferably not less than 6 pairs, usually within the range between 6 pairs and 12 pairs in the longitudinal direction of the stent, or the stent axis direction. Further, the stent may comprise not less than 3 pairs (usually 4 to 8 pairs) of ring units 3 and 3′ per 10 mm in the stent axis direction, and when the stent has a desired diameter after expansion (the standard diameter such as diameter of 3.0 mm or 4.0 mm), for example, the stent is preferably designed so that the angle θ formed by two substantially linear parts of the cell after expansion form is, as stated previously, at least 50°, usually within the range between 60° and 120°. Although it is effective for a stent to be designed to have a desired diameter over 120° in order to improve bearing capacity of the stent in the radius direction, such stent may have a problem that the deformation amount of the substantially circular arc part 5 becomes too large. Moreover, such a stent may not be preferable because it may have problems such that overall shortening (fore-shortening) of the stent after expansion is too large and that positioning at the time of stent implantation becomes too difficult.
It is preferable that, as shown in
The stent comprising the connecting element 4 as mentioned above can greatly improve durability and have an advantage that there is no reduction in flexibility and expansibility because the stress does not concentrate on the connecting element 4. Moreover, since not all of the oppositely disposed cells 2 and 2′ are bridged by the connecting element 4 (i.e., the stent is a partial link type), even if the diameter of the stent 1 is reduced at the time of the delivery to a blood vessel, the cells 2 and 2′ are not sterically overlapped with each other in the radius direction of the stent.
In the stent 1 of the present invention illustrated in
The stent of the present invention is manufactured from a metal pipe comprising stainless steels, such as SUS316 grade; shape memory alloys, such as, a Ni—Ti alloy, and a Cu—Al—Mn alloy; a titanium alloy; a tantalum alloy; a cobalt chromium alloy; or the like. Moreover, the stent of the present invention may be manufactured from a biodegradable metal, the metal which can be degraded in the living body. Examples of the biodegradable metals include pure magnesium, a magnesium alloy, pure iron, an iron alloy, and the like. The preferable magnesium alloy may include magnesium as a principal component and at least one element selected from the biocompatible element group consisting of Zr, Y, Ti, Ta, Nd, Nb, Zn, Ca, Al, Li, and Mn. Such a preferable magnesium alloy may comprise, for example, 50 to 98% of magnesium, 0 to 40% of lithium (Li), 0 to 5% of iron and 0 to 5% of other metal(s) or rare earth element(s) (e.g., cerium, lanthanum, neodymium, praseodymium). The preferable iron alloy may include iron as a principal component and at least one element selected from the biocompatible element group consisting of Mn, Co, Ni, Cr, Cu, Cd, Pb, Sn, Th, Zr Ag, Au, Pd, Pt, Re, Si, Ca, Li, Al, Zn, Fe, C, and S. Such a preferable iron alloy may comprise, for example, 88-99.8% of iron, 0.1 to 7% of chromium, 0 to 3.5% of nickel, and not more than 5% of other metal(s).
Furthermore, the stent of the present invention may be also manufactured from a biodegradable polymer, such as a polylactic acid, a polyglycol acid, poly (lactic acid-glycolic acid), poly (lactic acid-ε-caprolactone), and poly (glycolic acid-ε-caprolactone); or a composite biodegradable polymer in which a biodegradable high-toughness polymer, such as poly (succinic acid butylene) is dispersed in a biodegradable matrix polymer, such as a polylactic acid, etc. These biodegradable polymers may be subjected to drawing and/or orientation. Furthermore, the biodegradable polymer may coat the surface of the metal which is degradable in the living body.
The stent of the present invention having such a configuration as mentioned above may be integrally formed by laser machining. The manufacture process by laser machining is illustrated as below. First, a tool pass by laser machining is created with CAM based on the configuration data of the designed stent. The tool pass is specified taking into consideration of that the stent configuration is maintainable after the laser cut and that scraps do not remain. Next, laser machining is operated on a thin-walled tube made from metal or polymer. Processing conditions are selected for the purpose of a high speed and quality processing with reduced burrs.
After a network configuration is formed by laser-cutting processing, electrolytic polishing is performed to finish the surface to be glossed as well as to smooth edge parts. In the case of the stent made from a cobalt chromium alloy, the post-processing step is of importance after laser-cutting processing. The stent after laser-cutting processing is subjected to acid liquid so that the metal oxide on the cutting plane is dissolved, followed by electrolytic polishing. In the electrolytic polishing, a stent and a metal plate, such as stainless steel, are dipped into an electrolyte, and are connected with each other through a DC power. By applying voltage to the stent as an anode and the metal plate as a cathode, the stent is effectively polished after the surface of the stent is dissolved as the anode. In order to acquire the suitable polish effectiveness, it is necessary to examine composition of an electrolyte and current conditions to be applied.
Since the stent manufactured by the above-mentioned laser process can have the network structure just as designed, the stent to be provided has high flexibility and bearing capacity of the stent in the radius direction and also inhibits fore-shortening and flare phenomenon because of increased blood vessel expansibility, and further deters cutting of cells or others in use.
Hereinafter, the present invention will be demonstrated by way of some examples that are presented only for the sake of illustration, which are not to be construed as limiting the scope of the present invention. It should be noted that in the following Examples and Comparative Examples, expansion pressure, bending durable time, flexibility, fore-shortening value, recoil value, and the maximum strain were evaluated in the following manners.
(Measurement of Expansion Pressure)
A stent with diameter of 3.0 mm was inserted into a silicone tube with an inner diameter of 3.0 mm, and an outer diameter of 4.0 mm. Then, physiological salt solution was poured into the silicone tube, and the expansion pressure when expanding the inner diameter of the stent by a balloon to 3 mm was measured.
(Measurement of Flex-Endurance Time)
As shown in
(Evaluation of Flexibility)
Flexural strength was measured by the four-point bending method to evaluate flexibility of a stent.
(Measurement of Fore-Shortening Value)
A stent was inserted into a silicone tube with inner diameter of 3.0 mm and outer diameter of 4.0 mm. Then, physiological salt solution was poured into the silicone tube, and the inner diameter of the stent was expanded to 3 mm. The length of the stent after expansion was measured, and the rate of reduction to the length of the stent before expansion was calculated to regard the rate as fore-shortening value.
(Calculation of Recoil Value)
A stent was inserted into a silicone tube with inner diameter of 3.0 mm and outer diameter of 4.0 mm. Then, physiological salt solution was poured into the silicone tube, and the inner diameter of the stent was expanded to 3 mm by a balloon. Then, the balloon was removed and the inner diameter of the stent after balloon removal was measured to calculate recoil value of the stent by the following formula (1).
(Measurement of the Maximum Strain)
Strain generated to each part of a stent in a series of processes from contraction of the stent diameter by a crimper to placement of the stent into a blood vessel by balloon inflation was evaluated from the viewpoint of the material strength using the analysis by computer simulation. The stent finite element model was constructed, and suitable material characteristics and features were inputted. After the stent was contracted to have an outer diameter of 1.0 mm, the stent was expanded to have an inner diameter of 3.0 mm so as to detain the stent in the blood vessel, and the maximum strain generated in the series of processes was calculated.
A stent (Example 1) shown below was used as a stent of the present invention to compare with stents of Comparative Examples 1 to 4 shown below. The result was shown in Table 1 and
In the stent of Example 1 shown in
(The length of one cell forming an unbridged part: 1.2 mm, the length of one cell forming a connecting element: 1.3 mm, the number of the cells in one ring unit: 6)
The conventional stent (all linked stent) of Comparative Example 1 shown in
(The length of one cell: 1.2 mm, the length of a connecting element: 0.6 mm, and the number of the cells in one ring unit: 6)
In the stent of Comparative Example 2 shown in
(The length of one cell: 1.2 mm, the length of one cell forming the connecting element: 1.3 mm, the number of cells in one ring unit: 6)
In the stent of Comparative Example 3 shown in
(The length of one cell forming an unbridged part: 1.2 mm, the length of one cell forming a connecting element: 1.3 mm, the number of cells in one ring unit: 6)
The stent of Comparative Example 4 shown in
As shown in Table 1, the results reveal that the durabilities of the partially linked stents (Example 1, Comparative Examples 2, 3, and 4) are larger than that of the all linked stent (Comparative Example 1). As this reason, it is surmised that the partially linked stents excel the all linked stent in bending durability probably because deformation of cell space (i.e., large freedom of the movement due to few restraining points) reduces the load applied to the link. In comparison of partially linked stent group, the durability of Example 1 is larger compared to those of other partially linked stents. As this reason, it is surmised that the bending durability of Example 1 is excellent because Example 1 has the lower maximum strain when a bending load is applied (see
In designing the stent of the present invention, it is important that the stent has a structure that the maximum stress and strain of the stent is minimized and that the stent has a substantially constant stress and strain on each point along the cell linear part as well as cell connecting element 4.
As mentioned above, the stent of the present invention has a structure in which the circular arc part 5 of the cell and the connecting element 4 receive comparatively lower stress and strain than the bending element between the cells of Comparative Example 1 and the circular arc part 10 and the connecting element 9 of Comparative Examples 2 and 3. Further, the stent of the present invention is excellent in bending durability and has an excellent bending flexibility and an improved homogeneity for expansion because (i) the top of the arc which constitutes the cell circular arc part 5 has a curvature radius of 1.1 to 1.5 times larger than that of each of the tangent circles formed at the edge part of the substantially linear part of the cells 2, 2′ on the circular arc part side and (ii) minimization of the maximum stress and strain is attained by bridging some of cells with the connecting element 4.
Since the present invention can provide stents having a structure excellent in durability to withstand a bending load and flexibility, such stents of the present invention greatly contributes to stent manufacture technology and also have a great impact to industrial applicability. Furthermore, since stents of the present invention can be integrally manufactured by laser processing, availability of such stents on industry is also large from this point.
As mentioned above, the preferred embodiments of the present invention are illustrated, but it is to be understood that other embodiments may be included, and that various additions, other changes or deletions may be made, without departing from the spirit or scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2009-215464 | Sep 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/066100 | 9/16/2010 | WO | 00 | 3/12/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/034154 | 3/24/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6017365 | Von Oepen | Jan 2000 | A |
7179285 | Ikeuchi et al. | Feb 2007 | B2 |
7985251 | Ikeuchi et al. | Jul 2011 | B2 |
20030158596 | Ikeuchi et al. | Aug 2003 | A1 |
20050015136 | Ikeuchi et al. | Jan 2005 | A1 |
20060276877 | Owens et al. | Dec 2006 | A1 |
20070010869 | Sano | Jan 2007 | A1 |
20070021827 | Lowe et al. | Jan 2007 | A1 |
20070055353 | Fliedner | Mar 2007 | A1 |
20090105809 | Lee et al. | Apr 2009 | A1 |
20100004735 | Yang et al. | Jan 2010 | A1 |
20100249904 | Takayuki et al. | Sep 2010 | A1 |
20100262227 | Rangwala et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
101357089 | Feb 2009 | CN |
1277489 | Jan 2014 | EP |
3654627 | Mar 2005 | JP |
3663192 | Apr 2005 | JP |
3145720 | Sep 2008 | JP |
2009-82245 | Apr 2009 | JP |
WO 2008126894 | Oct 2008 | WO |
Entry |
---|
Machine translation from JPO of WO 2008/126894, Oct. 23, 2008. |
International Search Report for PCT/JP2010/066100 mailed Dec. 21, 2010. |
International Preliminary Report on Patentability mailed Apr. 19, 2012 issued in corresponding International Patent Application No. PCT/JP2010/066100. |
Chinese Office Action mailed Jan. 22, 2014 in corresponding Chinese Application No. 201080041220.9. |
Japanese Office Action mailed Apr. 22, 2014 in corresponding Japanese Application No. 2011-531975. |
Chinese Office Action dated Aug. 12, 2014 in corresponding Chinese Patent Application No. 201080041220.9. |
Extended European Search Report dated Jun. 16, 2014 in corresponding European Patent Application No. 10817267.7. |
Number | Date | Country | |
---|---|---|---|
20120172974 A1 | Jul 2012 | US |