Stents for prosthetic heart valves

Information

  • Patent Grant
  • 11786367
  • Patent Number
    11,786,367
  • Date Filed
    Friday, October 9, 2020
    3 years ago
  • Date Issued
    Tuesday, October 17, 2023
    6 months ago
Abstract
A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
Description
TECHNICAL FIELD

The present invention relates to prosthetic heart valves. More particularly, it relates to devices, methods, and delivery systems for percutaneously implanting prosthetic heart valves.


BACKGROUND

Diseased or otherwise deficient heart valves can be repaired or replaced using a variety of different types of heart valve surgeries. Typical hart valve surgeries involve an open-heart surgical procedure that is conducted under general anesthesia, during which the heart is stopped while blood flow is controlled by a heart-lung bypass machine. This type of valve surgery is highly invasive and exposes the patient to a number of potentially serious risks, such as infection, stroke, renal failure, and adverse effects associated with use of the heart-lung machine, for example.


Recently, there has been increasing interest in minimally invasive and percutaneous replacement of cardiac valves. Such surgical techniques involve making a very small opening in the skin of the patient into which a valve assembly is inserted in the body and delivered to the heart via a delivery device similar to a catheter. This technique is often preferable to more invasive forms of surgery, such as the open-heart surgical procedure described above. In the context of pulmonary valve replacement, U.S. Patent Application Publication Nos. 2003/0199971 A1 and 2003/0199963 A1, both filed by Tower, et al., describe a valved segment of bovine jugular vein, mounted within an expandable stent, for use as a replacement pulmonary valve. The replacement valve is mounted on a balloon catheter and delivered percutaneously via the vascular system to the location of the failed pulmonary valve and expanded by the balloon to compress the valve leaflets against the right ventricular outflow tract, anchoring and sealing the replacement valve. As described in the articles: “Percutaneous Insertion of the Pulmonary Valve”, Bonhoeffer, et al., Journal of the American College of Cardiology 2002; 39: 1664-1669 and “Transcatheter Replacement of a Bovine Valve in Pulmonary Position”, Bonhoeffer, et al., Circulation 2000; 102:813-816, the replacement pulmonary valve may be implanted to replace native pulmonary valves or prosthetic pulmonary valves located in valved conduits.


Various types and configurations of prosthetic heart valves are used in percutaneous valve procedures to replace diseased natural human heart valves. The actual shape and configuration of any particular prosthetic heart valve is dependent to some extent upon the valve being replaced (i.e., mitral valve, tricuspid valve, aortic valve, or pulmonary valve). In general, the prosthetic heart valve designs attempt to replicate the function of the valve being replaced and thus will include valve leaflet-like structures used with either bioprostheses or mechanical heart valve prostheses. In other words, the replacement valves may include a valved vein segment that is mounted in some manner within an expandable stent to make a stented valve. In order to prepare such a valve for percutaneous implantation, the stented valve can be initially provided in an expanded or uncrimped condition, then crimped or compressed around the balloon portion of a catheter until it is as close to the diameter of the catheter as possible.


Other percutaneously-delivered prosthetic heart valves have been suggested having a generally similar configuration, such as by Bonhoeffer, P. et al., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position.” Circulation, 2002; 102:813-816, and by Cribier, A. et al. “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis.” Circulation, 2002; 106:3006-3008, the disclosures of which are incorporated herein by reference. These techniques rely at least partially upon a frictional type of engagement between the expanded support structure and the native tissue to maintain a position of the delivered prosthesis, although the stents can also become at least partially embedded in the surrounding tissue in response to the radial force provided by the stent and balloons used to expand the stent. Thus, with these transcatheter techniques, conventional sewing of the prosthetic heart valve to the patient's native tissue is not necessary. Similarly, in an article by Bonhoeffer, P. et al. titled “Percutaneous Insertion of the Pulmonary Valve.” J Am Coll Cardiol, 2002; 39:1664-1669, the disclosure of which is incorporated herein by reference, percutaneous delivery of a biological valve is described. The valve is sutured to an expandable stent within a previously implanted valved or non-valved conduit, or a previously implanted valve. Again, radial expansion of the secondary valve stent is used for placing and maintaining the replacement valve.


Although there have been advances in percutaneous valve replacement techniques and devices, there is a continued desire to provide different designs of cardiac valves that can be implanted in a minimally invasive and percutaneous manner. It is additionally desirable to provide valves that are resistant to migration after they are implanted.


The replacement heart valves of the invention each include a stent to which a valve structure is attached. The tents of the invention include a wide variety of structures and features that can be used alone or in combination with features of other stents of the invention. Many of the structures are compressible to a relatively small diameter for percutaneous delivery to the heart of the patient, and then are expandable either via removal of external compressive forces (e.g., self-expanding stents), or through application of an outward radial force (e.g., balloon expandable stents). The devices delivered by the delivery systems described herein can be used to deliver stents, valved stents, or other interventional devices such as ASD (atria septal defect) closure devices, VSD (ventricular septal defect) closure devices, or PFO (patent foramen ovale) occluders.


Methods for insertion of the replacement heart valves of the invention include delivery systems that can maintain the stent structures in their compressed state during their insertion and allow or cause the stent structures to expand once they are in their desired location. In addition, delivery methods of the invention can include features that allow the stents to be retrieved for removal or relocation thereof after they have been deployed or partially deployed from the stent delivery systems. The methods may include implantation of the stent structures using either an antegrade or retrograde approach. Further, in many of the delivery approaches of the invention, the stent structure is rotatable in vivo to allow the stent structure to be positioned in a desired orientation.


The stent structures of the invention can provide resistance to leaflet abrasion via the configuration of the wires or other structural elements relative to each other. Other stent structures can provide for reduced crown density and various other configurations of wire shapes and features for use with attached valves for valve replacement procedures.





BRIEF DESCRIPTIONS OF THE DRAWINGS

The present invention will be further explained with reference to the appended Figures, wherein like structure is referred to by like numerals throughout the several views, and wherein:



FIG. 1 is a front view of an embodiment of a stent in accordance with the invention;



FIG. 2 is a front view of an embodiment of a stent in accordance with the invention;



FIG. 3 is a front view of an embodiment of a stent in accordance with the invention;



FIG. 4 is a perspective view of a stent embodiment in accordance with the invention;



FIG. 5 is a top view of another stent embodiment;



FIG. 6 is a front view of another stent embodiment;



FIG. 7 is a front view of another stent embodiment;



FIG. 8 is a perspective view of another stent embodiment;



FIG. 9 is a perspective view of a stent embodiment having extending elements and positioned on a mandrel;



FIG. 10 is a front view of an exemplary delivery system that can be used for delivering a stent of the type illustrated in FIG. 9;



FIG. 11-13 are enlarged front views of a portion of a delivery system for delivering a stent of the type shown in FIG. 9, including three sequential delivery steps;



FIG. 14 is a front schematic view of a stent positioned in an aorta;



FIGS. 15-18 are perspective views of different stent embodiments, each positioned within a heart vessel;



FIG. 19 is a front view of a stent embodiment;



FIG. 20 is a front view of a stent embodiment;



FIG. 21 is a top view of the stent of FIG. 20;



FIG. 22 is a schematic front view of the stent of FIG. 20 positioned in a heart vessel;



FIG. 23 is a front view of another stent embodiment;



FIG. 24 is a side view of the stent of FIG. 23;



FIG. 25 is a perspective view of the stent of FIG. 23, positioned on a mandrel;



FIG. 26 is a top view of the stent of FIG. 23 positioned relative to a schematic view of a heart vessel, wherein the stent includes leaflets in its interior portion;



FIG. 27 is a top view of the stent of FIG. 23;



FIG. 28 is a perspective top view of the stent of FIG. 23 positioned in a heart;



FIG. 29 is a front view of another embodiment of a stent positioned on a mandrel;



FIGS. 30 and 31 are front and perspective views respectively, of a solid model of a stent of the type illustrated in FIG. 29;



FIGS. 32 and 33 are front perspective views, respectively, of a stent embodiment;



FIGS. 34 and 35 are front views of a valved stent of the invention;



FIG. 36 is a schematic front view of a stent assembly being delivered to a heart valve;



FIG. 37 is a front view of a stent assembly positioned in a heart valve;



FIG. 38 is a front view of the stent assembly shown in FIGS. 36 and 37;



FIG. 39 is a front view of a stent assembly having a length L positioned in a heart vessel;



FIG. 40 is a top view of another stent embodiment positioned relative to a schematic view of an anatomical position in a heart;



FIG. 41 is a top view of another stent embodiment;



FIG. 42 is a top view of another stent positioned relative to the interventricular septum and the mitral apparatus;



FIGS. 43-45 are perspective views of additional stent embodiments;



FIG. 46 is a front view of another stent embodiment;



FIGS. 47-50 are front schematic views of embodiments of stents positioned in a heart vessel;



FIGS. 51-53 are front views of a different stents positioned relative to a portion of a heart valve that is cut-away for clarity; and



FIG. 54 is a top cross-sectional view of a valve attached within a stent frame.





DETAILED DESCRIPTION

As referred to herein, the prosthetic heart valves used in accordance with various devices and methods of heart valve delivery may include a wide variety of different configurations, such as a prosthetic heart valve having tissue leaflets or a synthetic heart valve having polymeric, metallic, or tissue-engineered leaflets, and can be specifically configured for replacing any heart valve. That is, while much of the description herein refers to replacement of aortic valves, the prosthetic heart valves of the invention can also generally be used for replacement of native mitral, pulmonic, or tricuspid valves, for use as a venous valve, or to replace a failed bioprosthesis, such as in the area of an aortic valve or mitral valve, for example.


Although each of the valves used with the delivery devices and methods described herein would typically include leaflets attached within an interior area of a stent, the leaflets are not shown in many of the illustrated embodiments for clarity purposes. In general, the stents described herein include a support structure comprising a number of strut or wire portions arranged relative to each other to provide a desired compressibility, strength, and leaflet attachment zone(s) to the heart valve. Other details on particular configurations of the stents of the invention are also described below; however, in general terms, stents of the invention are generally tubular support structures, and leaflets will be secured to the support structure to provide a valved stent. The leaflets can be formed from a variety of materials, such as autologous tissue, xenograph material, or synthetics as are known in the art. The leaflets may be provided as a homogenous, biological valve structure, such as a porcine, bovine, or equine valve. Alternatively, the leaflets can be provided independent of one another (e.g., bovine or equine pericardial leaflets) and subsequently assembled to the support structure of the stent. In another alternative, the stent and leaflets can be fabricated at the same time, such as may be accomplished using high strength nano-manufactured NiTi films of the type produced at Advanced Bio Prosthetic Surfaces Ltd. (ABPS) of San Antonio, Tex., for example. The support structures are generally configured to accommodate three leaflets; however, the replacement prosthetic heart valves of the invention can incorporate more or less than three leaflets.


In more general terms, the combination of a support structure with one or more leaflets can assume a variety of other configurations that differ from those shown and described, including any known prosthetic heart valve design. In certain embodiments of the invention, the support structure with leaflets utilize certain features of known expandable prosthetic heart valve configurations, whether balloon expandable, self-expanding, or unfurling (as described, for example, in U.S. Pat. Nos. 3,671,979; 4,056,854; 4,994,077; 5,332,402; 5,370,685; 5,397,351; 5,554,185; 5,855,601; and 6,168,614; U.S. Patent Application Publication No. 2004/0034411; Bonhoeffer P., et al., “Percutaneous Insertion of the Pulmonary Valve”, Pediatric Cardiology, 2002; 39:1664-1669; Andersou H R, et al., “Transluminal Implantation of Artificial Heart Valves”, EUR Heart J., 1992; 13:704-708; Anderson, J. R., et al., “Transluminal Catheter Implantation of New Expandable Artificial Cardiac Valve”, EUR Heart J., 1990, 11: (Suppl) 224a; Hilbert S. L., “Evaluation of Explanted Polyurethane Trileaflet Cardiac Valve Prosthesis”, J Thorac Cardiovascular Surgery, 1989; 94:419-29; Block P C, “Clinical and Hemodynamic Follow-Up After Percutaneous Aortic Valvuloplasty in the Elderly”, The American Journal of Cardiology, Vol. 62, Oct. 1, 1998; Boudjemline, Y., “Steps Toward Percutaneous Aortic Valve Replacement”, Circulation, 2002; 105:775-558; Bonhoeffer, P., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position, a Lamb Study”, Circulation, 2000:102:813-816; Boudjemline, Y., “Percutaneous Implantation of a Valve in the Descending Aorta In Lambs”, EUR Heart J, 2002; 23:1045-1049; Kulkinaki, D., “Future Horizons in Surgical Aortic Valve Replacement: Lessons Learned During the Early Stages of Developing a Transluminal Implantation Technique”, ASAIO J, 2004; 50:364-68; the teachings of which are all incorporated herein by reference).


Orientation and positioning of the stents of the invention may be accomplished either by self-orientation of the stents (such as by interference between features of the stent and a previously implanted stent or valve structure) or by manual orientation of the stent to align its features with anatomical or previous bioprosthetic features, such as can be accomplished using fluoroscopic visualization techniques, for example. For example, when aligning the stents of the invention with native anatomical structures, they should be aligned so as to not block the coronary arteries, and native mitral or tricuspid valves should be aligned relative to the anterior leaflet and/or the trigones/commissures.


Some embodiments of the support structures of the stents described herein can be a series of wires or wire segments arranged so that they are capable of transitioning from a collapsed state to an expanded state. In some embodiments, a number of individual wires comprising the support structure can be formed of a metal or other material. These wires are arranged in such a way that a support structure allows for folding or compressing to a contracted state in which its internal diameter is greatly reduced from its internal diameter in an expanded state. In its collapsed state, such a support structure with attached valves can be mounted over a delivery device, such as a balloon catheter, for example. The support structure is configured so that it can be changed to its expanded state when desired, such as by the expansion of a balloon catheter. The delivery systems used for such a stent should be provided with degrees of rotational and axial orientation capabilities in order to properly position the new stent at its desired location.


The wires of the support structure of the stents in other embodiments can alternatively be formed from a shape memory material such as a nickel titanium alloy (e.g., Nitinol) or a very high-tensile material that will expand to its original state after compression and removal of external forces. With this material, the support structure is self-expandable from a contracted state to an expanded state, such as by the application of heat, energy, and the like, or by the removal of external forces (e.g., compressive forces). This support structure can be repeatedly compressed and re-expanded without damaging the structure of the stent. In addition, the support structure of such an embodiment may be laser cut from a single piece of material or may be assembled from a number of different components. For these types of stent structures, one example of a delivery system that can be used includes a catheter with a retractable sheath that covers the stent until it is to be deployed, at which point the sheath can be retracted to allow the stent to expand. Alternatively, the stent structures of the invention can be implanted using conventional surgical techniques and/or minimally invasive surgical procedures. In such cases, the stents of the invention can advantageously require relatively few or no sutures to secure the stent to an anatomical location within the patient.


Referring now to the Figures, wherein the components are labeled with like numerals throughout the several Figures, and initially to FIGS. 1-5 illustrate stents 10, 20, 30, and 40, respectively, each of which is positioned over a mandrel. With particular reference to FIG. 1, stent 10 includes a first end 12 having six crowns and a second end 14 having twelve crowns. Each of the stent crowns at the second end 14 includes a loop or eyelet 19 that can be used for attachment to a delivery system and/or tissue valve, for example. It is contemplated that each of the crowns at the second end includes a loop or eyelet 19, as shown, or that only some of the crowns include such a loop or eyelet. The size and shape of the loops 19 can all be the same on a single stent, or they can have different sizes and/or shapes. Stent 10 further includes at least one longitudinal post 16, which can be used for attachment of tissue to the stent, along with providing additional stability to the first end 12 of the stent. The longitudinal post 16 extends generally along the annular region of the stent 10 and has a height that accommodates attachment of leaflet material. That is, the height of the post 16 is generally the same as the desired commissural height for the stent 10. As shown, the longitudinal posts 16 are comprised of two bars or vertical portions that are spaced from each other by a sufficient distance to allow leaflets to be drawn between the vertical portions at the leaflet commissures. Other skirt material portions and/or commissure protection features can also be drawn through the space between the vertical portions. The space between the vertical portions of each post 16 may have incremental steps 18, as shown in FIG. 1, which help to provide anchoring points for suturing, for example, or the posts may not include such steps, as shown with post 132 in FIG. 3, which will be discussed in further detail below. If steps 18 are provided, they can be generally perpendicular to the vertical posts, which will make the openings generally rectangular in shape, or the steps can be differently oriented and shaped so that the openings are circular, elliptical, or another chosen shape. It is further noted that the vertical portions of the posts 16 can be made of a different material or have a different thickness than the rest of the stent wires and/or the posts can be made with reinforced attachment stents or welds on the outflow end to provide additional strength in this area.


With this stent 10, wire structure extends between one end of the post 16 and the first end 12 (which may be referred to as the aortic aspect of the stent) and additional wire structure extends between the other end of the stent post and the second end 14 (which may be referred to as the ventricular aspect of the stent). The stent 10 may include one longitudinal post 16 for each commissure of the valve that will be attached thereto, if desired. That is, for a three-leaflet valve, three longitudinal posts 16 will be provided.


The stent 20 of FIG. 2 includes multiple wires that are arranged in a generally similar configuration to that discussed above relative to FIG. 1. However, stent 20 further includes a central bulbous region between its first and second ends 22, 24 that is larger in diameter than the diameters of the first and second ends of the stent. The bulbous region can be configured to generally match the contours of the anatomy where the stent will be positioned in the patient (e.g., at the aortic valve sinus region). The first end 22 is flared inwardly (i.e., toward the central axis of the stent), preferably by an amount that is enough to be atraumatic, but not so pronounced that it loses contact with the patient's anatomy or interferes with another device (e.g., a coronary catheter) at a later date. Thus, the inward flare can be less than that shown, although it is possible that the flare is even greater than that shown. In addition, the second end 24 is slightly flared outwardly, as shown in the Figure. This flare at the second end 24 of the stent 20 (i.e., away from the central longitudinal axis of the stent) can prevent or minimize leakage between the implanted heart valve and the native annulus and/or to provide a physical and/or visual docking feature to secure the stent against a wall of a vessel or opening in the heart to prevent migration of the stent, for example. Additionally, the second end 24 can also have an at least slightly inward bend (see FIG. 3, for example) that may be advantageous when implanting this stent in the aortic region in order to minimize trauma to adjacent anatomical structures (e.g., the mitral valve anterior leaflet or the left ventricular wall). This slight inward bend can also help to minimize pressure on the septum in the area of the bundle branch, which can in turn reduce the potential for arrythmias or heart block during or after the transcatheter valve replacement procedure.



FIGS. 3 and 4 illustrate stents 30 and 40 that are “selectively” flared to match particular desired shapes for portions of the stent. For example, certain stent wires are flared outwardly to avoid potential interference between the stent and the tissue leaflets of the replacement valves. The stent features to which the tissue will be attached may not be flared at all, such that the stent is relatively tubular, or these wires could instead be flared inwardly or outwardly. Stents 30, 40 include central regions 34, 44, respectively that are somewhat larger in diameter than the adjacent portions of the stent. The stent 30 further includes at least one longitudinal element or feature that can be used for attachment of tissue to the stent, such as a longitudinal post 32. Such posts 32 can also be positioned at the same distance from the longitudinal axis as the other stent elements in the central region 34, or the longitudinal posts can be closer to or further from the central axis of the stent than the other stent elements in the central region 34, if desired. By positioning the posts closer to the central axis than the other wires in the central region 34, the free edges of the dynamic leaflets positioned inside the stent 30, 40 of the new or replacement valve would be less likely to contact the stent posts when the valve leaflets are fully open. This reduced contact can reduce the potential for wear on the leaflets during valve cycling. An additional benefit of positioning the wires of the post closer to the central longitudinal axis as the other stent wires is to minimize stress at the commissures, and to help maintain coronary perfusion. This can be accomplished by limiting the opening of the leaflet so that coronary flow behind the valve leaflets is maintained. Yet another benefit of these configurations having attachment points that are inwardly offset from the largest outer diameter of the stent is that a smaller tissue valve can be used, which in turn reduces the overall transcatheter crimp profile of the delivery system.


Reduction of the potential wear on the valve leaflets can alternatively be accomplished by fastening leaflet commissures closer to the center of the stent than to the outer circumference. FIG. 54 illustrates such an arrangement with a schematic view of an outer stent frame 400 having three leaflets 402 arranged so that each two adjacent leaflets are attached to the stent frame 400 at a leaflet commissure area 404. Another fastening point of each of these sets of leaflets 402 at the commissure area 404 is shifted inwardly toward the center of the stent frame 400 to an inner fastening point 406. In this way, when the leaflets 402 are open, their free edges can only move out as far as the circle or inner area 408, which is shown schematically with a broken line. As shown, even if the leaflets 402 are in this fully open position, they will not contact the outer stent frame 400, thereby reducing potential wear on the valve leaflets.


Stents 10, 20, and 40 each include an arrangement of wires that provides twelve stent crowns at one end and six stent crowns at the opposite end, while stet 30 includes twelve crowns at both ends. For embodiments that include twelve crowns at the inflow end of the stent, this configuration can provide additional strength to the stent annulus area to prevent migration, to open stenotic native valve orifices, and also to provide a greater number of points for attaching pericardial leaflets to the stent. It is possible, however, to provide less than twelve (e.g., six) crowns at the outflow because the same stent strength is not required at this end for less tissue attachment points are needed. These illustrated stents are only some of the arrangements of wires that can achieve this feature of having different numbers of stent crowns at opposite ends of a single stent. In a further alternative, each of the ends of one stent can have the same number of stent crowns, but the center portion can have a more or less dense concentration of wires than either of the ends. In any case, a stent having less stent crowns at one of its ends may simplify the use of an associated delivery system, since the end with less stent crowns will have a corresponding smaller number of crowns that need to be connected to the delivery system.



FIGS. 5-8 illustrate additional stent embodiments 80, 60, 70. Stent 60 has a similar shape to the stent 20 of FIG. 2; however, stent 60 includes the same number of stent crowns at both ends, and also does not have the same longitudinal posts that are part of the wire arrangement of stent 20. Rather, stent 60 includes a generally regular diagonal criss-cross wire pattern along its entire length, and further includes multiple eyelets or hooks 62 at one end. A first stent and 64 is flared generally inwardly and a second stent end 66 is contoured both inwardly and outwardly as compared to the central region of the stent. Stent 70 includes a bulbous shape to the wires at one end, eyelets or hoops at the opposite end, and differing numbers of stent crowns at the opposite ends of the stent. Stent 80 includes pocket portions 82 that provide attachment points for the leaflets 84 that are positioned inwardly from the outer diameter of the stent 80. Again, these inwardly located attachment points will reduce the potential for leaflet abrasion and moves the commissure attachment points to an area that that puts less stress on the leaflets. Finally, the pockets 82 provide an area where the suture knots can be positioned so that they do not increase the overall crimp profile of the valve.



FIG. 9 illustrates another stent embodiment 90 that includes several features described above relative to stent crowns, longitudinal posts, incremental steps on at least one of the posts and the wire. Stent 90 also includes at least one longitudinal stent post 92 comprised of two vertical bars spaced from each other. Stent 90 further includes three wings 94, each of which extends outwardly from the stent body and between two longitudinal posts 92. The longitudinal posts 92 can be positioned inwardly of the outer diameter of the stent 90 to provide the advantages discussed above relative to avoiding leaflet abrasion and the like. These wings can be used to dock the stent against the top aspect of the native leaflets when the stent is implanted. Again, this stent has differing numbers of crowns at its opposite ends, and hooks or eyelets on the crowns at one end.



FIGS. 10-13 illustrate a portion of one exemplary delivery system 100 for delivering a stent having wings, such as stent 90. In particular, FIG. 10 shows a delivery system tip including a fully crimped stent enclosed within a main catheter sheath. FIG. 11 shows the wings 94 being deployed from the delivery system 100 by retracting the main catheter sheath 102. In an implantation, the wings 94 can be positioned to interface with the outflow aspect of the native valve leaflets. Once these wings 94 are in contact with the native valve leaflets, the inflow or annular end of the stent is deployed by driving the catheter tip forward, as illustrated in FIG. 12. The native leaflets will now contact the wings 94 and inflow end of the stent 90, thereby minimizing the potential for migration of the replacement valve. The outflow end of the stent can now be deployed, as shown in FIG. 13, to fully re-expand the stent 90 release it from the delivery system, which is accomplished by further retracting the main catheter sheath.



FIG. 14 illustrates a stent 110 that includes a highly flexible delivery system attachment end 112 that enables the portion of the stent 110 that interfaces with the anatomy to create secure fixation to be fully deployed while still attached to the delivery system. This system enables a sprocket-style delivery system attachment mechanism that can help to minimize the delivery system diameter size. A sprocket-style delivery system includes some type of inner core member from which multiple protrusions extend, where the shape of the protrusions allow for engagement with wires of a stent. Stent 110 does not require attachment of each crown on the aortic end of the stent, while still enabling the ventricular region of the stent to fully deploy to assess functionality and positioning, which can thereby allow for a smaller diameter for the delivery system. As shown, stent 110 is positioned relative to an aorta 114, and stent 110 includes an outflow end that has very flexible struts that enable the anchoring portion of the stent to be fully deployed to assess the valve functionality and positioning, while still being captured on a sprocket-style delivery system. The outer diameter of the stent can preferably expand to match the maximum inner diameter of the anchoring region.



FIG. 15 illustrates another embodiment of a stent 120 having a central region 122 with a diameter that is larger than the diameter at either of the ends. A first end 124 has six stent crowns, while the opposite second end 126 has twelve stent crowns, each of which includes an eyelet 128. With such an arrangement, the number of crowns provided at the outflow end of the stent is reduced, thereby requiring fewer points for attachment to a delivery system. FIG. 16 illustrates another stent embodiment 130 including flared regions at both ends and a central region that is generally cylindrical.



FIG. 17 illustrates another embodiment of a stent 140 that is positioned at the aortic valve position of a heart. Stat 140 includes six stent crowns at one end and twelve stent crowns at the opposite end, and further includes a central area with a relatively large opening or gap 142 between the wires. The gap 142 can be positioned at the coronary ostia so as to not obstruct or interfere with blood flow. The stents 120, 130, 140, along with many of the other stent embodiments described heroin, are designed to match with native anatomic features of a patient to improve resistance to migration and improve paravalvular replacement valve sealing.



FIG. 18 illustrates another embodiment of a stent 150 that is designed for anatomic compatibility and includes a bulbous portion that is positioned to sit generally at the annular area of a vessel. A ring 152 shown in this figure is a sealing gasket on the outside of the stent and is positioned generally at the annulus of a vessel when implanted. The gasket can be made of fabric or inflatable tube structures, for example.



FIG. 19 illustrates a stent 160 that does not include many of the contours described relative to other stet embodiments of the invention, but includes longitudinal pots 162 for attachment of the valve tissue. Posts 162 are comprised of two longitudinal wire portions 166 spaced from each other, and further include optional intermediate members 168 that extend between the longitudinal portions 166. The outer structure ring structure shown in this drawing is provided as an illustration of the general stitching path that can be used for tissue material within the stent.



FIGS. 20-22 illustrate an embodiment of a stent 180 that includes a number of features described above for the stents of the invention, along with additional features. In particular, FIG. 20 shows the stent 180 with longitudinal posts 182 extending in the direction of the length of the stent 180, and a region 184 at one end that is bulbous or has a larger diameter than the central portion of the stent. The opposite end of the stent 180 includes flared portions 186 that extend from opposite sides of the generally tubular central portion. As shown in FIG. 21, each flared portion 186 can include two crowns, although it is possible that the flared portion 186 can be configured somewhat differently than shown (e.g., there can be more or less crowns, the crowns can be shaped differently, the flared portion 186 can extend around a larger or smaller portion of the circumference of the stent, and the like). As is further illustrated in FIG. 20, the geometry of the stent can be designed to incorporate optimal attachment points for tissue. That is, the stent node trajectory can be specifically selected to provide the desired points for the attachment of tissue. Such a feature can be considered and designed for tents including longitudinal posts, as shown in FIG. 20, and may also be considered for stents comprising more diamond-shaped wire patterns without longitudinal posts.


The outer profile of stent 180 is shown in an exemplary position within the anatomy (i.e., aorta) of a patient in FIG. 22, with the central area that includes the commissural posts being positioned in the bulbous area of an aorta. The flares 186 extend into the ventricle in order to help anchor the stent 180 in place. The flares 186 are preferably positioned in locations where they do not disrupt the native anatomical function. That is, the flares 186 should not interfere with the mitral valve anterior leaflet and should not apply pressure to the septum in the area of the conduction system bundle branch. Again, it is also preferable that the central portion of the stent 180 does not contact the native aortic sinus region, in order to minimize the potential for coronary occlusion or obstruction.


It is noted that in many of the stent embodiments shown and described herein, the aspect ratio of certain portions of the stent is exemplary, and can be somewhat different from that shown. It is further noted that if the stent of any of the embodiments is to be positioned to replace the aortic valve, the stent can be provided with a lower density wire portion in the area where the coronaries are located. To eliminate the need to clock the device, reduced wire density around the entire perimeter of the stent in the central area can be provided. Further, stent embodiments described herein may be modified to include additional structure for attachment of tissue for the valve, such as the vertical stent posts described in many of the embodiments.



FIGS. 23-28 illustrate another embodiment of a stent 200 that includes a central cylindrical portion with at least two regions with a lower density of wires, each of which is provided for positioning in the area of the coronary openings. The wires of this lower density area are arranged to provide openings 202 that are larger than the spaces between other wires of the stent. These openings are offset along the length of the stent to be arranged in a zigzag type of pattern around the circumference of the stent 120. One end of the stent 200 includes flared portions 204 that extend from opposite sides of the central cylindrical portion of the stent. Each flared portion 204 includes three crowns, although variations of this configuration are contemplated, as discussed above relative to flared stent portions. As shown in FIG. 26, stent 200 is positioned relative to a mitral valve 210 so that one of the flared portions is positioned at the left ventricle, and one of the openings in the stent is positioned at the left coronary artery. FIG. 27 is a top view of the stent 190, and FIG. 28 shows one exemplary position of the stent 190 relative to the anatomy of a patient, including the septum and anterior leaflet of the mitral valve.



FIG. 29 illustrates a stent 220 that includes openings 222 (i.e., areas of lower wire density) for the coronaries, and further includes sub-annular and supra-annular circumferential wings to help secure the stent to the patient's native anatomy. In particular, the area below the openings 222 includes an outward curve or flare to create a wing 224 that can extend around all or part of the circumference of the stent 220. The wires then curve back toward the central longitudinal axis of the stent, then curve or flare outwardly again to create a wing 226 that can extend around all or a part of the circumference of the stent 220. As shown, the wings 224, 226 and the area between them form a generally sinusoidal configuration, where the wing 224 can be positioned above an annulus and wing 226 can be positioned below that annulus to provide the anchoring for a more secure attachment in that position. This series of wings can help to anchor the stent in regions of calcified or fused leaflets in the aortic stenosis patient population. Stent 220 further includes imaging markers 228 that can be used to identify the high and low points of the commissures, the annular (valve) plane of the implant, and/or other features. Markers can also be used to identify high and low boundaries for optimal implant placement within the patient's anatomy.



FIGS. 30 and 31 are solid models of a stent 240 that is configured similarly to the stent of FIG. 29, including the sinusoidal shape at one end that creates wing areas. These wings can have a different profile from that shown, although it is preferable in this embodiment that there are sinusoidal “peaks” 242, 244 that are separated by a “valley” 246, where the annulus of a valve can be positioned in the valley 246 so that the peaks 242, 244 are on opposite sides of the annulus. The peaks and valleys can have different heights than shown, and the spacing between the peaks may also be different. That is, the spacing between the sub-annular and supra-annular flares can be varied, depending on the specific procedure that will be performed and the desired characteristics of the stent. These embodiments, along with other shaped stents described herein, can help to minimize stent migration within the patient due to the ability of the stent to conform to various contours of the patient's anatomy. FIG. 30 also illustrates an optional groove 248 that can be positioned generally around the periphery of the stent 240 to match the native 3-dimensional configuration of the native anatomy. A gasket 250 can be positioned within the groove 248, where such a gasket 250 can include one continuous structure that generally follows the shape of the groove 248, or it can include one or more pieces within portions of the groove 248. The gasket 250 can improve paravalvular sealing. Further, the gasket 250 can be made of a material that can heal into the native tissue of the patient, which can help the stent to resist migration.



FIGS. 32 and 33 illustrate another stent embodiment 240 that includes flares at both the sub-annular and sinotubular junction (STJ) areas. The illustrated stent further includes vertical stent posts, twelve inflow crowns and six outflow crowns although there could be more or less than these numbers of inflow and outflow crowns. Stent 240 has a wire arrangement similar to that shown for the stents of FIGS. 1-4 and other stents described and shown herein; however, the central area of stent 240 is more tubular or “straight,” with slightly curved areas at both ends.


One exemplary stent of the invention combines the following features: eyelets at one and for attachment to the delivery system and tissue valve; vertical commissural tissue attach struts or posts; moderately flared non-commissural attach vertical struts or STJ flare; sub-annular flares; inflow and outflow atraumatic curvatures; a twelve crown inflow; and six tapered crowns at the outflow end. Such an embodiment of a stent is illustrated, for example, as stent 250 in FIGS. 34 and 35. Stent 250 further includes tissue material 252 attached within its internal area to provide leaflets for the valve. Two spaced-apart vertical members are used to make up vertical posts 254, one of which is most visible in FIG. 35. One exemplary pattern for stitching the tissue to the vertical post 254 is also illustrated, although the stitching pattern can differ from that shown.


Delivering any balloon-expandable stents of the invention to the implantation location can be performed percutaneously. In general terms, this includes providing a transcatheter assembly, including a delivery catheter, a balloon catheter, and a guide wire. Some delivery catheters of this type are known in the art, and define a lumen within which the balloon catheter is received. The balloon catheter, in turn, defines a lumen within which the guide wire is slideably disposed. Further, the balloon catheter includes a balloon that is fluidly connected to an inflation source. It is noted that if the stent being implanted is the self-expanding type of stent, the balloon would not be needed and a sheath or other restraining means would be used for maintaining the stent in its compressed state until deployment of the stent, as described herein. In any case, for a balloon-expandable stent, the transcatheter assembly is appropriately sized for a desired percutaneous approach to the implantation location. For example, the transcatheter assembly can be sized for delivery to the heart valve via an opening at a carotid artery, a jugular vein, a sub-clavian vein, femoral artery or vein, or the like. Essentially, any percutaneous intercostals penetration can be made to facilitate use of the transcatheter assembly.


Prior to delivery, the stent is mounted over the balloon in a contracted state to be as small as possible without causing permanent deformation of the stent structure. As compared to the expanded state, the support structure is compressed onto itself and the balloon, thus defining a decreased inner diameter as compared to an inner diameter in the expanded state. While this description is related to the delivery of a balloon-expandable stent, the same basic procedures can also be applicable to a self-expanding stent, where the delivery system would not include a balloon, but would preferably include a sheath or some other type of configuration for maintaining the stent in a compressed condition until its deployment.


With the stent mounted to the balloon, the transcatheter assembly is delivered through a percutaneous opening (not shown) in the patient via the delivery catheter. The implantation location is located by inserting the guide wire into the patient, which guide wire extends from a distal end of the delivery catheter, with the balloon catheter otherwise retracted within the delivery catheter. The balloon catheter is then advanced distally from the delivery catheter along the guide wire, with the balloon and stent positioned relative to the implantation location. In an alternative embodiment, the stent is delivered to an implantation location via a minimally invasive surgical incision (i.e., non-percutaneously). In another alternative embodiment, the stent is delivered via open heart/chest surgery. In one embodiment of the stents of the invention, the stent includes a radiopaque, echogenic, or MRI visible material to facilitate visual confirmation of proper placement of the stent. Alternatively, other known surgical visual aids can be incorporated into the stent. The techniques described relative to placement of the stent within the heart can be used both to monitor and correct the placement of the stent in a longitudinal direction relative to the length of the anatomical structure in which it is positioned.


Once the stent is properly positioned, the balloon catheter is operated to inflate the balloon, thus transitioning the stent to an expanded state. Alternatively, where the support structure is formed of a shape memory material, the stent can self-expand to its expanded state.


One or more markers on the valve, along with a corresponding imaging system (e.g., echo, MRI, etc.) can be used with the various repositionable delivery systems described herein in order to verify the proper placement of the valve prior to releasing it from the delivery system. A number of factors can be considered, alone or in combination, to verify that the valve is properly placed in an implantation site, where some exemplary factors are as follows: (1) lack of paravalvular leakage around the replacement valve, which can be advantageously examined while blood is flowing through the valve since these delivery systems allow for flow through and around the valve; (2) optimal rotational orientation of the replacement valve relative to the coronary arteries; (3) the presence of coronary flow with the replacement valve in place; (4) correct longitudinal alignment of the replacement valve annulus with respect to the native patient anatomy; (5) verification that the position of the sinus region of the replacement valve does not interfere with native coronary flow; (6) verification that the sealing skirt is aligned with anatomical features to minimize paravalvular leakage; (7) verification that the replacement valve does not induce arrhythmias prior to final release; and (8) verification that the replacement valve does not interfere with function of an adjacent valve, such as the mitral valve.



FIGS. 36-39 are schematic views of various embodiments of stents of the present invention. In particular, FIG. 36 illustrates a stent assembly 280 that includes features that align and secure it with specific anatomical features in the left ventricle region and the left ventricular outflow tract region of a patient. Stent assembly 280 includes a stented valve 282 from which tethers 284 extend. Tethers 284 are preferably flexible to accommodate curvature of the native aorta above the valve annulus. Optional anchors 286 are shown at the distal ends of the stent. More specifically, each of the tethers 284 extends from one of the commissures 288 of the stent 282. The stent assembly 280 farther includes a distal element such as a stent graft 290 positioned between the tethers 284 near the anchors 286, which is flexible and can accommodate widely varying patient anatomy. The stent graft 290 will be positioned distal to the sinus area of the left ventricular outflow tract when implanted. This configuration can facilitate stabilization of the stent assembly and may be designed to register or interface with another stent graft that is implanted at a later time.


This stent assembly 280 can include flexible connections between annular and supra-annular stent aspects. The flexible connections may be elastomeric, fabric, metal, or the like. Such flexible connections can help the stent assembly to accommodate most varying anatomy above the sinotubular junction and also to accommodate aortic curvature. In addition, the flexible connections can make the stent assembly able to accommodate aneurysmal aortas.


The stent assembly 280 may further include a gasket 294 positioned adjacent an end of the stented valve 282. In addition, when the stent assembly is implanted in a patient, a plaque pocket 296 can be created that provides embolic protection by creating a volume that can entrap plaque, calcification, and other emboli from traveling in a distal direction and causing a thromboembolic event, such as a stroke.


Alternatively, portions of the system may be designed to include a longer useful life than other For example, the frame of the present invention could be designed to have a relatively long useful life (e.g. 20 years), while the tissue component could have a relatively shorter useful life (e.g. 10 years).


An embolic protection device 292 can be provided distal to the stent assembly 280, as is shown in FIG. 36. The device 292 can be utilized during the implantation procedure to capture and trap any emboli released and/or generated by the valve procedure, while still maintaining uninhibited or sufficient perfusion through the aorta and coronary arteries during valve implantation. In addition, FIGS. 36-39 illustrate a portion of the stent positioned above the sinotubular junction 284 covered with fabric, polymer, and/or tissue, which can serve this same purpose.



FIGS. 37-39 illustrate alternative views of the stent assembly 280, both within a heart vessel and independent of anatomical structure (FIG. 38). It is noted that the anchoring of the stent posts via the anchors 286 can help to prevent valve ejection. FIG. 37 shows the stent assembly 280 implanted in a supra-annular position in a patient's anatomy, which can beneficially improve the orifice area by avoiding the stenotic region of the aorta. FIG. 39 shows the flexibility of the stent graft material in order to conform to the curved area of an aorta.



FIG. 40 illustrates a top view of a stent 300 having a fixation tab 302 positioned in the non-coronary sinus area 310, and with no such tabs at either the right coronary artery 314 or the left coronary artery 312. That is, fixation components of stent 300 may secure the system to non-coronary sinus and/or regions of the left ventricle adjacent to the aortic valve annulus. This may avoid obstruction of coronary blood flow and prevent unwanted interaction between the system and the septum and mitral valve anterior leaflet. Further, the fixation tab 302 does not prevent or inhibit subsequent coronary intervention, while providing the advantage of minimizing or preventing migration of the stent toward the aorta. FIG. 41 illustrates a stent having both a fixation tab 302 and flared portions 304 that help to prevent migration of the stent. FIG. 42 illustrates stent 300 having flared regions 304 as positioned relative to the interventricular septum 306 and the mitral valve apparatus 308.



FIGS. 43-45 illustrate alternative stent embodiments 360, 370, 380, each of which comprises an extending or fixation tab 364, 374, 384, respectively, along with flared portions 362, 372, 382, respectively. Tab 364 of stent 360 is configured as a bulging wire area, tab 374 of stent 370 comprises an extension that is angled in the same general direction as the wings 372, and tab 384 of stent 380 comprises an extension that is angle in generally the opposite direction from that of the wings 382. The stent 370 is illustrated in FIG. 51 with its tab 374 positioned relative to a non-coronary sinus 376, stent 380 is illustrated in FIG. 52 with its tab 384 positioned relative to a non-coronary sinus 386, and stent 360 is illustrated in FIG. 53 with its fixation tab 364 positioned relative to a non-coronary sinus 366. As shown, these tabs can help to prevent stent migration due to their interference with the patient's anatomy.



FIGS. 47 and 48 schematically illustrate the aorta of a patient. As shown, the aorta begins to curve distal to the annulus level. Many typical transcatheter valve stents are cylindrical with a relatively straight axis. Such a stent structure does not easily conform to the native anatomy, which can present a number of potential issues. First, the reduced pressure on the anatomy at the inner portion of the curvature (such as is illustrated with the an area 332 adjacent to a stent 330 in FIG. 49) can lead to improper seating, migration, and/or paravalvular leakage. Second, increased pressure on the anatomy at the outer portion of the curvature can lead to, or increase the potential for cardiac conduction system block or interference. Third, increased pressure on the anatomy at the outer portion of the curvature can lead to local erosion, irritation, and/or dissection of tissue. Fourth, the stent can be subjected to increased torsional and/or bending stresses and strains, which can affect the short-term structural integrity of the stent. Finally, lack of conformity with the curvature of the native anatomy can inhibit the ability of the clinician to accurately or consistently position the stent/valve in the desired location.


Several stents of the present invention can alleviate this non-conformity of the valve frame with the native anatomy. In one embodiment, the stent could have a predetermined curvature that matches or more closely conforms to the native anatomy, such as stent 335 in FIG. 50. In other embodiments, the stent could have flexibility (e.g., area 322 of stent 320 in FIGS. 47-48) or a hinged area (e.g., hinge 342 of stent 340 in FIG. 48) in the portion of the stent that would enable it to conform to the native curved anatomy. FIGS. 46 and 47 illustrate stent designs that incorporate flexibility in their central regions, which in turn enables improved conformity with the native anatomy. The central areas or members 322 can be fabricated from a wide variety of materials, such as metals, polymers, fabrics, and the like. The members 322 can include a number of geometries that allow flexibility to conform to the native, curved aortic anatomy. Referring again to FIG. 36, this stent assembly incorporates elements 287 that are not attached to each other except through flexible materials such as fabric, tissue, or polymeric materials that enable a high degree of conformity with the native anatomy curvature within the ascending aorta.


The present invention also optionally or alternatively includes distal emboli protection features which may be incorporated into a delivery system for delivering a stent assembly (e.g. in the nose assembly), such as the thromboembolic filter. The protection features may provide acute protection during percutaneous valve delivery. The protection features may afford substantially uninhibited flow through coronaries during systole or diastole.


The present invention has now been described with reference to several embodiments thereof. The entire disclosure of any patent or patent application identified herein is hereby incorporated by reference. The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the invention. Thus, the scope of the present invention should not be limited to the structures described herein, but only by the structures described by the language of the claims and the equivalents of those structures.

Claims
  • 1. A prosthetic valve comprising: a stent structure comprising a generally tubular structure having an interior area and a longitudinal axis, the stent structure comprising, an inflow portion including a first row of struts and crowns, a second row of struts and crowns and a third row of struts and crowns, the first and second rows of struts and crowns forming a first row of cells, the second and third row of struts and crowns forming a second row of cells, the second row of cells being downstream of the first row of cells,an outflow portion including at least one row of struts and crowns, anda central portion defined between a downstream end of the inflow portion and an upstream end of the outflow portion, the central portion including a plurality of central portion cells, wherein each of the plurality of central portion cells is larger than each of the cells of the first and second rows of cells of the inflow portion;a valve structure attached to the stent structure; anda first imaging marker positioned between the first and second row of struts and crowns of the inflow portion, the first imaging marker being upstream of the second row of cells.
  • 2. The prosthetic valve of claim 1, wherein the first imaging marker is an annulus marker, the annulus marker configured to longitudinally align with the native valve annulus when the prosthetic valve is properly placed within a patient.
  • 3. The prosthetic valve of claim 1, further comprising a second imaging marker, the second imaging marker being positioned on the stent structure downstream of the first imaging marker.
  • 4. The prosthetic valve of claim 3, wherein the first and second imaging markers are axially offset from each other such that the first and second imaging markers are not disposed along a common longitudinal axis of the stent structure.
  • 5. The prosthetic valve of claim 3, wherein the first and second imaging markers are disposed along a common longitudinal axis of the stent structure.
  • 6. The prosthetic valve of claim 3, wherein the second imaging marker is a commissure marker, the commissure marker identifying a commissure feature of the valve structure.
  • 7. The prosthetic valve of claim 6, wherein the commissure marker identifies a downstream region of the commissure.
  • 8. The prosthetic valve of claim 5, wherein the commissure marker identifies an upstream region of the commissure.
  • 9. The prosthetic valve of claim 5, wherein the stent structure is rotatable in vivo to allow the stent structure to be positioned in a desired orientation.
  • 10. The prosthetic valve of claim 3, wherein the second imaging marker is downstream of the second row of cells.
  • 11. The prosthetic valve of claim 3, further comprising a third imaging marker downstream of the first imaging marker, the third imaging marker being disposed on a common longitudinal axis of stent structure as the first imaging marker, the second imaging marker being disposed on a different longitudinal axis as the first and third imaging markers.
  • 12. The prosthetic valve of claim 11, wherein the first imaging marker is an annulus marker, the annulus marker longitudinally aligning with the native valve annulus when the prosthetic valve is properly placed within a patient, andwherein the second imaging marker is a commissure marker, the commissure marker identifying a commissure feature of the valve structure.
  • 13. The prosthetic valve of claim 11, wherein the stent structure is rotatable in vivo to allow the stent structure to be positioned in a desired orientation.
  • 14. The prosthetic valve of claim 1, wherein the stent structure is balloon expandable.
  • 15. The prosthetic valve of claim 1, wherein the stent structure is self-expanding.
  • 16. A prosthetic valve comprising: a stent structure comprising a generally tubular structure having an interior area and a longitudinal axis, the stent structure comprising, an inflow portion including a plurality of rows of struts and crowns forming a plurality of rows of cells,an outflow portion including at least one row of struts and crowns, anda central portion defined between the inflow portion and the outflow portion, the central portion including a plurality of central portion cells, wherein each of the plurality of central portion cells is larger than each of the cells of the first and second rows of cells of the inflow portion;a valve structure attached to the stent structure;a first imaging marker positioned between the first and second row of struts and crowns, the first imaging marker being upstream of the second row of cells, the first imaging marker configured to longitudinally align with a native valve annulus when the prosthetic valve is properly placed within a patient; anda second imaging marker positioned downstream of the second row of cells, the second imaging marker aligned with a commissure feature of the valve structure, the second imaging marker being axially offset from the first imaging marker such that the first imaging marker and the second imaging marker are not disposed on a common longitudinal axis of the stent structure, the stent structure being rotatable in vivo to allow the stent structure to be positioned in a desired orientation within a patient.
  • 17. The prosthetic valve of claim 16, further comprising a third imaging marker downstream of the first imaging marker, the third imaging marker being axially aligned with the first imaging marker, the third imaging marker being positioned downstream of the second row of cells, wherein the first and third imaging markers are positioned on opposite sides of a cell of the second row cells.
  • 18. The prosthetic valve of claim 16, wherein the stent structure is balloon expandable.
  • 19. The prosthetic valve of claim 16, wherein the stent structure is self-expanding.
  • 20. The prosthetic valve of claim 16, wherein the first and second imaging markers are used to verify the proper placement of the prosthetic valve within a patient prior to releasing the prosthetic valve from a delivery system.
  • 21. The prosthetic valve of claim 20, wherein proper placement within a patient provides an optimal rotational orientation of the prosthetic valve relative to the coronary arteries.
  • 22. The prosthetic valve of claim 21, wherein openings of the plurality of cells of the central portion are configured to align with coronary arteries of the patient when the prosthetic valve is properly placed within a patient.
  • 23. The prosthetic valve of claim 22, wherein the proper placement of the prosthetic valve allows coronary flow with the prosthetic valve in place.
  • 24. A prosthetic valve comprising: a stent structure comprising a generally tubular structure having an interior area and a longitudinal axis, the stent structure comprising, an inflow portion including a first row of struts and crowns, a second row of struts and crowns and a third row of struts and crowns, the first and second rows of struts and crowns forming a first row of cells, the second and third row of struts and crowns forming a second row of cells, the second row of cells being downstream of the first row of cells,an outflow portion including at least one row of struts and crowns, anda central portion defined between a downstream end of the inflow portion and an upstream end of the outflow portion, the central portion including a plurality of central portion cells, wherein each of the plurality of central portion cells is larger than each of the cells of the inflow portion;a valve structure attached to the stent structure;a first imaging marker positioned in the central portion of the stent structure; anda second imaging marker positioned in the central portion of the stent structure, the second imaging marker being circumferentially offset from the first imaging marker such that the first and second imaging markers are not disposed on a common longitudinal axis of the stent structure.
  • 25. The prosthetic valve of claim 24, wherein the first imaging marker and the second imaging marker are each associated with a commissure feature of the valve structure.
  • 26. The prosthetic valve of claim 25, wherein a first one of the first imaging marker and the second imaging marker is aligned with a high point of commissures of the valve structure, and a second one of the first imaging marker and the second imaging marker is aligned with a low point of commissures of the valve structure.
  • 27. The prosthetic valve of claim 24, wherein the first and second imaging markers identify high and low boundaries for optimal placement of the prosthetic valve within a patient's anatomy.
  • 28. The prosthetic valve of claim 24, wherein the first and second imaging markers are configured to verify optimal rotational orientation of the of the prosthetic valve relative to the coronary arteries.
  • 29. The prosthetic valve of claim 24, further comprising a third imaging marker, the third imaging marker axially aligned with one of the first and second imaging markers such that the third imaging marker and one of the first and second imaging markers are disposed on a common longitudinal axis of the stent structure.
  • 30. The prosthetic valve of claim 29, wherein the third imaging marker is configured to verify correct longitudinal alignment of the prosthetic valve with a native annulus of a native heart valve.
  • 31. The prosthetic valve of claim 24, wherein the stent structure is balloon expandable.
  • 32. The prosthetic valve of claim 24, wherein the stent structure is self-expanding.
  • 33. A prosthetic valve comprising: a stent structure comprising a generally tubular structure having an interior area and a longitudinal axis, the stent structure comprising, an inflow portion including a first row of struts and crowns, a second row of struts and crowns and a third row of struts and crowns, the first and second rows of struts and crowns forming a first row of cells, the second and third rows of struts and crowns forming a second row of cells, the second row of cells being downstream of the first row of cells, anda commissure portion disposed downstream of the first and second rows of cells;a valve structure attached to the stent structure in the commissure portion;a first imaging marker positioned in the inflow portion of the stent structure, the first imaging marker being located to verify correct longitudinal alignment of the prosthetic valve with a native annulus of a native heart valve; anda second imaging marker positioned in the commissure portion of the stent structure, the second imaging marker being associated with a commissure feature of the valve structure.
  • 34. The prosthetic valve of claim 33, wherein the first imaging marker and the second imaging marker are axially offset from each other such that the first imaging marker and the second imaging marker are not disposed on a common longitudinal axis of the stent structure.
  • 35. The prosthetic valve of claim 33, wherein the first imaging marker and the second imaging marker are axially aligned with each other such that the first imaging marker and the second imaging marker disposed on a common longitudinal axis of the stent structure.
  • 36. The prosthetic valve of claim 33, wherein the first imaging marker is disposed between the first row of struts and crowns and the second row of struts and crowns of the inflow portion.
  • 37. The prosthetic valve of claim 36, wherein the second imaging marker is disposed between the third row of struts and crowns and a fourth row of struts and crowns downstream of the third row of struts and crowns.
  • 38. The prosthetic valve of claim 33, wherein the stent structure is balloon expandable.
  • 39. The prosthetic valve of claim 33, wherein the stent structure is self-expanding.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation of U.S. application Ser. No. 16/714,091, filed Dec. 13, 2019, which is a continuation of U.S. application Ser. No. 16/031,019, filed Jul. 10, 2018, now U.S. Pat. No. 10,646,335, which is a continuation of U.S. application Ser. No. 15/099,125, filed Apr. 14, 2016, now U.S. Pat. No. 10,016,274, which is a continuation of U.S. application Ser. No. 14/163,842, filed Jan. 24, 2014, now U.S. Pat. No. 9,339,382, which is a continuation of U.S. application Ser. No. 13/112,656, filed May 20, 2011, now U.S. Pat. No. 8,673,000, which is a continuation of U.S. application Ser. No. 12/321,760, filed Jan. 23, 2009, now U.S. Pat. No. 7,972,378, which claims priority to U.S. Provisional Application Nos. 61/062,207, filed Jan. 24, 2008; and 61/075,902, filed Jun. 26, 2008, the entire of contents of which are incorporated by reference herein in their entireties.

US Referenced Citations (836)
Number Name Date Kind
3334629 Cohn Aug 1967 A
3409013 Berry Nov 1968 A
3540431 Mobin-Uddin Nov 1970 A
3587115 Shiley Jun 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3642004 Osthagen et al. Feb 1972 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3795246 Sturgeon Mar 1974 A
3839741 Haller Oct 1974 A
3868956 Alfidi et al. Mar 1975 A
3874388 King et al. Apr 1975 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4233690 Akins Nov 1980 A
4265694 Boretos May 1981 A
4291420 Reul Sep 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4425908 Simon Jan 1984 A
4470157 Love Sep 1984 A
4501030 Lane Feb 1985 A
4506394 Debard Mar 1985 A
4574803 Storz Mar 1986 A
4580568 Gianturco Apr 1986 A
4592340 Boyles Jun 1986 A
4610688 Silvestrini et al. Sep 1986 A
4612011 Kautzky Sep 1986 A
4647283 Carpentier et al. Mar 1987 A
4648881 Carpentier et al. Mar 1987 A
4655771 Wallsten Apr 1987 A
4662885 DiPisa, Jr. May 1987 A
4665906 Jervis May 1987 A
4681908 Broderick et al. Jul 1987 A
4710192 Liotta et al. Dec 1987 A
4733665 Palmaz Mar 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4796629 Grayzel Jan 1989 A
4797901 Goerne et al. Jan 1989 A
4819751 Shimada et al. Apr 1989 A
4834755 Silvestrini et al. May 1989 A
4846830 Knoch et al. Jul 1989 A
4856516 Hillstead Aug 1989 A
4872874 Taheri Oct 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4909252 Goldberger Mar 1990 A
4913141 Hillstead Apr 1990 A
4917102 Miller et al. Apr 1990 A
4922905 Strecker May 1990 A
4954126 Wallsten Sep 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5002559 Tower Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5061273 Yock Oct 1991 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5104399 Lazarus Apr 1992 A
5108425 Hwang Apr 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5161547 Tower Nov 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5201757 Heyn et al. Apr 1993 A
5217483 Tower Jun 1993 A
5232445 Bonzel Aug 1993 A
5272909 Nguyen et al. Dec 1993 A
5295958 Shturman Mar 1994 A
5327774 Nguyen et al. Jul 1994 A
5332402 Teitelbaum et al. Jul 1994 A
5350398 Pavcnik et al. Sep 1994 A
5354330 Hanson et al. Oct 1994 A
5370685 Stevens Dec 1994 A
5389106 Tower Feb 1995 A
5397351 Pavcnik et al. Mar 1995 A
5397355 Marin et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5415633 Lazarus et al. May 1995 A
5431676 Dubrul et al. Jul 1995 A
5433723 Lindenberg et al. Jul 1995 A
5443446 Shturman Aug 1995 A
5443500 Sigwart Aug 1995 A
5449384 Johnson Sep 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5480424 Cox Jan 1996 A
5489294 McVenes et al. Feb 1996 A
5489297 Duran Feb 1996 A
5496346 Horzewski et al. Mar 1996 A
5500014 Quijano et al. Mar 1996 A
5507767 Maeda et al. Apr 1996 A
5545209 Roberts et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5575818 Pinchuk Nov 1996 A
5580922 Park et al. Dec 1996 A
5591195 Taheri et al. Jan 1997 A
5609626 Quijano et al. Mar 1997 A
5645559 Hachtman et al. Jul 1997 A
5665115 Cragg Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5674277 Freitag Oct 1997 A
5693083 Baker et al. Dec 1997 A
5695498 Tower Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5716417 Girard et al. Feb 1998 A
5720776 Chuter et al. Feb 1998 A
5746709 Rom et al. May 1998 A
5749890 Shaknovich May 1998 A
5749921 Lenker et al. May 1998 A
5766151 Valley et al. Jun 1998 A
5776142 Gunderson Jul 1998 A
5782809 Umeno et al. Jul 1998 A
5800455 Palarmo et al. Sep 1998 A
5800456 Maeda et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5807405 Vanney et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824041 Lenker Oct 1998 A
5824043 Cottone, Jr. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5824061 Quijano et al. Oct 1998 A
5824064 Taheri Oct 1998 A
5840081 Anderson et al. Nov 1998 A
5843158 Lenker et al. Dec 1998 A
5851232 Lois Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5860966 Tower Jan 1999 A
5861028 Angell Jan 1999 A
5868783 Tower Feb 1999 A
5876448 Thompson et al. Mar 1999 A
5891191 Stinson Apr 1999 A
5906619 Olson et al. May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5908452 Bokros et al. Jun 1999 A
5913842 Boyd et al. Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5944750 Tanner et al. Aug 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5964405 Benary et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
5997573 Quijano et al. Dec 1999 A
6126685 Lenker et al. Jan 2000 A
6022370 Tower Feb 2000 A
6027525 Suh et al. Feb 2000 A
6029671 Stevens et al. Feb 2000 A
6042589 Marianne Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6042607 Williamson, IV Mar 2000 A
6051014 Jang Apr 2000 A
6059809 Amor et al. May 2000 A
6076742 Benary Jun 2000 A
6077297 Robinson et al. Jun 2000 A
6091042 Benary Jul 2000 A
6102944 Huynh et al. Aug 2000 A
6110201 Quijano et al. Aug 2000 A
6113612 Swanson et al. Sep 2000 A
6146366 Schachar Nov 2000 A
6159239 Greenhalgh Dec 2000 A
6162208 Hipps Dec 2000 A
6162245 Jayaraman Dec 2000 A
6168614 Anderson et al. Jan 2001 B1
6168616 Brown, III Jan 2001 B1
6168618 Frantzen Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6203550 Olson Mar 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6218662 Tchakarov et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6241757 An et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6248116 Chevilon Jun 2001 B1
6258114 Konya et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6267783 Lentendre et al. Jul 2001 B1
6277555 Duran et al. Aug 2001 B1
6287339 Vasquez et al. Sep 2001 B1
6296662 Caffey Oct 2001 B1
6299637 Shaolia et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6309382 Garrison et al. Oct 2001 B1
6309417 Spence et al. Oct 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6338735 Stevens Jan 2002 B1
6346118 Baker et al. Feb 2002 B1
6348063 Yassour et al. Feb 2002 B1
6350277 Kocur Feb 2002 B1
6352708 Duran et al. Mar 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371979 Beyar et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6380457 Yurek et al. Apr 2002 B1
6398807 Chouinard et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6475239 Campbell et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6508833 Pavcnik et al. Jan 2003 B2
6517548 Lorentzen et al. Feb 2003 B2
6527800 McGuckin, Jr. et al. Mar 2003 B1
6530949 Konya et al. Mar 2003 B2
6530952 Vesely Mar 2003 B2
RE38091 Strecker Apr 2003 E
6558418 Capentier et al. May 2003 B2
6562031 Chandrasekaran et al. May 2003 B2
6562058 Seguin et al. May 2003 B2
6562063 Euteneur et al. May 2003 B1
6569196 Vesely May 2003 B1
6582460 Cryer Jun 2003 B1
6582462 Andersen et al. Jun 2003 B1
6585758 Chouinard et al. Jul 2003 B1
6592546 Barbut et al. Jul 2003 B1
6600803 Bruder Jul 2003 B2
6605112 Moll et al. Aug 2003 B1
6613077 Gilligan et al. Sep 2003 B2
6622604 Chouinard et al. Sep 2003 B1
6632243 Zadno-Azizi et al. Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6635085 Caffey et al. Oct 2003 B1
6652571 White et al. Nov 2003 B1
6652578 Bailey et al. Nov 2003 B2
6656213 Solem Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6666881 Richter et al. Dec 2003 B1
6669724 Park et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6673106 Mitelberg et al. Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6689144 Gerberding Feb 2004 B2
6689164 Seguin Feb 2004 B1
6692512 Jang Feb 2004 B2
6692513 Streeter et al. Feb 2004 B2
6695878 McGuckin, Jr. et al. Feb 2004 B2
6702851 Chinn et al. Mar 2004 B1
6719789 Cox Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730121 Beyersdorf et al. May 2004 B2
6730377 Wang May 2004 B2
6733525 Yang et al. May 2004 B2
6736846 Cox May 2004 B2
6752828 Thornton Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6767362 Schreck Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6776791 Stallings et al. Aug 2004 B1
6786925 Schoon Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6792979 Konya et al. Sep 2004 B2
6797002 Spence Sep 2004 B2
6821297 Snyders Nov 2004 B2
6830575 Stenzel et al. Dec 2004 B2
6830584 Seguin Dec 2004 B1
6830585 Artof Dec 2004 B1
6846325 Liddicoat Jan 2005 B2
6849084 Rabkin et al. Feb 2005 B2
6866650 Stevens Mar 2005 B2
6866669 Buzzard et al. Mar 2005 B2
6872223 Roberts Mar 2005 B2
6875231 Anduiza et al. Apr 2005 B2
6883522 Spence et al. Apr 2005 B2
6887266 Williams et al. May 2005 B2
6890330 Streeter et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908481 Cribier Jun 2005 B2
6913600 Valley et al. Jul 2005 B2
6929653 Streeter Aug 2005 B2
6936066 Palmaz et al. Aug 2005 B2
6939365 Fogarty et al. Sep 2005 B1
6951571 Srivastava Oct 2005 B1
6974474 Pavcnik et al. Dec 2005 B2
6974476 McGuckin et al. Dec 2005 B2
6986742 Hart et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991649 Sievers Jan 2006 B2
7018401 Hyodoh et al. Mar 2006 B1
7018406 Seguin et al. Mar 2006 B2
7022132 Kocur Apr 2006 B2
7025780 Gabbay Apr 2006 B2
7041128 McGuckin, Jr. et al. May 2006 B2
7044966 Svanidze et al. May 2006 B2
7048014 Hyodoh et al. May 2006 B2
7097659 Woolfson et al. Aug 2006 B2
7101396 Artof et al. Sep 2006 B2
7105016 Shui et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7128759 Osborne et al. Oct 2006 B2
7137184 Schreck Nov 2006 B2
7147663 Berg et al. Dec 2006 B1
7153324 Case et al. Dec 2006 B2
7160319 Chouinard et al. Jan 2007 B2
7175656 Khairkhahan Feb 2007 B2
7186265 Sharkawy et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201761 Woolfson et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7252680 Freitag Aug 2007 B2
7252682 Seguin Aug 2007 B2
7261732 Justino Aug 2007 B2
7267686 Dimatteo et al. Sep 2007 B2
7300457 Palmaz Nov 2007 B2
7300463 Liddicoat Nov 2007 B2
7311730 Gabbay Dec 2007 B2
7316706 Bloom et al. Jan 2008 B2
7329278 Seguin Feb 2008 B2
7335218 Wilson et al. Feb 2008 B2
7338520 Bailey et al. Mar 2008 B2
7374571 Pease et al. May 2008 B2
7377938 Sarac et al. May 2008 B2
7381218 Shreck Jun 2008 B2
7384411 Condado Jun 2008 B1
7399315 Iobbi Jul 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470284 Lambrecht et al. Dec 2008 B2
7473271 Gunderson Jan 2009 B2
7481838 Carpentier et al. Jan 2009 B2
7544206 Cohn et al. Jun 2009 B2
7547322 Sarac et al. Jun 2009 B2
7556386 Smith Jul 2009 B2
7556646 Yang et al. Jul 2009 B2
7569071 Haverkost et al. Aug 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7635386 Gammie Dec 2009 B1
7651521 Ton et al. Jan 2010 B2
7682390 Seguin Mar 2010 B2
7708775 Rowe et al. May 2010 B2
7722666 Lafontaine May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7771463 Ton et al. Aug 2010 B2
7780726 Seguin Aug 2010 B2
7785361 Nikolchev et al. Aug 2010 B2
7806726 Seguin Aug 2010 B2
7803177 Hartley et al. Sep 2010 B2
7837643 Levine et al. Nov 2010 B2
7857845 Stacchino et al. Dec 2010 B2
7862602 Licata et al. Jan 2011 B2
7871436 Ryan et al. Jan 2011 B2
7959666 Salahieh et al. Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7972378 Tabor Jul 2011 B2
7993394 Hariton et al. Aug 2011 B2
8052750 Tuval et al. Nov 2011 B2
8133270 Kheradvar et al. Mar 2012 B2
8137398 Tuval et al. Mar 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8343213 Salahieh et al. Jan 2013 B2
8348995 Tuval et al. Jan 2013 B2
8348996 Tuval et al. Jan 2013 B2
8414643 Tuval et al. Apr 2013 B2
8597349 Alkhatib Dec 2013 B2
8603160 Salahieh et al. Dec 2013 B2
8652202 Alon et al. Feb 2014 B2
8673000 Tabor Mar 2014 B2
8702788 Kheradvar et al. Apr 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8840663 Salahieh et al. Sep 2014 B2
9089422 Ryan Jul 2015 B2
9132024 Brinser Sep 2015 B2
9168131 Yohanan et al. Oct 2015 B2
9241794 Braido et al. Jan 2016 B2
9339382 Tabor May 2016 B2
9393110 Levi et al. Jul 2016 B2
9393115 Tabor et al. Jul 2016 B2
9526584 Payne Dec 2016 B2
10016274 Tabor Jul 2018 B2
10245117 Payne Apr 2019 B2
10646335 Tabor May 2020 B2
10820993 Tabor Nov 2020 B2
11284999 Tabor Mar 2022 B2
20010001314 Davison et al. May 2001 A1
20010002445 Vesely May 2001 A1
20010007956 Letac et al. Jul 2001 A1
20010010017 Letac et al. Jul 2001 A1
20010011189 Drasler et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025196 Chinn et al. Sep 2001 A1
20010032013 Marton Oct 2001 A1
20010037142 Stelter et al. Nov 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010044647 Pinchuk et al. Nov 2001 A1
20010047150 Chobotov Nov 2001 A1
20010049550 Martin et al. Dec 2001 A1
20020010508 Chobotov Jan 2002 A1
20020026233 Shaknovich Feb 2002 A1
20020029014 Jayaraman Mar 2002 A1
20020032480 Spence et al. Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020035396 Heath Mar 2002 A1
20020042650 Vardi et al. Apr 2002 A1
20020052651 Myers et al. May 2002 A1
20020058995 Stevens May 2002 A1
20020065545 Leonhardt et al. May 2002 A1
20020072789 Hackett et al. Jun 2002 A1
20020077696 Zadno-Azizi et al. Jun 2002 A1
20020091439 Baker et al. Jul 2002 A1
20020095209 Zadno-Azizi et al. Jul 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020103533 Langberg et al. Aug 2002 A1
20020107565 Greenhalgh Aug 2002 A1
20020111674 Chouinard et al. Aug 2002 A1
20020120277 Hauschild et al. Aug 2002 A1
20020120323 Thompson et al. Aug 2002 A1
20020123802 Snyders Sep 2002 A1
20020133183 Lentz et al. Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020186558 Plank et al. Dec 2002 A1
20020188341 Elliott Dec 2002 A1
20020193871 Beyersdorf et al. Dec 2002 A1
20030004560 Chobotov et al. Jan 2003 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030028247 Cali Feb 2003 A1
20030036791 Phillip et al. Feb 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030050684 Abrams et al. Mar 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030065386 Weadock Apr 2003 A1
20030069492 Abrams et al. Apr 2003 A1
20030109924 Cribier Jun 2003 A1
20030125795 Pavcnik et al. Jul 2003 A1
20030130726 Thorpe et al. Jul 2003 A1
20030130727 Drasler et al. Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030135257 Taheri Jul 2003 A1
20030139804 Hankh et al. Jul 2003 A1
20030149475 Hyodoh et al. Aug 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030158595 Randall et al. Aug 2003 A1
20030171805 Berg Sep 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030191519 Lombardi et al. Oct 2003 A1
20030199913 Dubrul et al. Oct 2003 A1
20030199963 Tower et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030199972 Paniagua et al. Oct 2003 A1
20030199975 Gabbay Oct 2003 A1
20030212410 Stenzel et al. Nov 2003 A1
20030212452 Zadno-Azizi et al. Nov 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030233140 Hartley et al. Dec 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040044402 Jung et al. Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040059429 Amin et al. Mar 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040082989 Cook et al. Apr 2004 A1
20040088045 Cox May 2004 A1
20040092858 Wilson et al. May 2004 A1
20040092989 Wilson et al. May 2004 A1
20040093005 Durcan May 2004 A1
20040093060 Sequin et al. May 2004 A1
20040093063 Wright et al. May 2004 A1
20040093070 Hojeibane et al. May 2004 A1
20040093075 Kuehn May 2004 A1
20040097788 Mourles et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040106990 Spence et al. Jun 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122516 Fogarty Jun 2004 A1
20040127979 Wilson Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040167573 Williamson Aug 2004 A1
20040167620 Ortiz Aug 2004 A1
20040186514 Swain et al. Sep 2004 A1
20040186563 Iobbi Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040210240 Saint Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215333 Duran Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220655 Swanson et al. Nov 2004 A1
20040225353 McGuckin, Jr. Nov 2004 A1
20040225354 Allen Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20040260383 Stelter et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267357 Allen et al. Dec 2004 A1
20050010246 Streeter Jan 2005 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050010287 Macoviak Jan 2005 A1
20050015112 Cohn et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050038495 Greenan Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050049692 Numamoto Mar 2005 A1
20050049696 Siess Mar 2005 A1
20050055088 Liddicoat et al. Mar 2005 A1
20050060029 Le Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075712 Biancucci Apr 2005 A1
20050075717 Nguyen Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075724 Svanidze Apr 2005 A1
20050075725 Rowe Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050075730 Myers Apr 2005 A1
20050075731 Artof Apr 2005 A1
20050085841 Eversull et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050085890 Rasmussen et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050096568 Kato May 2005 A1
20050096692 Linder et al. May 2005 A1
20050096724 Stenzel et al. May 2005 A1
20050096734 Majercak et al. May 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050113910 Paniagua May 2005 A1
20050119688 Berheim Jun 2005 A1
20050131438 Cohn Jun 2005 A1
20050137686 Salahieh Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug Jun 2005 A1
20050137695 Salahieh Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050137701 Salahieh Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050143809 Salahieh Jun 2005 A1
20050148997 Valley et al. Jul 2005 A1
20050149181 Eberhardt Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050187616 Realyvasquez Aug 2005 A1
20050192527 Gharib et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203605 Dolan Sep 2005 A1
20050203618 Sharkawy Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050234546 Nugent Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050283962 Boudjemline Dec 2005 A1
20050288764 Snow et al. Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004469 Sokel Jan 2006 A1
20060009841 McGuckin et al. Jan 2006 A1
20060025855 Lashinski et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060047338 Jenson et al. Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058775 Stevens et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060074485 Realyvasquez Apr 2006 A1
20060089711 Dolan Apr 2006 A1
20060095119 Bolduc May 2006 A1
20060100685 Seguin et al. May 2006 A1
20060111771 Ton et al. May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122686 Gilad et al. Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060142848 Gabbay Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060167474 Bloom et al. Jul 2006 A1
20060173524 Salahieh et al. Aug 2006 A1
20060178740 Stacchino Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060206192 Tower et al. Sep 2006 A1
20060206202 Bonhoefer et al. Sep 2006 A1
20060212111 Case et al. Sep 2006 A1
20060241745 Solem Oct 2006 A1
20060247570 Pokorney Nov 2006 A1
20060247763 Slater Nov 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060271097 Ramzipoor et al. Nov 2006 A1
20060271149 Berez et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060276882 Case et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070005131 Taylor Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010878 Raffiee et al. Jan 2007 A1
20070016286 Case et al. Jan 2007 A1
20070027518 Herrmann et al. Feb 2007 A1
20070027533 Douk Feb 2007 A1
20070038295 Case et al. Feb 2007 A1
20070043431 Melsheimer Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070073392 Heyninck-Janitz Mar 2007 A1
20070078509 Lotfy et al. Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070100419 Licata et al. May 2007 A1
20070100435 Case May 2007 A1
20070100439 Cangialosi May 2007 A1
20070100440 Figulla May 2007 A1
20070100449 O'Neil et al. May 2007 A1
20070112415 Bartlett May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070162113 Sharkawy et al. Jul 2007 A1
20070185513 Woolfson et al. Aug 2007 A1
20070203391 Bloom et al. Aug 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070208550 Cao et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070225681 House Sep 2007 A1
20070232898 Huynh et al. Oct 2007 A1
20070233222 Roeder et al. Oct 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20070238979 Huynh et al. Oct 2007 A1
20070239254 Marchand et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070239266 Birdsall Oct 2007 A1
20070239269 Dolan et al. Oct 2007 A1
20070239271 Nguyen Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070244544 Birdsall et al. Oct 2007 A1
20070244545 Birdsall et al. Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070244553 Rafiee et al. Oct 2007 A1
20070244554 Rafiee et al. Oct 2007 A1
20070244555 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070244557 Rafiee et al. Oct 2007 A1
20070250160 Rafiee Oct 2007 A1
20070255394 Ryan Nov 2007 A1
20070255396 Douk et al. Nov 2007 A1
20070255398 Yang et al. Nov 2007 A1
20070288000 Bonan Dec 2007 A1
20070288087 Fearnot et al. Dec 2007 A1
20080004696 Vesely Jan 2008 A1
20080009934 Schneider et al. Jan 2008 A1
20080009940 Cribier Jan 2008 A1
20080015671 Bonhoeffer Jan 2008 A1
20080021552 Gabbay Jan 2008 A1
20080027529 Hartley et al. Jan 2008 A1
20080048656 Tan Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065206 Liddicoat Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080077234 Styrc Mar 2008 A1
20080082159 Tseng et al. Apr 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080082166 Styrec et al. Apr 2008 A1
20080133003 Seguin et al. Jun 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147105 Wilson et al. Jun 2008 A1
20080147180 Ghione et al. Jun 2008 A1
20080147181 Ghione et al. Jun 2008 A1
20080147182 Righini et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161910 Revuelta et al. Jul 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080215143 Seguin et al. Sep 2008 A1
20080215144 Ryan et al. Sep 2008 A1
20080221666 Licata et al. Sep 2008 A1
20080228254 Ryan Sep 2008 A1
20080228263 Ryan Sep 2008 A1
20080234797 Stryc Sep 2008 A1
20080243246 Ryan et al. Oct 2008 A1
20080255651 Dwork Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080262592 Jordan et al. Oct 2008 A1
20080262593 Ryan et al. Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20080275540 Wen Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090012600 Styrc et al. Jan 2009 A1
20090048656 Wen Feb 2009 A1
20090054976 Tuval et al. Feb 2009 A1
20090062907 Quijano et al. Mar 2009 A1
20090069886 Suri et al. Mar 2009 A1
20090069887 Righini et al. Mar 2009 A1
20090069889 Suri et al. Mar 2009 A1
20090082858 Nugent Mar 2009 A1
20090085900 Weiner Apr 2009 A1
20090099653 Suri et al. Apr 2009 A1
20090138079 Tuval et al. May 2009 A1
20090164004 Cohn Jun 2009 A1
20090164006 Seguin et al. Jun 2009 A1
20090171431 Swanson et al. Jul 2009 A1
20090171447 VonSeggesser et al. Jul 2009 A1
20090187241 Melsheimer Jul 2009 A1
20090192585 Bloom et al. Jul 2009 A1
20090192586 Tabor et al. Jul 2009 A1
20090192591 Ryan et al. Jul 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090198316 Laske et al. Aug 2009 A1
20090216310 Straubinger et al. Aug 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090216313 Straubinger et al. Aug 2009 A1
20090222082 Lock et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240264 Tuval et al. Sep 2009 A1
20090240320 Tuval Sep 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20100004740 Seguin et al. Jan 2010 A1
20100030328 Seguin et al. Feb 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100036485 Seguin Feb 2010 A1
20100069852 Kelley Mar 2010 A1
20100094411 Tuval et al. Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100131054 Tuval et al. May 2010 A1
20100137979 Tuval et al. Jun 2010 A1
20100145439 Seguin et al. Jun 2010 A1
20100152840 Seguin et al. Jun 2010 A1
20100174362 Straubinger et al. Jul 2010 A1
20100191320 Straubinger et al. Jul 2010 A1
20100198346 Keogh et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100204785 Alkhatib Aug 2010 A1
20100234940 Dolan Sep 2010 A1
20100249923 Alkhatib Sep 2010 A1
20100256723 Murray Oct 2010 A1
20100262157 Silver et al. Oct 2010 A1
20100292785 Seguin et al. Nov 2010 A1
20100305685 Capps Dec 2010 A1
20110029066 Gilad et al. Feb 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110208283 Rust Aug 2011 A1
20120101567 Jansen Apr 2012 A1
20120172982 Stacchino Jul 2012 A1
20140155997 Braido Jun 2014 A1
20150342733 Alkhatib et al. Dec 2015 A1
20160045309 Valdez Feb 2016 A1
20160296327 Eberhardt Oct 2016 A1
20170189181 Alkhatib et al. Jul 2017 A1
20190099269 Hariton Apr 2019 A1
20190192289 Levi Jun 2019 A1
20200000585 Hariton Jan 2020 A1
Foreign Referenced Citations (54)
Number Date Country
3640745 Jun 1987 DE
195 32 846 Mar 1997 DE
195 46 692 Jun 1997 DE
195 46 692 Jun 1997 DE
198 57 887 Jul 2000 DE
199 07 646 Aug 2000 DE
100 10 074 Oct 2001 DE
100 49 812 Apr 2002 DE
100 49 813 Apr 2002 DE
100 49 815 Apr 2002 DE
1000590 May 2000 EP
1057460 Jun 2000 EP
1239795 Sep 2002 EP
1255510 Nov 2002 EP
0937439 Sep 2003 EP
1469797 Nov 2005 EP
1600121 Nov 2005 EP
2257242 Dec 2010 EP
2788217 Dec 1999 FR
2815844 May 2000 FR
2056023 Mar 1981 GB
2433700 Dec 2007 GB
1271508 Nov 1986 SU
9529640 Nov 1995 WO
9836790 Aug 1998 WO
0044313 Aug 2000 WO
0047136 Aug 2000 WO
0135870 May 2001 WO
0149213 Jul 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0164137 Sep 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
03003943 Jan 2003 WO
03003949 Jan 2003 WO
03011195 Feb 2003 WO
04019825 Mar 2004 WO
04089250 Oct 2004 WO
05004753 Jan 2005 WO
05046528 May 2005 WO
06026371 Mar 2006 WO
08047354 Apr 2008 WO
08138584 Nov 2008 WO
08150529 Dec 2008 WO
09002548 Dec 2008 WO
09029199 Mar 2009 WO
09042196 Apr 2009 WO
09045338 Apr 2009 WO
09061389 May 2009 WO
09091509 Jul 2009 WO
09111241 Sep 2009 WO
10104638 Sep 2010 WO
10-141626 Dec 2010 WO
Non-Patent Literature Citations (75)
Entry
Andersen, H.R. et al, “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” Euro. Heart J. (1992) 13:704-708.
Babaliaros, et al., “State of the Art Percutaneous Intervention for the Treatment of Valvular Heart Disease: A Review of the Current Technologies and Ongoing Research in the Field of Percutaneous Heart Valve Replacement and Repair,” Cardiology 2007; 107:87-96.
Bailey, “Percutaneous Expandable Prosthetic Valves,” In: Topol EJ, ed. Textbook of Interventional Cardiology. vol. II. Second edition. WB Saunders, Philadelphia, 1994:1268-1276.
Block, et al., “Percutaneous Approaches to Valvular Heart Disease,” Current Cardiology Reports, vol. 7 (2005) pp. 108-113.
Bonhoeffer, et al, “Percutaneous Insertion of the Pulmonary Valve,” Journal of the American College of Cardiology (United States), May 15, 2002, pp. 1664-1669.
Bonhoeffer, et al, “Percutaneous Replacement of Pulmonary Valve in a Right-Ventricle to Pulmonary-Artery Prosthetic Conduit with Valve Dysfunction,” Lancet (England), Oct. 21, 2000, pp. 1403-1405.
Bonhoeffer, et al, “Transcatheter Implantation of a Bovine Valve in Pulmonary Position: A Lamb Study,” Circulation (United States), Aug. 15, 2000, pp. 813-816.
Boudjemline, et al, “Images in Cardiovascular Medicine. Percutaneous Aortic Valve Replacement in Animals,” Circulation (United States), Mar. 16, 2004, 109, p. e161.
Boudjemline, et al, “Is Percutaneous Implantation of a Bovine Venous Valve in the Inferior Vena Cava a Reliable Technique to Treat Chronic Venous Insufficiency Syndrome?” Medical Science Monitor—International Medical Journal of Experimental and Clinical Research (Poland), Mar. 2004, pp. BR61-BR66.
Boudjemline, et al, “Off-Pump Replacement of the Pulmonary Valve in Large Right Ventricular Outflow Tracts: A Hybrid Approach,” Journal of Thoracic and Cardiovascular Surgery (United States), Apr. 2005, pp. 831-837.
Boudjemline, et al, “Percutaneous Aortic Valve Replacement: Will We Get There?” Heart (British Cardiac Society) (England), Dec. 2001, pp. 705-706.
Boudjemline, et al, “Percutaneous Implantation of a Biological Valve in the Aorta to Treat Aortic Valve Insufficiency—A Sheep Study,” Medical Science Monitor—International Medical Journal of Experimental and Clinical Research (Poland), Apr. 2002, pp. BR113-BR116.
Boudjemline, et al, “Percutaneous Implantation of a Biological Valve in Aortic Position: Preliminary Results in a Sheep Study,” European Heart Journal 22, Sep. 2001, p. 630.
Boudjemline, et al, “Percutaneous Implantation of a Valve in the Descending Aorta in Lambs.” European Heart Journal (England), Jul. 2002, pp. 1045-1049.
Boudjemline, et al, “Percutaneous Pulmonary Valve Replacement in a Large Right Ventricular Outflow Tract: An Experimental Study,” Journal of the American College of Cardiology (United States), Mar. 17, 2004, pp. 1082-1087.
Boudjemline, et al, “Percutaneous Valve Insertion: A New Approach,” Journal of Thoracic and Cardiovascular Surgery (United States), Mar. 2003, pp. 741-742.
Boudjemline, et al, “Stent Implantation Combined With a Valve Replacement to Treat Degenerated Right Ventricle to Pulmonary Artery Prosthetic Conduits,” European Heat Journal 22, Sep. 2001, p. 355.
Boudjemline, et al, “Steps Toward Percutaneous Aortic Valve Replacement,” Circulation (United States), Feb. 12, 2002, pp. 775-778.
Boudjemline, et al, “The Percutaneous Implantable Heart Valve,” Progress in Pediatric Cardiology (Ireland), 2001, pp. 89-93.
Boudjemline, et al, “Transcatheter Reconstruction of the Right Heart, ” Cardiology in the Young (England), Jun. 2003, pp. 308-311.
Coats, et al, “The Potential Impact of Percutaneous Pulmonary Valve Stent Implantation on Right Ventricular Outflow Tract Re-Intervention,” European Journal of Cardio-Thoracic Surgery (England), Apr. 2005, pp. 536-543.
Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
Cribier, A. et al, “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description,” Circulation (2002) 3006-3008.
Davidson et al., “Percutaneous therapies for valvular heart disease,” Cardiovascular Pathology 15 (2006) 123-129.
Drawings by Dr. Buller (Edwards Expert) of “higher stent” on the schematic representation of the aortic valve area set out in Figure 2 of Rothman's first expert report (1 page), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
Drawings by Dr. Buller (Edwards Expert) of his interpretation of the “higher stent” referred to at col. 8, lines 13-222 of Anderson EP 592410B1 (1 page), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
European Patent Office Communication in Application No. 09704087.7-2320, dated Nov. 30, 2012, 5 pages.
Expert Rebuttal Report of Prof. Martin T. Rothman (32 pages) redacted, Edwards v CoreValve, U.S. District Court, District of Delaware, Case No. 08-091, dated Jul. 29, 2009.
Expert Report of Dr. Nigel Buller, dated Jan. 12, 2009, edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (83 pages).
Expert Report of Dr. Nigel Buller, non-confidential annex—infringement, dated Jan. 12, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (12 pages).
Expert Report of Dr. Rodolfo Quijano, dated Jan. 9, 2009, Edwards' United Kingdom for invalidity, Claim No. HC08CO0934 (41 pages).
Expert Report of Prof. Martin T. Rothman (74 pages) redacted, Edwards v CoreValve, U.S. District Court, District of Delaware, Case No. 08-091, dated Jun. 29, 2009.
First Expert Report of Dr. Anthony C. Lunn, (7 pages), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
First Expert Report of Dr. Nigel Person Buller, (30 pages), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
First Expert Report of Prof. David Williams, dated Jan. 12, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (41 pages).
First Expert Report of Prof. Martin Rothman dated Apr. 22, 2009, Edwards Lifesciences and Cook Biotech, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (64 pages).
First Expert Report of Prof. Martin Rothman dated Jan. 12, 2009, Edwards Lifesciences and Cook Biotech, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (10 pages).
First Expert Report of Professor John R. Pepper, (20 pages), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
First Expert Report of Richard A. Hillstead (41 pages), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
First Witness Statement of Stanton Rowe, (9 pages), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
Fourth Expert Report of Prof. Martin Rothman, dated Apr. 22, 2009, Edwards Lifesciences and Cook Biotech, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (10 pages).
Hanzel, et al., “Complications of percutaneous aortic valve replacement: experience with the Criber-Edwards™ percutaneous heart valve,” EuroIntervention Supplements (2006), 1 (Supplement A) A3-A8.
Huber et al., “Do Valved Stents Compromise Coronary Flow?” Eur. J. Cardiothorac. Surg. 2004; 25:754-759.
Khambadkone, “Nonsurgical Pulmonary Valve Replacement: Why, When, and How?” Catheterization and Cardiovascular Interventions—Official Journal of the Society for Cardiac Angiography & Interventions (United States), Jul. 2004, pp. 401-408.
Khambadkone, et al, “Percutaneous Implantation of Pulmonary Valves,” Expert Review of Cardiovascular Therapy (England), Nov. 2003, pp. 541-548.
Khambadkone, et al, “Percutaneous Pulmonary Valve Implantation: Early and Medium Term Results,” Circulation 108 (17 Supplement), Oct. 28, 2003, p. IV-375.
Khambadkone, et al, “Percutaneous Pulmonary Valve Implantation: Impact of Morphology on Case Selection,” Circulation 108 (17 Supplement), Oct. 28, 2003, p. IV-642-IV-643.
Lutter, et al, “Percutaneous Aortic Valve Replacement: An Experimental Study. I. Studies on Implantation,” The Journal of Thoracic and Cardiovascular Surgery, Apr. 2002, pp. 768-776.
Lutter, et al, “Percutaneous Valve Replacement: Current State and Future Prospects,” Annals of Thoracic Surgery (Netherlands), Dec. 2004, pp. 2199-2206.
Ma, Ling et al., “Double-Crowned Valved Stents for Off-Pump Mitral Valve Replacement” European Journal of Cardio Thoracic Surgery, 28: 194-198. 2005.
Medtech Insight, “New Frontiers in Heart Valve Disease,” vol. 7, No. 8 (2005).
Moss et al., “Role of Echocardiography in Percutaneous Aortic Valve Implantation,” JACC, vol. 1, No. 1, 2008, p. 15-24.
Palacios, “Percutaneous Valve Replacement and Repair, Fiction or Reality?” Journal of American College of Cardiology, vol. 44, No. 8 (2004) pp. 1662-1663.
Pasupati et al., “Transcatheter Aortic Valve Implantation Complicated by Acute Structural Valve Failure Requiring Immediate Valve in Valve Implantation,” Heart, Lung and Circulation 2010; doi:10.1016/j.hlc.2010.05.006.
Pavcnik et al., “Aortic and Venous Valve for Percutaneous Insertion,” Min. Invas. Ther. & Allied Techol. 2000, vol. 9, pp. 287-292.
Pelton et al., “Medical Uses of Nitinol,” Materials Science Forum vols. 327-328, pp. 63-70 (2000).
PVT Slides naming Alain Bribier, Maring Leon, Stan Rabinovich and Stanton Rowe (16 pages), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
Reply Expert Report of Richard A. Hillstead (9 pages), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
Ruiz, “Transcathether Aortic Valve Implantation and Mitral Valve Repair: State of the Art,” Pediatric Cardiology, vol. 26, No. 3 (2005).
Saliba et al., “Treatment of Obstructions of Prosthetic Conduits by Percutaneous Implantation of Stents” Archives des Maldies due Coeur et des Vaisseaux (France), 1999, pp. 591-596.
Second Expert Report of Dr. Nigel Buller, dated Feb. 25, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (24 pages).
Second Expert Report of Dr. Nigel Person Buller, (5 pages), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
Second Expert Report of Dr. Rodolfo Quijano, dated Feb. 26, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (6 pages).
Second Expert Report of Prof. David Williams, dated Feb. 5, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (15 pages).
Second Expert Report of Prof. Martin Rothman, dated Feb. 5, 2009, Edwards Lifescience and Cook Biotech, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (11 pages).
Second Expert Report of Professor John R. Pepper, (3 pages), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
Second Witness Statement of Stanton Rowe (3 pages), Corevalve, Inc. v Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc. High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243.
Stassano et al., “Mid-Term Results of the Valve-on-Valve Technique for Bioprosthetic Failure,” Eur. J. Cardiothorac. Surg. 2000; 18:453-457.
Third Expert Report of Dr. Nigel Buller, dated Apr. 21, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (6 pages).
Third Expert Report of Dr. Rudolfo Quijano, dated Apr. 27, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (3 pages).
Third Expert Report of Prof. David Williams, dated Apr. 22, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC08CO0934 (9 pages).
Walther et al., “Valve-In-A-Valve Concept for Transcatheter Minimally Invasive Repeat Xeongraft Implantations,” JACC, vol. 50, No. 1, 2007, pp. 56-60.
Webb, et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation (2006), 113;842-850.
Extended European Search Report, EP application No. 20186125.9, dated Oct. 15, 2020.
Communication Pursuant to Article 94(3) EPC (European Office action), EP application No. 20186125.9, dated Aug. 3, 2021.
Related Publications (1)
Number Date Country
20210038380 A1 Feb 2021 US
Provisional Applications (2)
Number Date Country
61075902 Jun 2008 US
61062207 Jan 2008 US
Continuations (6)
Number Date Country
Parent 16714091 Dec 2019 US
Child 17066787 US
Parent 16031019 Jul 2018 US
Child 16714091 US
Parent 15099125 Apr 2016 US
Child 16031019 US
Parent 14163842 Jan 2014 US
Child 15099125 US
Parent 13112656 May 2011 US
Child 14163842 US
Parent 12321760 Jan 2009 US
Child 13112656 US