This invention is concerned with stents for supporting parts of blood vessels. More particularly it is concerned with stents as in-situ supporting devices for arteries and veins within the vascular system. The term ‘artery’ and ‘vein’ in the singular or plural, refers to the vein or artery or a part thereof but excludes any parts thereof which is a graft or which has been removed to serve as a graft.
Stents are known devices used in surgery especially in vascular surgery for providing physical support to blood vessels i.e. they can be used to help prevent kinking/occlusion of blood vessels such as veins or arteries and to prevent their collapse after dilatation or other treatment to maintain their patency.
It has been proposed that the flow pattern in arteries including the swirling pattern induced by their non-planar curvature operates to inhibit the development of vascular diseases such as thrombosis, atherosclerosis and intimal hyperplasia.
We have now devised an apparatus and technique for establishing and/or maintaining physiological curvature, including non-planar curvature within blocked, constricted or otherwise flow-restricted blood vessels such as arteries or veins as defined above.
By maintaining physiological curvature, which may include non-planar curvature in the blood vessels, favourable blood flow velocity patterns can be achieved often through generation therein of ‘swirl’ flow.
Failures in such vessels through thrombosis, atherosclerosis, intimal hyperplasia or other diseases leading to blockage or due to kinking or collapse, can be significantly reduced.
According to this invention there is provided a stent for supporting part of a blood vessel, such as part of an intact vein or artery within the vasculature, which stent includes a supporting portion around which or within which part of that blood vessel can be placed so that the stent internally or externally supports that part and the supporting portion of the stent is of a shape and/or orientation whereby flow within the vessel is caused to follow a physiologically appropriate curve which may be non-planar.
The supporting portion of the stent may be fabricated to incorporate means to increase the ability of the stent to sustain displacement due to bending and torsion so that it may more readily accommodate
(i) a non-planar curved form; and/or
(ii) it may be pre-formed to provide an appropriate geometry to sustain a more favourable flow in the selected vessel after insertion, and/or
(iii) a geometric arrangement of the junction between the stent and branching vessel e.g. artery whereby the tangent vector from the centreline of the stent intersects the centreline of the host vessel by consequence of a symmetric disposition of the stent with respect to the host vessel.
The stent may be of generally hollow tubular shape with three dimensional curvature. The stent is particularly preferred for use as an in-situ support internally within or externally around arteries and veins.
The stent may take the form of a series of linked members forming a tubular frame e.g. an open lattice generally tubular framework with discrete openings at each end thereof. Alternatively it may take the form of series of curved rings joined together.
A stent may be passed through the interior section of a blood vessel, which stent then provides support for that part of the blood vessel through which it passes and preferably imparts thereby to the vessel a geometry which includes non-planar curvature i.e. the vessel part supported by the stent can assume and maintain curvature which is non-linear. Part of the supported vessel in such embodiments thereby acquires a geometry which can be regarded as a part-helical or helicoidal curve even if the physical extent of the supported vessel is less than one complete turn of a helix e.g. less than ½ or less than ¼ of such a turn.
A practical embodiment of a non-planar internal stent of type (ii) is one fabricated to adopt an appropriately helicoidal, helical, part helicoidal, or part-helical form, to provide the required support for the blood vessel after its insertion.
In order that the invention may be illustrated, more easily understood and readily carried into effect by one skilled in this art, reference will now be made to the accompanying drawings of preferred embodiments by way of non-limiting example only, and in which:
a to c depict an embodiment of a stent shaped to conform the blood vessel in non-planar curvature at a site where it is deployed,
a is a side view of the
a is a side view of the
a and 6b show a part-helical internal stent,
c shows the stent of
a shows an externally located stent for an artery and a sensor for transmitting flow or other data, and
b shows a similar arrangement to
Referring to
In particular,
The stent is then inserted within the artery to ensure the geometrical configuration of the artery to a predetermined form in the locality of the stent.
The stent may be of constant diameter, or tapered, as in
The restraining action of the stent may be graduated, by mechanically “tapering” the rigidity of the material: for example, at either end, material may be removed or the rigidity reduced by cuttings. An internally locatable stent is also provided which corresponds to the external stent just described, however such a stent is inserted into the interior of the vessel part rather than being placed exterior to the vessel.
Although intended for the cardiovascular system, embodiments of such stents could be incorporated elsewhere e.g. in the gastrointestinal system, bile duct, genitourinary system for the “active” stent, this might for example be deployed with treatment of incontinence.
Referring to
The ends 6 of the support members 2 may be secured in situ by surgical thread (not shown) or by a fastening ring 3. The stented vessel 4 is located within that internal region 7.
a depict a non-planar configuration of stent and artery wherein a stent (artery 5, stent 4) having a non-planar curve is surgically attached offset to the central portion of the artery 5 in that it is at least partly tangential to the artery, see the direction of flow arrow in
The external stent (1,2) of
As shown in
Referring to
In one possible embodiment shown in
In a still further embodiment, shown in
In another embodiment of an internal or external stent the sensor may incorporate a means to detect certain chemical markers which are indicative of the condition of the flow and/or arteries. It may also contain a means whereby a supply of pharmacological agent may be administered in situ, for example by being connected to an implanted supply of drugs which are caused to be delivered by appropriate implanted machinery.
In other embodiments of an internal or external stent, the sensory action of the stent may derive from the construction of some or all of the supporting members which form the stent. In one such embodiment, the sensory action derives from a coil or coils of an electrically conducting material wound around the perimeter of the stent or interspersed at intervals along the stent which coil or coils may be excited by extracorporeal magnetic and/or electromagnetic fields, and the signal from the stent detected by magnetic coupling with an external detecting coil.
Loss of patency of stents remains a serious problem. The principal pathology at later times is intimal hyperplasia and important sites of its occurrence are apparently immediately upstream and downstream of stents. Most attention appears to have focused on compliance mismatch (arterial distensibility greatly exceeds stent distensibility) as underlying this distribution. However, because stents are effectively straight cylinders and arteries curve three dimensionally, compliance mismatch is also likely to be associated with local distortion of arterial geometry and hence distortion of the flowfield, with implications for vessel biology and pathology.
We propose ex vivo studies of stent-induced distortion of the geometry and flowfield in arteries. Stents will be deployed at a few selected sites of non-planar curvature in physiologically pressurised animal arteries and epoxy resin casts will be made of the stented vessels. Geometric data obtained by MRI from the casts, together with a range of assumed physiological flows, will enable detailed determination of the local flowfield including the distribution of wall shear stress by computational (CFD) simulations. In some instances moulds of the epoxy resin casts will be perfused and the flowfield, measured by MRI, will provide a check on the CFD simulations.
As a step towards remedying the problem of stent-induced distortion of the geometry and flowfield in arteries, we propose the deployment of appropriately pre-shaped stents, obtained by exploiting the shape-memory properties of nitinol. After their deployment the local geometry and flowfield will be studied using the same methods as adopted for control stents. The generation of swirling flows and a reduction of the geometric and flowfield distortion would encourage further deployment of pre-shaped shape-memory stents and/or on the engineering of stents less liable to distort the local geometry and flowfield.
The principal questions that need to be addressed are:
(1) How is the geometry of an artery which is naturally curved in three dimensions altered by the insertion of a stent, which restricts the ability of the artery to maintain its curvature?
(2) What are the consequences of this modification in the local geometry for the flowfield within the stent and immediately adjacent to it?
(3) What geometric form should a stented portion of artery adopt in order to obtain as uniform a distribution of wall shear stress within the stent and immediately adjacent to the stent as possible?
The local flow pattern in blood vessels (including wall shear) markedly influences their biology and, it appears, the development of vascular disease.
For example, atherosclerosis appears to develop preferentially at locations in arteries where the wall shear is on average low and/or there are large oscillations of wall shear. Furthermore, the preferred region for the occurrence of intimal hyperplasia at end-to-side arterial bypass grafts appears to be where wall shear is low, there is flow separation, and/or there are large oscillations of wall shear during the cardiac cycle. Increase of blood flow (assumed to imply increase of wall shear) decreases the severity of intimal hyperplasia (or causes the regression of pre-existing disease). However, a very large increase of wall shear in small diameter grafts is associated with low patency rates, seemingly because of thrombosis. Several studies suggest that the principal factor determining the flow field is vessel geometry but vessel elasticity and the non-Newtonian nature of blood can affect the details of the flow.
There is an appreciable risk of loss of patency of stents at later times, principally due to intimal hyperplasia. Stenting is associated with acute mechanical injury to the intima/media. There would not appear to have been detailed work on the role of fluid dynamics in the occurrence of intimal hyperplasia at sites of stenting, or on the preferred sites of occurrence of the process. However, histopathological cross-sections of stented vessels show in some instances a non-axisymmetric distribution of intimal hyperplasia, consistent with a role of the local flowfield in its development.
The Reynolds number for flow in large and medium-sized human arteries is typically much greater than unity, implying that inertial forces dominate over viscous forces. As a result and as implied above, the flowfield is substantially determined by the local geometry. We have recently proposed that the curvature and branching of arteries is commonly non-planar. We have proposed furthermore that the flow is commonly swirling in nature and, unlike that associated with planar curvature and branching, characterised by a relatively uniform distribution of wall shear.
In the light of these proposals and that intimal hyperplasia at end-to-end arterial bypass grafts affects preferentially regions which experience flow wall shear, we have studied the velocity field in model planar and non-planar end-to side grafts, using steady laminar flow and methods including flow visualisation, MRI and computational fluid dynamics. The outstanding findings were much improved mixing within the non-planar model at the ‘heel”, ‘floor’ and ‘toe,’ the preferred sites for intimal hyperplasia. In addition, we found with the non-planar model a marked reduction of peak wall shear stress at the ‘floor’ of the anastomosis and a greatly increased flux of velocity into the occluded region proximal to the anastomosis. Consequently, wall shear stress in the occluded region was higher with the non-planar model than the planar model.
In recent model studies, we have used a physiological non-steady flow and obtained generally similar results. Moreover, in other recent studies with a model incorporating a sharp bend, we have found non-planar geometry apparently to affect the location and extent of flow separation and markedly to reduce the unsteadiness of the flow.
MR Imaging of Stents In Vitro: Preliminary in vitro MRI studies can be extended, in order to establish the accuracy of imaging the geometry and flowfield in a small series of nitinol stents of different diameter, in the range 8 mm-3 mm.
The flows will be laminar and either steady or non-steady in the physiological range; it is preferred to use a pump capable of generating physiological flow waveforms. the tubes in which the stents will be deployed will curve in one or more planes. The latter curvature will test the ability to measure stent geometry and the flowfield under nearly physiological conditions.
Although nitinol stents are metallic, their magnetic susceptibility is sufficiently close to that of human tissue to permit high quality MR imaging. Imaging strategies can be investigated which minimise artifacts. These strategies preferably include ultra-short echo times and modified spin-echo methods. Changes to the construction of the stent can also be investigated to create a stent which has both improved flow characteristics and MR imaging characteristics.
MRI Imaging of Stents in Excised Arteries: Nitinol stents supplied in freshly excised pig arteries can be used. Vasomotor activity may be lost in the preparations, but it is unlikely that their distensibility will be grossly abnormal; similar preparations are widely used in vascular distensibility studies.
The stents are preferably deployed for testing at a few selected sites where non-planar geometry can be expected—probably the origins of the coeliac, renal and common iliac arteries. To ensure near-physiological anatomy and mechanics, the stents can be deployed in vessels still tethered by surrounding tissues and still supported by major structures such as the lumbar spine.
It is possible to prepare vascular casts and study the geometry and flowfield by MRI. Vessel geometry can be determined by preparing epoxy resin casts at physiological transmural pressure; in a few instances casts in different pig preparations will be made at systolic and diastolic pressure, to determine static strain over the pulse pressure. After setting, the cast will be dissected from tissue and imaged in a small-bore MR scanner.
Current designs of stents are shown in
To incorporate torsional and bending flexibility these link members 21 are replaced by elements with a considerably greater flexibility.
The flexibility may be achieved by increasing the length of the link member 21 whilst changing their point of attachment as in
Alternatively, the link members 21 may be made of an appropriate spring like shape.
In the embodiments of
In the embodiment of
Number | Date | Country | Kind |
---|---|---|---|
9826254.6 | Nov 1998 | GB | national |
This application is a continuation of U.S. application Ser. No. 12/006,437 which was filed on Jan. 2, 2008, and issued as U.S. Pat. No. 8,066,761 on Nov. 29, 2011. That application is a division of U.S. application Ser. No. 09/857,012 which was filed on Sep. 14, 2001, and issued as U.S. Pat. No. 7,326,240 on Feb. 5, 2008. The application which matured into the '240 patent was the entry into the National Phase in the United States of International Application Serial No. PCT/GB99/03999 filed on 30 Nov. 1999.
Number | Name | Date | Kind |
---|---|---|---|
4629458 | Pinchuk | Dec 1986 | A |
4886062 | Wiktor | Dec 1989 | A |
5015253 | MacGregor | May 1991 | A |
5104404 | Wolff | Apr 1992 | A |
5108417 | Sawyer | Apr 1992 | A |
5354308 | Simon et al. | Oct 1994 | A |
5443498 | Fontaine | Aug 1995 | A |
5579767 | Prince | Dec 1996 | A |
5670161 | Healy et al. | Sep 1997 | A |
5697971 | Fischell et al. | Dec 1997 | A |
5879381 | Moriuchi et al. | Mar 1999 | A |
5882335 | Leone et al. | Mar 1999 | A |
5993483 | Gianotti | Nov 1999 | A |
6015387 | Schwartz et al. | Jan 2000 | A |
6027526 | Limon et al. | Feb 2000 | A |
6039754 | Caro | Mar 2000 | A |
6071305 | Brown et al. | Jun 2000 | A |
6156062 | McGuinness | Dec 2000 | A |
6206911 | Milo | Mar 2001 | B1 |
6206914 | Soykan et al. | Mar 2001 | B1 |
6221101 | Harris et al. | Apr 2001 | B1 |
6273911 | Cox et al. | Aug 2001 | B1 |
6287336 | Globerman et al. | Sep 2001 | B1 |
6312456 | Kranz et al. | Nov 2001 | B1 |
6425915 | Khosravi et al. | Jul 2002 | B1 |
6554856 | Doorly et al. | Apr 2003 | B1 |
6569191 | Hogan | May 2003 | B1 |
6818014 | Brown et al. | Nov 2004 | B2 |
6896007 | Cymbalisty | May 2005 | B2 |
7326240 | Caro et al. | Feb 2008 | B1 |
7722663 | Austin | May 2010 | B1 |
8066761 | Caro et al. | Nov 2011 | B2 |
8226704 | Caro et al. | Jul 2012 | B2 |
8236043 | Caro et al. | Aug 2012 | B2 |
20040102838 | Killion et al. | May 2004 | A1 |
Number | Date | Country |
---|---|---|
0615769 | Sep 1994 | EP |
2344053 | May 2000 | GB |
WO 9203107 | Mar 1992 | WO |
WO 9509585 | Apr 1995 | WO |
WO 9626682 | Sep 1996 | WO |
WO 9853764 | Dec 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20120029617 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09857012 | US | |
Child | 12006437 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12006437 | Jan 2008 | US |
Child | 13271733 | US |