Stentless aortic valve replacement with high radial strength

Information

  • Patent Grant
  • 8568477
  • Patent Number
    8,568,477
  • Date Filed
    Wednesday, June 7, 2006
    19 years ago
  • Date Issued
    Tuesday, October 29, 2013
    12 years ago
Abstract
Disclosed is a stentless transluminally implantable heart valve, having a formed in place support. The formed in place support exhibits superior crush resistance when compared to conventional balloon expandable or self expandable stent based valves.
Description
BACKGROUND OF THE INVENTION

The malfunctioning of an aortic valve results in cardiac insufficiency and hence in a situation that is potentially fatal for the patient. For repair of such a defect, artificial aortic valves have been developed which are implanted as a substitute for the damaged valve in complex and risky open-heart surgery (sternotomy). The operation becomes particularly difficult when there is strong calcareous degeneration on the natural valve because painstaking attention must be paid during removal in order to ensure that calcification particles will not enter the blood circulation and cause there thromboses at other sites in the body. It is common to fasten the replacement valves—which are either mere engineering products or derived from porcine or other tissue valves—by suturing in the place of the removed valve.


There are numerous approaches in the development of methods simplifying this complex procedure of aortic-valve replacement in terms of both the surgical technique and the discomfort and strain for the patient, aiming at a minimally invasive technique of replacement of the aortic valve. In these approaches, the operation is performed via the femoral artery or even through the groin.


In view of the very restricted possibilities of access in the aortic arch, it is inevitable to adopt complex surgical strategies, firstly for explantation of the calcified aortic valve and secondly for implantation of an artificial valve in situ. Apart from all difficulties involved in the surgical operation—even though minimally invasive surgery is concerned that operates on advanced catheter technology—a maximum of concentration and above all a steady hand is demanded from the surgeon, specifically as the individual steps of surgical handling are within the millimeter range and there below. With the minimally invasive operation being performed with a sustained natural function of the heart, it is moreover important to carry out the operation as quickly as possible in order to keep the strain on the cardiac system at a minimum, which means that an operation of this kind is performed under a certain pressure in terms of time.


A special aspect is the ablation of the calcified aortic valve that must be removed completely from the aorta as quickly as possible, without lesion of adjoining unaffected tissue regions, specifically as the ablation involves mostly the application of mechanically acute cutting tools. Furthermore, it is important to ensure that severed tissue fragments or calcification particles will be extracted from the blood stream without any residues so as to avoid the occurrence of embolism or thromboses.


SUMMARY OF THE INVENTION

The present invention is based on the task of solving the problem configuring a device for replacement of an aortic or other valve on the human heart or peripheral vascular system by a minimally invasive technique. A device with a high radial strength may provide an ideal implant for heavily calcified aortic valves. Conventional treatment includes surgical replacement or a percutaneous balloon valvuloplasty. The second option is an insertion of a balloon catheter to the calcified aortic valve and inflation to dilation of the native valve to push the calcium aside. Though this technique is successful acutely, the restinosis rates are shown to be about 80% at twelve months. Some physicians in Europe believe this to be a technique to use in maintaining aortic flow in patients with out a surgical option. By this technique a patient may be treated with a balloon valvuloplasty up to three times providing an improved quality of life without a surgical intervention. It therefore stands to reason that during this acute restinosis after balloon valvuloplasty, if the calcium can be held back by a high radial strength device, a longer term therapy may be possible with a high strength device. This allows a larger patient population to be treated with a less invasive method and a more rapid recovery time. It may also eliminate the need for by-pass. This procedure may be completed under fluoroscopy, surface, transesophageal or transluminal echo. It will be desirable to monitor the patient's vital signs before, during and after the procedure. These may include blood pressures in relative chambers of the heart, aortic outflow, heart rate, breathing rates and blood chemistry. Blood thinners, heparin, aspirin and other drugs may be required to optimize blood before during and after the procedure.


Accordingly, one embodiment of the present invention comprises a cardiovascular prosthetic valve that includes an inflatable cuff. The cuff comprises at least one inflatable channel that forms, at least in part, a distal inflatable toroidal structure and a proximal inflatable toroidal structure. The inflatable cuff also comprises a waist that extends between the distal inflatable toroidal structure and the proximal inflatable toroidal structure. A valve is coupled to the inflatable cuff. The valve is configured to permit flow in a first axial direction and to inhibit flow in a second axial direction opposite to the first axial direction.


Another embodiment of the present invention comprises a prosthetic valve for replacing an aortic valve positioned between the left ventricle and the aorta of the heart. The valve includes an inflatable structure that has a distal end and a proximal end. A valve member is coupled to the inflatable structure. The valve member is positioned generally between the distal and proximal ends of the inflatable structure. The distal end of the inflatable structure is configured to be positioned within the left ventricle and the proximal end of the inflatable structure is configured to be positioned within the aorta.


Another embodiment of the present invention comprises a cardiovascular prosthetic valve that comprises an inflatable body. The inflatable body has at least a first inflatable chamber and a second inflatable chamber that is not in fluid communication with the first inflatable chamber. The inflatable body is to form, at least in part, a generally annular ring. A valve is coupled to the inflatable body. The valve is configured to permit flow in a first axial direction and to inhibit flow in a second axial direction opposite to the first axial direction. A first inflation port is in communication with the first inflatable chamber. A second inflation port is in communication with the second inflatable chamber.


Another embodiment of the present invention comprises a cardiovascular prosthetic valve that includes a cuff and an inflatable structure. The cuff has a distal end and a proximal end. The inflatable structure is coupled to the cuff and has at least one inflatable channel that forms a toroidal structure. A valve is coupled to the cuff. The valve is configured to permit flow in a first axial direction and to inhibit flow in a second axial direction opposite to the first axial direction. The distal end of the cuff has a non-circular cross-section with respect to the flow. The non-circular cross-section is configured to affect the performance of an adjacent valve.


Another embodiment of the present invention comprises a cardiovascular prosthetic valve that includes a flexible cuff having a distal end and a proximal end. An inflatable structure is coupled to the cuff and has at least one inflatable channel that forms a toroidal structure. A valve is mounted to the cuff. The valve is configured to permit flow in a first axial direction and to inhibit flow in a second axial direction opposite to the first axial direction. At least one anchor is moveable between a first position in which the anchor extends in a radial direction to engage an adjacent anatomical structure and a second position in which the anchor has a reduced radial profile.


Another embodiment of the present invention comprises a cardiovascular prosthetic valve that includes an inflatable body. A valve is coupled to the body. The valve is configured to permit flow in a first axial direction and to inhibit flow in a second axial direction opposite to the first axial direction. At least two control wires are detachably coupled to the inflatable body.


Yet another embodiment of the present invention comprises a cardiovascular prosthetic valve that includes an inflatable body comprising at least one inflation channel. A valve is coupled to the body. The valve is configured to permit flow in a first axial direction and to inhibit flow in a second axial direction opposite to the first axial direction. An inflation port is in communication with the at least one inflatable channel. A plug is positioned within the inflation port. An inflation tube extends through the inflation tube in communication with the at least one inflation channel. A balloon is coupled to the inflation tube. The balloon is configured to expand between a first, inflated position in which the balloon prevents the inflation tube from decoupling from the inflation port and a second, deflated position in which the inflation tube can be decoupled from the inflation port.


Another embodiment of the present invention comprises a method of implanting a prosthetic valve within a heart. A prosthetic valve comprising an inflatable structure is translumenally advanced to a position proximate a native valve of the heart. A portion of the inflatable structure that is distal to the native valve is inflated. A portion of the inflatable structure that is proximal to the native annular valve is inflated.


Another embodiment of the invention involves a method of implanting a prosthetic valve within the heart that comprises translumenally advancing a prosthetic valve that has an inflatable structure to a position proximate a native valve of the heart. A distal portion of the inflatable structure is inflated. The valve is proximally retracted to seat the distal portion of the inflatable structure against a distally facing portion of the native valve.


Another embodiment of the invention comprises a method of implanting a prosthetic valve within the heart. A prosthetic valve comprising an inflatable structure is advanced, translumenally, to a position proximate a native valve of the heart. A first chamber of the inflatable structure is inflated. A second chamber of the inflatable structure is independently inflated.


Another embodiment of the present invention relates to a method of implanting a prosthetic valve within the heart in which a prosthetic valve comprising an inflatable structure is advanced translumenally to a position proximate a native valve of the heart. The inflatable structure is inflated to deploy the prosthetic valve. The prosthetic valve is stapled or sutured to an adjacent anatomical structure.


Another embodiment of the present invention is a method of treating a patient. The method comprises translumenally advancing a prosthetic valve to a position proximate a native valve of the heart, fully deploying the prosthetic valve at the cardiovascular site, testing a performance characteristic of the prosthetic valve, at least partially reversing the deployment of the prosthetic valve, repositioning the prosthetic valve; and re-deploying the prosthetic valve.


Another embodiment of the present invention involves advancing a deployment catheter to a position proximate a native valve of the heart, the deployment catheter comprising an inflation tube and a prosthetic valve comprising an inflatable structure in communication with the inflation tube, inflating the inflatable structure with the inflation tube, removing the deployment catheter from the patient while the inflation tube remains coupled to the inflatable catheter, advancing a removal catheter over the inflation tube, deflating the inflatable structure, retracting the prosthetic valve into the removal catheter; and withdrawing the prosthetic valve and the removal catheter from the patient.


Another embodiment of the invention comprise a method of treating a patient that includes advancing a deployment catheter to a position proximate a native valve of the heart, the deployment catheter comprising a prosthetic valve and a linking member coupled to the prosthetic valve, deploying the prosthetic valve, removing the deployment catheter from the patient while the linking member remains coupled to the prosthetic valve, advancing a removal catheter over the linking member, retracting the prosthetic valve into the removal catheter; and withdrawing the prosthetic valve and the removal catheter from the patient.


Another embodiment of the present invention comprises identifying a patient with a minimum cross-sectional flow area through an aortic valve of no greater than 0.75 square cm, enlarging the minimum cross-sectional flow area through the valve; and deploying a prosthetic valve which provides a minimum cross-sectional flow area of at least about 1.75 square cm.


Yet another embodiment of the preset invention involves a method of treating a patient. The method comprises inflating an inflatable structure of a temporary valve at a cardiovascular site in fluid communication with a native valve, translumenally removing at least a portion of the native valve, deploying a prosthetic valve to compliment or replace a native valve, and removing the temporary valve.


Another embodiment of the present invention comprises a method of performing a procedure on a beating heart. In the method, a temporary valve is positioned in series fluid flow with a native valve. An inflatable prosthetic valve is deployed upstream of the temporary valve. The temporary valve is then removed.


Yet another embodiment of the present invention comprises a temporary heart valve catheter, for enabling minimally invasive procedures on a valve in a beating heart. The catheter includes an elongate, flexible catheter body, having a proximal end and a distal end, a valve on the distal end, the valve comprising an inflatable structure; and at least one link between the catheter and the valve to prevent detachment of the valve from the catheter.


Another embodiment of the present invention comprises a method of in situ formation of a prosthetic valve support. A prosthetic valve is attached to a flexible support component which is incapable of retaining the valve at a functional site in the arterial vasculature. The support component extends both proximally and distally of the base of the valve. The valve is positioned at the site. The flexible support component is supplemented to increase the rigidity of the support component sufficiently to retain the valve at the site.


Another embodiment of the present invention involves an implantable prosthetic valve that has an in situ formable support structure. The valve comprises a prosthetic valve, having a base and at least one flow occluder. A first flexible component is incapable of retaining the valve at a functional site in the arterial vasculature. The first component extends proximally of the base of the valve. A second flexible component is incapable of retaining the valve at a functional site in the arterial vasculature. The second component extends distally of the base of the valve. At least one rigidity component combines with at least one of the first and second flexible components to impart sufficient rigidity to the first or second components to retain the valve at the site.


There is provided in accordance with one embodiment of the present invention, a method of treating a patient. The method comprises deploying a temporary valve at a cardiovascular site in fluid communication with a native valve. At least a portion of the native valve is transluminally removed, and a prosthetic valve is deployed to complement or replace the native valve. The temporary valve is thereafter removed.


In one embodiment, the deploying a temporary valve step may comprise transluminally advancing the temporary valve to the site while the valve is in a first, reduced cross sectional configuration, and transforming the valve to a second, enlarged configuration to enable the valve to function at the site. The removing the temporary valve step may comprise transforming the valve in the direction of the first configuration, and transluminally removing the temporary valve. In certain embodiments, the temporary valve is permanently affixed to a temporary valve deployment catheter, to facilitate valve removal. The method may be accomplished on a beating heart.


The deploying a temporary valve step may comprise deploying a valve with tissue leaflets. Alternatively, the deploying a temporary valve step may comprise deploying a valve with synthetic leaflets. The valve may be supported within a self expandable stent, a balloon expandable stent, or an inflatable cuff. The removing the temporary valve step may comprise retracting the valve into a tubular sheath.


The transluminally removing at least a portion of the native valve step may comprise mechanically cutting native valve tissue. Mechanical cutting may be accomplished with an axially reciprocating cutter, or a rotational cutter. Cutting or decalcification may also be accomplished using a thermal source, such as a laser, or ultrasound.


The method may additionally comprise the step of capturing embolic material dislodged into the blood stream from the valve procedure. This may be achieved by filtration or extraction of the material through an aspiration process.


In accordance with another embodiment of the present invention, there is provided a method of performing a procedure on a beating heart. The method comprises the steps of positioning a temporary valve in series fluid flow with a native valve, and performing a procedure on the native valve. The temporary valve is thereafter removed. The valve may be the aortic valve, the mitral valve, or other valves. The procedure may be a valve repair, or a valve replacement.


In accordance with a another embodiment of the present invention, there is provided a temporary heart valve catheter, for enabling minimally invasive procedures on a valve in a beating heart. The catheter comprises an elongate flexible catheter body, having a proximal end and a distal end. A valve is carried by the distal end. At least one link is provided between the catheter and the valve to prevent detachment of the valve from the catheter. The valve may be supported by a support frame, which is connected to a pull wire or wires extending axially throughout the length of the catheter. Axial tensioning of the pull wire relative to the catheter body deploys the valve into its functional configuration. Proximal retraction of the pull wire causes the valve to reduce in cross section and draw into the distal end of the catheter, such as for placement or removal. The link may comprise a connection between the pull wire and a valve support.


In all of the foregoing embodiments, the formed in place stentless valve support of the present invention preferably retains essentially full functionality under a transverse load of at least about 2 lbs, often under loads of at least about 3 lbs, and in some cases loads of at least about 4 lbs. In some constructions of the present invention the stentless formed in place valve support will retain full functionality under transverse load of at least about 5 lbs. The formed in place valve support will preferably have a transverse displacement of no greater than about 0.2 inches, under a load of at least about 3 lbs, often at least about 4 lbs, and in certain embodiments in excess of about 6 lbs or 7 lbs.


Further features and advantages of the present invention will become apparent from the detailed description of preferred embodiments which follows, when considered together with the attached drawings and claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates the displacement or transverse crushing in inches, as a function of applied force, for a stent and a cast in place valve support.



FIG. 2 is a front elevational perspective view of a balloon expandable stent based valve system.



FIG. 3A is a perspective schematic view of a formed in place support in accordance with the present invention.



FIG. 3B is a cross sectional schematic view of the formed in place support of FIG. 3A.



FIG. 4 is a perspective schematic view of an alternate formed in place support in accordance with the present invention.



FIG. 5A is a perspective schematic view of an alternate formed in place support in accordance with the present invention.



FIG. 5B is a cross sectional schematic view of the formed in place support of FIG. 5A.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides a percutaneous valve replacement with high radial strength.


One current method for implanting a tissue valve percutaneously includes a balloon expandable or self-expanding stent with a tissue valve attached as described in Andersen U.S. Pat. No. 6,168,614. See FIG. 2. Another method to implant a tissue valve percutaneously is described in U.S. Pat. No. 5,554,185 (Block), the disclosure of which is incorporated in its entirety herein by reference. One key feature in any valve apparatus is the ability to withstand forces generated by the closure of the valve at the commissural supports. In surgical valves these are seen as posts or pillars rising from the base of the device. General construction often includes a metallic frame encompassed with silicone and wrapped with Dacron. This frame will withstand the cyclical loading seen under normal conditions of operation in a heart valve. Since surgical valves are installed under direct visualization, the strength and materials can be different from those implanted percutaneously. By casting the support structure in-situ using a polymer, epoxy or hydrogel, the frame or lattice can be designed to withstand these forces long term as seen during normal operation within the body for years. These implantable medias may include such monoepoxys such as Phenol (EO)5 Glycol Ether (DENACOL EX-145), diepoxys such Ethylene Glycol Diglycidyl Ether (DENACOL EX-810), and polyepoxys such as Glycerol Polyglycidyl Ether (DENACOL EX-313) paired with amine compounds such as ethylenediamine (EDA), Diethylenetriamine (DETA), Aminoethylpiperazine (AEP), Aminoethylethanolamine (AEEA) or other compounds and epoxy groups available from companies such as Huntsman, Dixie Chemical, Alfa, Aesar, TCI America and Nagase ChemteX Corporation. Other compounds tested are available from Epoxy Technology include EOP-TEk 301 Part A and Part B. These above Medias all have advantages and disadvantages including favorable mechanical properties, water solulobility, biocompatibility, creep and fatigue resistance and viscosity characteristics that will aid in the development of a media that may be delivered via small bore catheter to an implant. Ideally the media would be a low viscosity, biocompatible fluid that may be sterilized, packaged and mixed in the catheterization lab with a set time that can be tailored to cure at approximately 37 degrees Centigrade in about 5 to no greater than about 30 or 45 minutes with mechanical properties that would include a resistance to fatigue and creep for an extended period of at least about 5 or 10 years but preferably at least about 20 years. It would additionally be ideal to have a water bourn-epoxy to aid in the biocompatibility and cytotoxicity of the media in case of a spill within the body so that neither embolic events nor neurological deficits would occur due to the introduction of this foreign material to the blood stream.


Referring to FIGS. 3A and 3B, the valve support 10 generally comprises an inflatable cuff 24. The cuff 24 comprises at least one inflatable channel 26 that forms, at least in part, a first annular inflatable ring 12 spaced apart from a second annular inflatable ring 14. One or more inflatable channels 26 can be in fluid communication to create an inflatable chamber 28. Each of the rings 12 and 14 are adapted to be placed into communication with a deployment catheter, having at least one inflation chamber 28 for providing communication between the rings 12 and 14 and a source of inflation media. One or two or three or more generally axially extending struts 16, such as illustrated in FIG. 3A extend between the first and second rings 12 and 14. Struts 16 in FIG. 3A are illustrated in the form of a three pronged sinusoidal wave, to provide commissural support as is understood in the valve arts. The sinusoidal support 16 may also be inflated either simultaneously with or separately from either or both of the rings 12 and 14.


Referring to FIG. 4, an inflatable valve support 10 is illustrated in which an additional annular ring 18 has been added at one end or both ends of the support 10. Inflatable support ring 18 may be in fluid flow communication with ring 14, and/or with the strut 16 and/or first ring 12. Alternatively, inflatable ring 18 may be provided with a separate inflation port and valve, such that it may be inflated independently of the remainder of the support 10.


Referring to FIG. 5A, there is illustrated a perspective schematic view of an alternate embodiment. FIG. 5B illustrates a schematic cross section of the embodiment of FIG. 5A. In this embodiment, the support 10 is provided with an inflatable cuff 24. The cuff 24 comprises at least one inflatable channel 26 that forms, at least in part, a first annular support 12 and second annular support 14. One or more inflatable channels 26 can be in fluid communication to create an inflatable chamber 28. A plurality of intermediate support rings 20 are provided, in between the first support 12 and the second support 14. Annular support 20 may be in the form of one or two or three or four or five or more annular rings. The rings 20 may be discrete rings stacked upon each other, or a continuous spiral as will be understood in the art. Rings 20 may be separately inflatable, or may be in fluid communication with either or both of the first support 12 and second support 14. FIG. 5B, a valve 22 is schematically illustrated as carried by the support 10.


The commissural supports can be attached directly or indirectly to a toroid or ring shape. Since the forces at the comissures during valve closure are inward and radial, the ring is in a compressive loading state and will withstand higher forces than a post-design as described above and as seen in a common surgical valve. Additionally, a balloon expandable or self-expanding stent is created to be radially expandable by design. For that same reason the stent may also be susceptible to radial crush and require a rather large cross sectional area to withstand similar loading conditions normally acceptable in a ring or toroid. The zigzag patterning normally seen in stent design prohibits large radial strength capabilities that may be required to safely mount and deliver percutaneously a tissue valve. An additional design to increase the radial strength of a tubular member is to increase the number of tubes or hoops. Rather than an upper and lower hoop additional hoops may be added between the two to increase the loading force per hoop. These may vary in cross sectional diameter to limit the area to which blood may flow past the valve leaflets. In this design the two distal hoops may have a large cross section of about 0.15 inches to about 0.05 inches and the middle hoops may have a smaller cross sectional diameter of 0.13 inches to 0.02 inches. The larger the cross sectional diameter the larger the load carrying capacity of the overall device in radial resistance and crush. The shape of these hoops may additionally be changed from a circular configuration to one of a clover or semi-triangular shape to accommodate the natural aortic valve shape. This may allow for more uniform fit but may also allow for less radial resistance in crush due to the irregular shape.


The stentless formed in place supports in accordance with the present invention are described in additional detail in U.S. patent application Ser. No. 11/122,983, filed May 5, 2005, entitled Transluminally Implantable Heart Valve With Formed In Place Support, the disclosure of which is incorporated in its entirety herein by reference. Measured in accordance with the technique described below, formed in place heart valves in accordance with the present invention exhibit superior crush resistance compared to balloon expandable and self expandable stent based valves. In general, balloon expandable stent based valves are believed to crush to a point where they would not operate properly under a transversely applied force as described below of less than 2 lbs. However, the formed in place stentless valve support of the present invention will retain essentially full functionality under a transverse load of 2 lbs., and, often under a load of at least about 3 lbs., and in some cases at least about 4 lbs., and for some constructions at least about 5 lbs. In certain designs in accordance with the present invention, the stentless formed in place valve support is subject to a reduction in diameter of less than 0.2 inches under a load of at least about 6 lbs., and, in some embodiments, at least about 7 lbs. or more. Deformation of no more than about 0.4 inches or no more than about 0.3 inches may also be achieved at the pressures recited above, depending upon the cuff design and inflation media. In the design described herein with the Epo-Tek 301 media the radial crush in a flat plate test will withstand forces in excess of about nine pounds of compressive force with no permanent deformation and about thirty percent temporary deflection. Other media tested such as 811 with an amine of DETA (Ethylene Glycol Digiycidyl Ether with a Diethylenetriamine) provide resistance to compressive loading as described above in the range of from about one to about three pounds. Within this range is where the ideal resistance to compressive loads may be ideal. This resistance to compression is mainly due to the re-narrowing of the aortic valve and the calcium that occurs on and within the valve leaflets. Therefore resistance to this closure is combated with a high radial strength device to allow the maximum orifice area possible.


Viewed from another perspective, the force in pounds applied by opposing plates aligned transversely to the longitudinal axis of a stent will cause a displacement (transverse crush) of the stent of at least about 0.2 inches under a load of less than about 2 lbs., and, often less than about 1 lb. In contrast, formed in place stentless valve supports in accordance with the present invention, require at least about 3 lbs., often at least about 4 lbs. or 5 lbs., and in certain embodiments in excess of 6 lbs. or 7 lbs. of transverse force in order to achieve a transverse displacement of 0.2 inches.


An experimental protocol and test data for a particular embodiment of the present invention is described below.


Tests were performed using a force gauge system (Chatillion model TCD 200) where compressive loads were applied at various deflections to both stent-based structures and cast in-situ structures. The stent structure consisted of a 316L laser-cut stent with a zigzag patent similar to the device produced by Edwards/PVT and described in the Andersen U.S. Pat. No. 6,168,614. The strut thickness was 0.018 inches by 0.018 inches. The diameter was approximately 1.00 inches and the length was about 1.50 inches (see FIG. 1).


The cast in place structure had an outside diameter of about 1.00 inches and an axial length of about 0.63 inches. The geometry of the inflation channels includes an upper ring and a lower ring or toroid each of which measured about 0.09 inch in circular cross section (see FIG. 2). There were three additional independent sinusoidal elements to support the valve cusps that connected the upper and lower rings. All of these elements were sewn into a Dacron fabric which covered the inflation channels. The rings and sinusoidal elements were filled with a media (Epo-tek 301) from Epoxy Technologies 14 Fortune Drive Billerica, Mass. 01821 and allowed to cure.


Each device was set between two flat plates with the axial direction perpendicular to the force gauge. Between the two flat plates compressive radial forces were measured on the stainless steel laser-cut stent at 0.00 inches displacement and on up to 0.300 inches displacement in compression. Forces were measured from 0.00 lbs to 1.10 lbs respectively (see chart 1). Next the cast-in-place structure was tested in the same manner where displacements were measured from 0.00 inches to 0.149 inches. Forces were measured from 0.00 lbs to 7.05 lbs respectively (see chart 1). Clearly this shows a significantly higher radial strength of the formed in place support when compared to a stainless steel laser-cut stent system.


Tissue valves designed for surgical implantation have used polymer support structures in the past. The three commissural posts on these structures support the inward force exerted by the leaflets upon valve closure. This causes an alternating bending moment on the support posts, and as a result the polymer may be subject to creep.


The major difference between plastics and the more traditional materials is the time-dependent viscoelastic behavior of polymers. Plastic parts under load relax with time if they are maintained at a controlled deformation (stress relaxation), or they continue to deform if they are held under a constant load (creep).


Creep is the continued extension or deformation of a plastic part under continuous load. It results from the viscoelastic flow of the polymer with time.


Creep is probably the most widely studied long-term property. As a result there is an abundance of data available in the literature and from resin manufacturers. Creep data is usually expressed as “apparent creep modulus” as a function of the logarithm of time under constant load (assumed to be constant stress). Modulus is the ratio of stress over strain; therefore, apparent creep modulus is the constant stress divided by the actual measured strain (the deformation which changes with time).


Creep measurements are probably the easiest long-term tests to perform—one simply sets up the specimen, hangs a weight on it, and periodically measures and records the change in deflection. Tensile creep is probably the “purest” data, but it isn't the most common creep data available, most likely due to gripping and slippage difficulties. Compressive creep is reserved primarily for rubbers and elastomers where stress relaxation and compressive flow are important performance parameters for long-term service.


Flexural creep taken in a 3-point bend arrangement is most widely performed, generally because it is the easiest to set up and monitor. A rectangular plastic specimen is supported horizontally by two steel pins where and a weight is placed on the specimen at the midpoint of the two supports. A dial indicator at the location of the weight monitors the deflection with respect to time.


One limitation with flex creep is that it is not a “pure” stressed state. The constant stress is calculated as the maximum “fiber” stress that occurs directly under the load on the underside surface of the bar—this is the only point at which that maximum fiber stress exists. Actually, the stress distribution through the bar varies from tensile on the underside surface of the bar to compressive stress on the topside surface. The compressive stress tends to inhibit the overall deflection of the specimen.


Also, as the specimen deflects, the bar must move along the supports to accommodate the deflection. If the calculated fiber strain on the underside surface exceeds about 5%, a significant portion of the constant load is consumed as the driving force to “pull” the specimen through the supports—rather than merely bend the specimen. Therefore, the “constant” stress begins to decrease as the experiment continues.


In addition, at some strain level, probably around 5%, the actual strain on the bar at the point of loading stops increasing—no further curvature occurs in the central area of the specimen—but the specimen continues bend toward the ends of the bar as it slides through the supports. Inasmuch as the apparent fiber strain is calculated based on the amount of deflection from the original horizontal position, the method begins to yield erroneous data. Therefore, flexural creep experiments, although informative and easy to perform, can lead to somewhat conservative (optimistic) or even erroneous results. Care should be taken on the interpretation of these data.


Creep occurs in all plastic parts that are under stress. The higher the stress and the longer the part is under the stress dictates whether or not creep may be a significant factor in the performance of a part.


In order to control the amount of creep in a percutaneous cast in place polymer valve an upper ring is added connecting the support posts. This upper ring is able to support the loads imposed by the leaflets at a much lower stress than similarly sized support posts. The geometry described above is believed to provide sufficient radial strength at the point of commissural attachment that creep of the polymer support structure will not be an issue during the expected life of the valve (approximately 20 years).


Thus, one preferred geometry for the stentless formed in place valve supports in accordance with the present invention is to provide at least a first annular support which, in the assembled valve, will be located in the vicinity of the base or annulus for the valve, and a second annular support which, in the finished assembly will be in the vicinity of commissural supports for the valve. Connective elements will connect the first and second annular supports, such as the inflatable connective elements illustrated in FIG. 2. Alternatively, preformed connective elements such as polymeric struts, wire and/or fabric may be used. In addition, the formed in place commissural support ring may be attached to the commissural supports or in the vicinity of comissures in a conventional stent based transluminally implantable heart valve. Thus, the present invention additionally contemplates a hybrid structure in which the annulus or base support may comprise a balloon expandable stent or a self expandable stent, and crush resistance in the vicinity of the comissures or anatomically distal end of the stent is provided by a formed in place annular support as described herein.

Claims
  • 1. A cardiovascular prosthetic valve comprising: a stentless support structure, the stentless support structure comprising an inflatable cuff comprising at least one inflatable channel that forms, at least in part, a distal inflatable toroidal structure and a proximal inflatable toroidal structure, the inflatable cuff also comprising a waist that extends between the distal inflatable toroidal structure and the proximal inflatable toroidal structure, wherein the inflatable cuff is transformable from a reduced cross sectional configuration for transluminal deployment to a functional enlarged configuration to form a flow path through the support structure;a valve coupled to the inflatable cuff and positioned in the flow path, the valve configured to permit flow in a first axial direction and to inhibit flow in a second axial direction opposite to the first axial direction;a hardenable media positioned within the inflatable cuff holding the inflatable cuff in the functional enlarged configuration; andwherein the inflatable cuff in the functional enlarged configuration exhibits sufficient crush resistance that it will deform radially no more than about 0.3 inches under a load of about 4 pounds when the hardenable media in the inflatable cuff is hardened.
  • 2. The cardiovascular prosthetic valve of claim 1, wherein the at least one inflatable channel includes a first chamber associated with the distal inflatable toroidal structure and a second, independent, chamber associated with the proximal inflatable toroidal structure.
  • 3. A prosthetic valve for replacing an aortic valve positioned between the left ventricle and the aorta of the heart, the prosthetic valve comprising: a stentless support structure, the stentless support structure comprising an inflatable structure comprising a distal end and a proximal end, wherein the inflatable structure is transformable from a reduced cross sectional configuration for transluminal deployment to a functional enlarged configuration surrounding a flow path for blood; anda valve member coupled to the inflatable structure, the valve member being positioned generally between the distal and proximal ends of the inflatable structure and in the flow path for blood;a hardenable media positioned within the inflatable structure holding the inflatable structure in the functional enlarged configuration;wherein the distal end of the inflatable structure is configured to be positioned within the left ventricle and the proximal end of the inflatable structure is configured to be positioned within the aorta; andwherein the inflatable structure in the functional enlarged configuration exhibits sufficient crush resistance that it will deform radially no more than about 0.3 inches under a load of about 4 pounds when the hardenable media is hardened.
  • 4. The prosthetic valve of claim 3, wherein the inflatable structure includes a first chamber associated with the distal end and a second separate chamber associated with the proximal end.
PRIORITY INFORMATION

This application claims priority under 35 U.S.C. §119 to U.S. Provisional Application Ser. No. 60/688,305, filed Jun. 7, 2005, the disclosure of which is incorporated in its entirety herein by reference.

US Referenced Citations (339)
Number Name Date Kind
3416562 Freeman et al. Dec 1968 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4183102 Guiset Jan 1980 A
4213207 Wilson Jul 1980 A
4221548 Child Sep 1980 A
4339831 Johnson Jul 1982 A
4592340 Boyles Jun 1986 A
4612011 Kautzky Sep 1986 A
4652263 Herweck et al. Mar 1987 A
4662885 DiPisa, Jr. May 1987 A
4727873 Mobin-Uddin Mar 1988 A
4750488 Wuchinich et al. Jun 1988 A
4750901 Molteno Jun 1988 A
4781682 Patel Nov 1988 A
4787899 Lazarus Nov 1988 A
4817600 Herms et al. Apr 1989 A
4827911 Broadwin et al. May 1989 A
4892541 Alonso Jan 1990 A
4922902 Wuchinich et al. May 1990 A
4931047 Broadwin et al. Jun 1990 A
4955856 Phillips Sep 1990 A
4960424 Grooters Oct 1990 A
4994077 Dobben Feb 1991 A
5015227 Broadwin et al. May 1991 A
5026383 Nobles Jun 1991 A
5032128 Alonso Jul 1991 A
5151105 Kwan-Gett Sep 1992 A
5163897 Persky Nov 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5207695 Trout, III May 1993 A
5269784 Mast Dec 1993 A
5330528 Lazim Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5370691 Samson Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5423851 Samuels Jun 1995 A
5443499 Schmitt Aug 1995 A
5449385 Religa et al. Sep 1995 A
5500014 Quijano et al. Mar 1996 A
5534024 Rogers et al. Jul 1996 A
5554180 Turk Sep 1996 A
5554185 Block et al. Sep 1996 A
5578034 Estes Nov 1996 A
5616149 Barath Apr 1997 A
5649978 Samson Jul 1997 A
5690570 Chang et al. Nov 1997 A
5697968 Rogers et al. Dec 1997 A
5817102 Johnson et al. Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5848964 Samuels Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5871537 Holman et al. Feb 1999 A
5957949 Leonhardt et al. Sep 1999 A
5980570 Simpson Nov 1999 A
6007575 Samuels Dec 1999 A
6090139 Lemelson Jul 2000 A
6090140 Gabbay Jul 2000 A
6102944 Huynh et al. Aug 2000 A
6110201 Quijano et al. Aug 2000 A
6117106 Wasicek et al. Sep 2000 A
6126007 Kari et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6196996 Teirstein Mar 2001 B1
6221096 Aiba et al. Apr 2001 B1
6280412 Pederson, Jr. et al. Aug 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6312462 McDermott et al. Nov 2001 B1
6312465 Griffin et al. Nov 2001 B1
6319276 Holman et al. Nov 2001 B1
6371970 Khosravi et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6395019 Chobotov May 2002 B2
6395026 Aboul-Hosn et al. May 2002 B1
6409759 Peredo Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 Dimatteo et al. Aug 2002 B1
6458156 Wan et al. Oct 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6508833 Pavcnik et al. Jan 2003 B2
6544291 Taylor Apr 2003 B2
6562069 Cai et al. May 2003 B2
6572652 Shaknovich Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6602286 Strecker Aug 2003 B1
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682543 Barbut et al. Jan 2004 B2
6692512 Jang Feb 2004 B2
6692523 Holman et al. Feb 2004 B2
6719788 Cox Apr 2004 B2
6719789 Cox Apr 2004 B2
6733525 Yang et al. May 2004 B2
6736845 Marquez et al. May 2004 B2
6755811 Constantz Jun 2004 B1
6761733 Chobotov et al. Jul 2004 B2
6764494 Menz et al. Jul 2004 B2
6767362 Schreck Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6827735 Greenberg Dec 2004 B2
6875212 Shaolian et al. Apr 2005 B2
6890353 Cohn et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6936057 Nobles Aug 2005 B1
6949122 Adams et al. Sep 2005 B2
6958212 Hubbell et al. Oct 2005 B1
6974476 McGuckin, Jr. et al. Dec 2005 B2
6989027 Allen et al. Jan 2006 B2
6994093 Murphy et al. Feb 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7052487 Cohn et al. May 2006 B2
7077844 Michelson Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7081129 Chobotov Jul 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7125464 Chobotov et al. Oct 2006 B2
7150758 Kari et al. Dec 2006 B2
7186264 Liddicoat et al. Mar 2007 B2
7192441 Sherry Mar 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7217287 Wilson et al. May 2007 B2
7252682 Seguin Aug 2007 B2
7255711 Holman et al. Aug 2007 B2
7273481 Lombardo et al. Sep 2007 B2
7276078 Spenser et al. Oct 2007 B2
7309340 Fallin et al. Dec 2007 B2
7320704 Lashinski et al. Jan 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7435257 Lashinski et al. Oct 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445630 Lashinski et al. Nov 2008 B2
7468072 Morsi Dec 2008 B2
7491230 Holman et al. Feb 2009 B2
7534259 Lashinski et al. May 2009 B2
7534261 Friedman May 2009 B2
7556645 Lashinski et al. Jul 2009 B2
7585321 Cribier Sep 2009 B2
7615071 Chobotov Nov 2009 B2
7628805 Bash et al. Dec 2009 B2
7641686 Lashinski et al. Jan 2010 B2
7658762 Lashinski et al. Feb 2010 B2
7666193 Starksen et al. Feb 2010 B2
7666220 Evans et al. Feb 2010 B2
7678217 Chobotov et al. Mar 2010 B2
7682383 Robin Mar 2010 B2
7726943 Stommel Jun 2010 B2
7731741 Eidenschink Jun 2010 B2
7744912 Hubbell Jun 2010 B1
7762943 Khairkhahan Jul 2010 B2
7766954 Chobotov et al. Aug 2010 B2
7780726 Seguin Aug 2010 B2
7785365 Holman et al. Aug 2010 B2
7799068 Holman et al. Sep 2010 B2
7846203 Cribier Dec 2010 B2
7935144 Robin et al. May 2011 B2
8002826 Seguin Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8016877 Seguin et al. Sep 2011 B2
8057540 Cribier et al. Nov 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8092525 Eliasen et al. Jan 2012 B2
8133213 Lashinski Mar 2012 B2
8142497 Friedman Mar 2012 B2
8197534 Brumleve et al. Jun 2012 B2
20010007956 Letac et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20020082689 Chinn Jun 2002 A1
20020095116 Strecter Jul 2002 A1
20020123802 Snyders Sep 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020183838 Liddicoat et al. Dec 2002 A1
20020183841 Cohn et al. Dec 2002 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030027332 Lafrance et al. Feb 2003 A1
20030036795 Andersen et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030055496 Cai et al. Mar 2003 A1
20030074058 Sherry Apr 2003 A1
20030078654 Taylor et al. Apr 2003 A1
20030083538 Adams et al. May 2003 A1
20030093145 Lawrence-Brown et al. May 2003 A1
20030125793 Vesely Jul 2003 A1
20030125797 Chobotov et al. Jul 2003 A1
20030130730 Cohn et al. Jul 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030191527 Shaknovich Oct 2003 A1
20030220684 Holman et al. Nov 2003 A1
20030225453 Murch Dec 2003 A1
20030233022 Vidlund et al. Dec 2003 A1
20040003819 St. Goar et al. Jan 2004 A1
20040030381 Shu Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040034320 Burnett Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040087975 Lucatero et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040116951 Rosengart Jun 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040167620 Ortiz et al. Aug 2004 A1
20040176836 Kari et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040249413 Allen et al. Dec 2004 A1
20040249452 Adams et al. Dec 2004 A1
20040254600 Zarbatany et al. Dec 2004 A1
20040260322 Rudko et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050021056 St. Goar et al. Jan 2005 A1
20050021057 St. Goar et al. Jan 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050055082 Ben Muvhar et al. Mar 2005 A1
20050065550 Starksen et al. Mar 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050107810 Morales et al. May 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050209674 Kutscher et al. Sep 2005 A1
20050209687 Sitzmann et al. Sep 2005 A1
20050222488 Rahdert et al. Oct 2005 A1
20050222489 Rahdert et al. Oct 2005 A1
20050228422 Rahdert et al. Oct 2005 A1
20050251251 Cribier Nov 2005 A1
20050267574 Cohn et al. Dec 2005 A1
20050273160 Lashinski et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060020332 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060020334 Lashinski et al. Jan 2006 A1
20060025750 Starksen et al. Feb 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025854 Lashinski et al. Feb 2006 A1
20060025855 Lashinski et al. Feb 2006 A1
20060041306 Vidlund et al. Feb 2006 A1
20060063970 Raman et al. Mar 2006 A1
20060074485 Realyvasquez Apr 2006 A1
20060100699 Vidlund et al. May 2006 A1
20060106449 Ben Muvhar May 2006 A1
20060106450 Ben Muvhar May 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060129051 Rowe et al. Jun 2006 A1
20060129235 Seguin et al. Jun 2006 A1
20060149135 Paz Jul 2006 A1
20060178700 Quinn Aug 2006 A1
20060190030 To et al. Aug 2006 A1
20060212112 Evans et al. Sep 2006 A1
20060217637 Leiboff et al. Sep 2006 A1
20060229717 Cohn et al. Oct 2006 A1
20060235512 Brumleve et al. Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060252984 Rahdert et al. Nov 2006 A1
20060271172 Tehrani Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060276881 Holman et al. Dec 2006 A1
20070005133 Lashinski et al. Jan 2007 A1
20070027536 Mihaljevic Feb 2007 A1
20070038293 St.Goar et al. Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070050022 Vidlund et al. Mar 2007 A1
20070055356 Eidenschink Mar 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070185566 Khitin et al. Aug 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213814 Liddicoat et al. Sep 2007 A1
20070255399 Eliasen et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20070293943 Quinn Dec 2007 A1
20080015687 Lashinski et al. Jan 2008 A1
20080039881 Greenberg Feb 2008 A1
20080039923 Taylor et al. Feb 2008 A1
20080039935 Buch et al. Feb 2008 A1
20080109073 Lashinski et al. May 2008 A1
20080125860 Webler et al. May 2008 A1
20080188923 Chu Aug 2008 A1
20080194905 Walsh Aug 2008 A1
20080208329 Bishop et al. Aug 2008 A1
20080215143 Seguin Sep 2008 A1
20090043382 Maurer et al. Feb 2009 A1
20090048668 Wilson et al. Feb 2009 A1
20090076600 Quinn Mar 2009 A1
20090082857 Lashinski et al. Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090131849 Maurer et al. May 2009 A1
20090149949 Quinn Jun 2009 A1
20090222084 Friedman Sep 2009 A1
20090264984 Chobotov Oct 2009 A1
20090318949 Ganpath et al. Dec 2009 A1
20090319029 Evans et al. Dec 2009 A1
20100004728 Rao et al. Jan 2010 A1
20100010623 Lashinski et al. Jan 2010 A1
20100016942 Chobotov et al. Jan 2010 A1
20100016948 Chobotov Jan 2010 A1
20100030204 Stein et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100036360 Herbowy et al. Feb 2010 A1
20100036485 Seguin Feb 2010 A1
20100076481 Stephens et al. Mar 2010 A1
20100106087 Evans et al. Apr 2010 A1
20100168844 Bergheim et al. Jul 2010 A1
20100256754 Styrc Oct 2010 A1
20100292772 Samuels Nov 2010 A1
20100324668 Maurer et al. Dec 2010 A1
20110060407 Ketai et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110098802 Braido et al. Apr 2011 A1
20110112625 Ben-Muvhar et al. May 2011 A1
20110153009 Navia et al. Jun 2011 A1
20110160846 Bishop et al. Jun 2011 A1
20110213460 Lashinski et al. Sep 2011 A1
20120016468 Robin et al. Jan 2012 A1
20120022629 Perera et al. Jan 2012 A1
Foreign Referenced Citations (20)
Number Date Country
2700531 Apr 1985 DE
2241284 Oct 2010 EP
WO 9117720 Nov 1991 WO
WO 9301768 Feb 1993 WO
WO 9602212 Feb 1996 WO
WO9855047 Dec 1998 WO
WO 0041652 Jul 2000 WO
WO 0042950 Jul 2000 WO
WO 0106959 Feb 2001 WO
WO 03063740 Aug 2003 WO
WO 03096932 Nov 2003 WO
WO 2005087140 Sep 2005 WO
WO 2005107650 Nov 2005 WO
WO2009144463 Dec 2009 WO
WO2010008548 Jan 2010 WO
WO 2010117367 Oct 2010 WO
WO 2011035154 Mar 2011 WO
WO 2011033427 Mar 2011 WO
WO 2011105979 Sep 2011 WO
WO 2012024428 Feb 2012 WO
Non-Patent Literature Citations (13)
Entry
U.S. Appl. No. 09/496,231, Jeffrey A. Hubbell et al., Biomaterials Formed by Nucleophilic Addition Reaction to Conjugated Unsaturated Groups, filed Feb. 1, 2000.
International Search Report for PCT Application No. PCT/US2005/015617 (the PCT counterpart of the parent application) filed May 5, 2005, mailed on Oct. 31, 2005, in 4 pages.
Written Opinion of the International Searching Authority for PCT Application No. PCT/US2005/015617 (the PCT counterpart of the parent application) filed May 5, 2005, in 7 pages.
International Search Report for PCT Application No. PCT/US2006/022112 filed Jun. 7, 2006, mailed on Mar. 19, 2007, in 1 page.
Written Opinion of the International Searching Authority for Application No. PCT/US2006/022112 filed Jun. 7, 2006, mailed on Mar. 19, 2007, in 4 pages.
European Search Opinion for Application No. EP06772431 filed Jun. 7, 2006, dated Nov. 6, 2008, in 3 pages.
Supplementary European Search Report for Application No. EP06772431 filed on Jun. 7, 2006, dated Nov. 6, 2008, in 2 pages.
International Search Report for PCT Application No. PCT/US2008/74104 filed Aug. 22, 2008, mailed on Dec. 24, 2008, in 3 pages.
Written Opinion of the International Searching Authority for Application No. PCT/US2008/74104 filed Aug. 22, 2008, mailed on Dec. 24, 2008, in 7 pages.
David et al., Aortic Valve Replacement with the Toronto SPV Bioprosthesis, The Journal of Heart Valve Disease, 1992, pp. 244-248, vol. 1(2), ICR Publishers.
Vyavahare et al., Prevention of Bioprosthetic Heart Valve Calcification by Ethanol Preincubation, Circulation, Jan. 21, 1997, pp. 479-488, vol. 95(2), American Heart Association.
European Examination Report for Application No. EP06772431 filed Jun. 7, 2006, dated May 3, 2009, in 1 page.
European Examination Report for corresponding EP 06772431.0, Feb. 3, 2010.
Related Publications (1)
Number Date Country
20070005133 A1 Jan 2007 US
Provisional Applications (1)
Number Date Country
60688305 Jun 2005 US