Stent grafts have use in a variety of applications. However, placing a graft on a stent can reduce the overall longitudinal flexibility of the implant as compared to a bare metal stent, and successfully affixing or attaching the graft to the stent has been problematic. Rings or other retaining members have been used on the outside of grafts to hold them to stents. However, these approaches result in devices having a relatively large outside diameter (OD). The rings can also cause delivery problems due to vessel lumen contact with the retaining members.
Graft retention has also been attempted without the use of retainers. For example, U.S. Pat. No. 6,214,039 to Banas, et al. discloses a balloon-expandable stent graft employing ePTFE as a cover. The graft is circumferentially engaged about a stent and is retained thereon by a radial recoil force exerted by the tubular graft against the stent. The graft is thereby retained on the stent (or stents) without the use of adhesives, sutures or other attachment means. The covered stent is assembled by joining a dilation mandrel and a stent mandrel, placing the graft on the dilation mandrel where it is radially expanded and passing the expanded graft over the stent that is positioned on the stent mandrel. However, system safety is questionable since the graft material is not secured to the stent in any other way. Indeed, because preload applied to an ePTFE graft layer may tend to decay to zero (e.g., while the device is stored), instances may occur in which no preload is left on the material to keep the graft secured when navigating tortuous anatomy.
U.S. Pat. No. 6,086,610 to Duerig, et al. discloses a related approach for a self-expanding stent with the addition of a storage sheath. While graft relaxation under the constant pressure of the stent might be avoided by such an approach, it still raises questions of whether the stent will cut into the graft as the ePTFE creeps due to constrained strut contact. Such creep could result in holes or tears in what should be an imperforate body.
In effort to provide a low-profile stent graft solution, the reference systems avoid the use of retainers that extend beyond the outer boundary of the graft. They also avoid bulky multilayer graft “sandwich” type attachment techniques (e.g., as disclosed U.S. Pat. Nos. 5,700,285, 5,735,892 and 5,810,870 to Myers, et al.) However, a need persists for constructions ensuring long-term reliability without compromise to flexibility and/or compressibility. The present invention meets these needs and others, including providing an improved stent scaffold pattern, especially for use in stent graft constructs.
The present invention includes stents and stent grafts with the grafts variously retained upon the stents. A stent portion of the stent graft construct is broadly characterized as a tubular lattice support structure or scaffold having a plurality of cells. Depending on the mode of action, the stent material may be ductile/distensible (thus, balloon-expandable) or elastic or super-elastic/shape memory alloy (thus, self-expanding). The graft portion of the subject devices may partially or fully cover the stent (from a radial and/or axial perspective). While any suitable combination of stent and graft configuration may be used with the graft-to-stent retention features of the present invention, the invention also provides particular stent graft constructs having functional advantages beyond their inter-retention capabilities, as discussed in greater detail below.
The subject implants are designed to reliably secure graft material to a stent structure in a way that minimizes or altogether avoids additional thickness to the final product. The graft-to-stent attachment may be accomplished through either an interference fit mechanism using plastically-deformable or malleable members (e.g., metal pins) pressed into receptacles in the stent design to capture the graft, or with polymer (e.g., fluorinated ethylene polypropylene (FEP)) members or blocks that are heat or chemically bonded (e.g., by solvent or adhesive) to the graft and either permanently or releasably received within receptacles in the stent. Generally, the members retained by the stent and holding the graft may be regarded as attachment bodies. When they are pressed-in, trapping the graft within the receptacles, they may be regarded as interference bodies. When directly bonded to the graft, or bonded thereto using an intermediate adhesive or medium, they may be regarded as bonding bodies.
Depending on the stent graft attachment method, the receptacles may be openings or eyelets formed within the stent discrete from the normal/repeating stent cell structure. Otherwise, they may be designated cells within the stent's lattice structure. The receptacles may be used to permanently retain an attachment body or may be used only temporarily to retain apposition of the graft to the stent scaffold prior to and during deployment at a target site. Any combination of these arrangements may also be employed.
In the variations of the invention in which the receptacles are permanently set within the stent pattern in the form of eyelets, they may be incorporated into the pattern in a manner similar to the dedicated marker receptacles as described in U.S. Pat. No. 6,022,374 to Imran. Namely, the structures may be formed separate and distinct from the functional geometry of the stent cells.
Generally, an eyelet comprises a rim and receptacle region. For example, the rim may be an ovoid or circular shape with an open space in the therein. It may include additional grip features within its field. Preferably, though not necessarily, the eyelet region(s) is/are formed in the stent pattern at the same time the stent is laser cut from tubular stock.
The eyelet or receptacle regions may be configured to receive interference bodies that may be made of tantalum, gold, platinum, alloys thereof or other material. Graft attachment is achieved by trapping or setting the graft material between an interference body and the eyelet rim through an interference fit. When such an interference fit is desired, the eyelets are advantageously round in shape and the interference bodies are in the form of cylindrical pins or pucks. However, other shapes—such as spheres that are subsequently flattened—may be employed. Indeed, spherical bodies may offer certain advantages by self-centering in the receptacle regions. Otherwise, appropriate fixturing may be employed as an aide.
The interference bodies are preferably radiopaque and ductile. Radiopacity allows for radiologic visualization of the implant during and after device deployment by use of the attachment bodies alone. Especially when serving dual-use as marker plus attachement features, the bodies will typically be set at or adjacent (at least) the ends of the graft and/or stent. However, they may be used at any suitable location on the device. Ductility of the interference members allows them to conform around any receptacle features provided to enhance interference and/or slightly “mushroom” or “head” along an inner periphery of the receptacle. The strength offer by metal bodies so-processed may be desirable. However, polymeric bodies may be similarly employed in forming an interference fit to retain the graft.
In other embodiments, the eyelet/receptacle may be used to retain an attachment body that is attached to the graft material along only the surface of the body. Especially when the bonding body is a polymer (e.g., FEP) puck, plug, or block, it can be heated to directly bond to the graft.
While the graft material changes configuration by opening or stretching upon stent expansion, the bonding bodies within the eyelet(s) may remain substantially stationary. In certain variations (e.g., where the attachment bodies are bonded within a surrounding eyelet or receptacle), they typically remain retained within the eyelets post-deployment. With this approach to inter-retention of the graft and stent, a greater variety of eyelet shapes is available, including both regular (e.g., circular, square, hexagonal, etc.) and irregular (e.g., semi-circular, rectangular, etc.) shapes.
Post-deployment retention of the polymer blocks within the stent may not however, be necessary as the apposition of the stent graft in the vessel upon implantation is often sufficient to retain the positions of both the stent and graft. As such, another variation of the invention employs only temporary retention of the attachment bodies. As such, the stent cells themselves may suffice as temporary receptacles for the polymer members, thereby eliminating the need to form designated eyelets within the stent lattice. When the stent is compressed, the cells can form interstices or pockets to retain the bonding bodies until the stent geometry changes shape upon stent expansion.
The attachment bodies holding the graft are retained within these stent regions to secure the lateral/axial location of the graft relative to the stent until released. The graft-retaining bodies are released from direct contact with the struts or cells of the stent upon stent expansion (by balloon inflation or restraint release), but they continue to be retained by the overall implant by virtue of their permanent bond to the graft material. The graft material may be retained in contact with the stent as it is stretched during stent expansion. Finally, contact with the vessel wall ultimately secures graft/stent position when the delivery system is withdrawn.
When using polymer-member graft attachment bodies, one or more radiopaque markers may be employed in separate receptacles for identifying the device under medical imaging. The radiopaque markers can also hold the graft to the stent (as detailed above), or alternatively, can operate merely to identify the position of the stent graft radiologically. Yet another option is to load the polymer retainers with radiopaque material such as iodine or tantalum powder.
With the various approaches to graft retention described herein, at least one distal graft connection point is employed. More typically, a plurality of connection points, regions or sections are utilized, often around a circumference of the stent. Both proximal and distal connection points are advantageously employed so that neither end of the graft is prone to migration during advancement or retraction in achieving ideal placement. Moreover, medial connection points may also be employed. Such connection points may offer further stability/support to the graft. It is also contemplated that the graft may be secured to either the exterior or the interior of the stent, with attachment bodies applied accordingly.
With balloon expandable stent based variations of the invention, the graft covering may expand plastically with the stent upon balloon inflation, but does not need to be oversized relative to the stent or to the balloon. In self-expanding variations (i.e., with elastic, super/pseudoelastic or SMA metal stents), the graft material will typically be sized at or closer to the expanded diameter of the device. Thus, for delivery, the additional graft material present when the stent is in an unexpanded state may be folded in a manner as often used to compress and fold balloons for percutaneous angioplasty (see, e.g., U.S. Pat. No. 5,792,172 to Fischell, et al. and U.S. Pat. No. 6,013,092 to Dehdashtian, et al.—both incorporated by reference in their entireties). Upon expansion of the angioplasty balloon, the folds open. Similarly, with the subject self-expanding stents, the material of the graft can be folded against the collapsed stent. Then, when the self-expanding stent opens, the folds open to accommodate the expanding stent.
For balloon-expandable stents in which ePTFE graft material is used in such a way that it plastically deforms from a minimum diameter to a final size, the graft material is typically between about 0.002 and about 0.005 inches thick. However, other materials are contemplated for both balloon-expandable and self-expanding versions of the device. Namely, the graft material can be made of a material selected from silicones, e.g., silicone rubbers, synthetic rubbers, polyethers, polyesters, polyolefins, modified polyolefins, polyamides, fluorinated ethylene propylene copolymer (FEP), polyfluorinated alkanoate (PFA), polyurethanes, segmented-polyurethanes, segmented polyether-polyurethanes, polyurethaneurea, silicone-polyurethane copolymers, and, any analogs, homologues, congeners, derivatives, salts and combinations thereof. Preferred graft material is expanded poly-tetra fluoro ethylene (ePTFE), NiCast™, spun urethane, fine braids (e.g., braids of polymer, metal, plastic, or NiTi). Still other materials or composites including the above-referenced materials may be used in the present invention. Naturally, the optimal thickness of the graft material will also depend on the intended use.
Receptacle and/or attachment body size may typically be between about 0.010 to about 0.025 inches in diameter. Yet, they may be smaller or larger—the latter, especially when for use in non-neuro applications. In any given stent graft, the receptacles and/or attachement body size can be the same throughout, or varied (e.g., especially in those stent grafts utilizing both types of attachement bodies).
The polymer blocks, pucks or plugs forming the bonding bodies placed in receptacles can be a material other than FEP. However, FEP offers an advantage of being heat bondable/attachable directly to ePTFE. Still, an intermediate bonding material (e.g., biocompatible glue such as N-butyl cyanoacrylate (NBCA)) can be used to connect suitable substrates. Likewise, a polymer such as FEP could be delivered in liquid form like “hot melt” glue into permanent or temporary receptacles to secure the stent and graft. In any case, all materials involved will typically be biocompatible, resorbable, and/or biodegradable to the human body.
In addition, while the interference/press-fit approach described usually makes reference to using metal bodies, high-strength polymer members can be used instead. A polymer such as PEEK can offer sufficient structural interface to retain position within the receptacle and hold the graft.
The stent lattice support structure can be formed from a variety of different material in either balloon expandable stents or self-expanding form. An survey of potentially applicable stent constructions can be found in an article published by Nitinol Devices and Components (NDC) located in Fremont, Calif., titled, “A Survey of Stent Designs” by D. Stoeckel et al. Min Invas Ther & Allied Technol 2002: 11(4) 137-147, which is hereby incorporated by reference in its entirety. Bi-stable stent technology as described in U.S. Pat. No. 6,488,702 to Besselink, also incorporated by reference in its entirety, may also be employed. A stent comprising SMA can be self-expanding or balloon expandable. Examples of the former are well known. Examples of the latter are provided in U.S. Pat. No. 5,733,330 to Williams and U.S. Pat. No. 5,766,239 to Cox, each incorporated by reference in its entirety.
While any suitable stent pattern may be used with the graft retention features of the present invention, the invention also provides a unique stent lattice structure which is highly flexible when in a closed or compressed condition, yet provides superior support to the graft material when in an open or expanded condition. In a closed condition, the stent struts are highly curved, providing enhanced flexibility particularly along the longitudinal axis of the stent When open, the stent struts arrange themselves to provide repeating cells having a roughly rhomboid shape. While the segments of the open rhombus structure are substantially identical in shape, they are not when the stent is closed or compressed. Rather, they are optimized for delivery trackability.
Various therapeutic agents may be used in or on the stent graft, particularly the graft portion of the implant—including but not limited to antibiotics, anticoagulants, antifungal agents, anti-inflammatory agents, antineoplastic agents, antithrombotic agents, endothelialization promoting agents, free radical scavengers, immunosuppressive agents, antiproliferative agents, thrombolytic agents, and any combination thereof. The therapeutic agent may be coated onto the stent graft implant, or onto the graft only, mixed with a biodegradable polymer or other suitable temporary carrier and then coated onto the stent graft implant, or the graft alone, or, when part of the implant is made from a polymeric material, dispersed throughout the polymer. The agent can be directly applied to the graft or stent surface(s) as a continuous coating or in discrete droplets, introduced into pockets or an appropriate matrix set over at least an outer portion of the stent. For example, in the case where an aliquot of hydrogel is placed within the space occupied by crossing members, the hydrogel can be impregnated with one or more therapeutic agents that deliver drug to the aneurysm and surrounding vascular tissue. The therapeutic agent may also be covalently attached to the graft material or the stent graft.
The invention further comprises several methods. One set of methods contemplates modes of retaining bonding bodies in the stent. Such retention is accomplished using the graft material and its attachment to the polymer bodies through the stent. In one method, to accomplish this retention, the tubular lattice support structure (e.g., the stent) is compressed. Compression of the stent produces receptacles (at least) at the stent ends (typically distally and proximally, but also medially if desired) and each of these receptacles can receive a polymer body within it. The polymer, such as FEP, may be placed in the receptacle region in a molten or semi-molten state and allowed to cure to fill the receptacle. Precut polymer (e.g., FEP) blocks can also be placed in the receptacles. Once the compressed stent is thus prepared with available receptacles filled, each of the polymer bodies is heat bonded to the graft that overlays the stent. The resulting stent graft expands during deployment which action retains the polymer bodies within the stent and so also within the entire stent graft.
When using either type of receptacle (i.e., separately formed eyelets or compressed lattice cells), heat bonding can be used to locally heat the bonding body and melt it into the graft material. The process of heat bonding can be accomplished either from outside the stent, or from within the lumen of the stent, or both. An exemplary heat bonding device is a temperature-controlled soldering iron with a flattened tip.
In a method of making a stent graft with interference-type attachment bodies, it is important that the retain a shape into which the interference body can be pressed. Ideally, the body material plastically deforms with the receptacle to lock-in with any features provided therein and/or with the graft. Typically, at least some of the pins in stent grafts using this graft securing method are radiopaque markers such as a gold or platinum.
As with the other variations of the stent graft, in the practice of the method, the support structure or stent can be balloon expandable, or self-expandable. For balloon expanding embodiments, in one method of treatment, upon reaching an aneurysm, the balloon is expanded to cause the stent to expand, often to its fullest capacity, and to stretch the graft tightly around the stent. The self-expanding stent grafts are delivered as is customary for self-expanding stents otherwise, (i.e., within a catheter or delivery sheath). The graft material is folded around the crimped stent, and stent and graft are placed within the catheter. Once the stent is placed at the aneurysm (and released from the catheter) the stent expands to stretch the graft material and fit snuggly at the site of the aneurysm. Radiopaque features allow the practitioner to guide both types of stent into place.
The present invention specifically includes combinations of features of various embodiments as well as alternative combinations of the various embodiments where possible, in addition to those features, embodiments, and combinations already specifically described.
The figures provided herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity. Each of the figures diagrammatically illustrates aspects of the invention. Of these:
Variations of the invention from those embodiments pictured are contemplated. Accordingly, depiction of aspects and elements of the invention in the figures is not intended to limit the scope of the invention.
Various exemplary embodiments of the invention are described below. Reference is made to these examples in a non-limiting sense. They are provided to illustrate more broadly applicable aspects of the present invention. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein. The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/035,328, filed Mar. 10, 2008, entitled “Stent-Grafts,” which is fully incorporated by reference herein.
The graft in the stent graft device can be attached to the stent in a number of different ways. The figures serve to illustrate some of these configurations of the stent graft and some of the details of the embodiments. Generally, some features are represented in one figure that may apply to another figure in a differently configured embodiment. Broadly there are two basic attachment body approaches: one that involves bodies that are press-fit into a receptacle or eyelet in the stent to grasp the graft to the stent, and one that involves using bodies that are bonded to the graft material to secure the graft to the stent. Both of these approaches can be used to secure grafts to either self-expandable or balloon-expandable stents.
In either case, the stent lattice support structure can be formed from a variety of different geometries and patterns including cells formed by struts, coils, weaves, and other lattice arrangements. Various stent types and stent constructions that may be employed in the invention regardless of the patterning on the stent. Some more specific options and variations of the invention are embodied and depicted in several Figures.
Of these,
Moreover, each of the these stent designs is suitable for variations of the stent grafts of the present invention, such as stent graft 20 illustrated in
The extra bulk of the material of graft 40′ may be folded with longitudinal pleats (not shown), similar to the manner in which a percutaneous angioplasty balloon is folded around a stent delivery sheath, as referenced above. Even in a self-expanding version, without longitudinal pleats, the distal end or graft 40′ may be sized to the compressed stent diameter, thereby requiring balloon dilation to effect final deployment after delivery system release.
Stent graft 30′ of
In stent graft 30″ of
As illustrated in the enlarged view of
In addition to the graft-to-stent retention features, the present invention includes a novel stent design. This is best illustrated in
The stent, when operatively loaded onto a delivery catheter, is radially compressed or crimped, as illustrated in
For implantation, the stent pattern 100 is expanded to a configuration substantially as illustrated in
More particularly,
One or more such folds or pleats may be provided in the graft material to accommodate the various locations which a stent graft may be subject to higher strains while still maintaining the position of the graft ends relative to the stent structure. One advantageous configuration places a single pleat in the center of the implant. Another (not shown) includes one closer to each end, but inboard of the graft attachment bodies.
The various stents and stent grafts of the present invention are useful to treat aneurysms and stenotic vessels and are deliverable in the numerous conventional ways known to those skilled in the art of stent delivery. For example,
The stent graft depicted in
In
As mentioned previously, the balloon delivery system may be configured for over the wire or rapid exchange use. As such, the balloon catheter may simply track over the wire past any guide catheter employed. However, using a “telescoping” catheter approach, a guide catheter or large-lumen microcatheter 200 can first be advanced to or past the aneurysm treatment site as illustrated in
As for other implant variations,
Alternatively, or additionally, radiopaque interference bodies may be employed is along the graft. However, it may be preferred that any medial/intermediate graft attachment is accomplished without adding radiopacity. Avoiding the same may alleviate confusion regarding graft end location (a possibility, especially if the ends of the stent also include radiopaque features). In some examples (e.g., when the entire stent scaffold is covered by graft), none of the attachment bodies are radiopaque—thereby allowing the radiopacity inherent to stent to exclusively indicate graft coverage. Other implant feature sets/configurations are possible as well.
Methods of fabrication of the subject implants are also provided. The flowchart of
The graft material may then be trimmed to the desired length. In an alternative approach graft is first trimmed to length. The same may be true of press-fitting approaches to the graft attachment. Trimming may be performed before or after graft affixation. Such trimming may be performed manually, with any type of cutter (e.g., a razor blade) mounted to circumnavigate the implant or by a cutter held stationary while rotating the graft against the blade as one would employ a lathe.
Other acts known to those skilled in the art for fabricating and treating the stent, graft, and stent graft may be employed as necessary and desired. For example, one or more folds or pleats may be made within the graft material prior to heat treating.
Also included in the invention are kits including the various constituent parts of the systems and those that would inter-fit with them to provide the functionality described. These may be provided in packaged combination, gathered by an end-user at a hospital site, etc.
The invention includes methods that may be performed using the subject devices or by other means. The methods may all comprise the act of providing a suitable device. Such provision may be performed by the end user. In other words, the “providing” (e.g. placing the implant at the neck of a cerebral aneurysm in a patient) merely requires that the end user obtain, access, approach, position, set-up, activate, power-up or otherwise act to provide the requisite device in the subject method. Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events.
Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there is a plurality of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said,” and “the” include plural referents unless specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as the claims below. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
Without the use of such exclusive terminology, the term “comprising” in the claims shall allow for the inclusion of any additional element--irrespective of whether a given number of elements are enumerated in the claim, or the addition of a feature could be regarded as transforming the nature of an element set forth in the claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.
The breadth of the present invention is not to be limited to the examples provided and/or the subject specification, but rather only by the intended scope of the following claims.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/035,328, filed Mar. 10, 2008, entitled “Stent-Grafts,” which is fully incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61035328 | Mar 2008 | US |