The present invention relates to methods for forming stents comprising a bioabsorbable polymer and a pharmaceutical or biological agent in powder form onto a substrate.
It is desirable to have a drug-eluting stent with minimal physical, chemical and therapeutic legacy in the vessel after a proscribed period of time. This period of time is based on the effective healing of the vessel after opening the blockage by PCI/stenting (currently believed by leading clinicians to be 6-18 months).
It is also desirable to have drug-eluting stents of minimal cross-sectional thickness for (a) flexibility of deployment (b) access to small vessels (c) minimized intrusion into the vessel wall and blood.
In another embodiment is a method of preparing a laminate coronary stent comprising:
wherein the stent framework has a thickness of about 50% or less of a thickness of the laminate coronary stent. In another embodiment, the stent framework has a thickness of about 1% or less of a thickness of the laminate coronary stent.
In one embodiment, the invention provides a method of preparing a laminate coronary stent comprising:
a. providing a stent framework;
b. depositing a plurality of layers on said stent framework to form said laminate coronary stent; wherein at least one of said layers comprises a bioabsorbable polymer. Preferably, the stem framework is bioabsorbable. In one embodiment the stent framework is made of absorbable material comprising magnesium.
One embodiment provides bioabsorbable polymer selected from PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid).
In one embodiment, the one or more active agents comprise a macrolide immunosuppressive (limus) drug. Preferably, the macrolide immunosuppressive drug comprises one or more of rapamycin, 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin, 40-O-(2-Hydroxy)ethoxycarbonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin, 40-O-(6-Hydroxy)hexyl-rapamycin, 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin, 40-O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 40-O-(2-Acetoxy)ethyl-rapamycin, 40-O-(2-Nicotinoyloxy)ethyl-rapamycin, 40-O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin, 40-O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 40-O-(2-Aminoethyl)-rapamycin, 40-O-(2-Acetaminoethyl)-rapamycin, 40-O-(2-Nicotinamidoethyl)-rapamycin, 40-O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 40-O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4 ′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin, (tacrolimus), and 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus).
In one embodiment, depositing a plurality of layers on said stent framework to form said laminate coronary stent comprises depositing polymer particles on said framework by an RESS process.
In yet another embodiment the invention provides a laminate coronary stent comprising
a. a stent framework;
b. a plurality of layers deposited on said stent framework to form said laminate coronary stent; wherein at least one of said layers comprises a bioabsorbable polymer.
Yet another embodiment provides a method of preparing a laminate coronary stent comprising:
a. providing a stent framework;
b. depositing a plurality of layers on said stem framework to form said laminate coronary stent; wherein at least one of said layers comprises a bioabsorbable polymer; at least one pharmaceutical agent in a therapeutically desirable morphology and/or at least one active biological agent; wherein depositing each layer of said plurality of layers on said stent framework comprises the following steps:
Yet another embodiment, provides a method of preparing coronary stent comprising:
a. forming a sheet comprising a bioabsorbable polymer;
b. carving out a pattern of said coronary stent into said sheet; and
c. rolling said sheet to form said coronary stent. In one embodiment, forming said sheet comprises depositing a plurality of layers to form said sheet and said coronary stent is a laminate coronary stent.
All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Illustration of selected embodiments of the inventions is provided in appended
In another embodiment is a method of preparing a laminate coronary stent comprising:
Illustration of selected embodiments of the inventions is provided in appended
The present invention is explained in greater detail below. This description is not intended to be a detailed catalog of all the different ways in which the invention may be implemented, or all the features that may be added to the instant invention. For example, features illustrated with respect to one embodiment may be incorporated into other embodiments, and features illustrated with respect to a particular embodiment may be deleted from that embodiment. In addition, numerous variations and additions to the various embodiments suggested herein will be apparent to those skilled in the art in light of the instant disclosure, which do not depart from the instant invention. Hence, the following specification is intended to illustrate some particular embodiments of the invention, and not to exhaustively specify all permutations, combinations and variations thereof.
Applicants specifically intend that all United States patent references cited herein be incorporated herein by reference in their entirety.
In one embodiment, the invention provides a process wherein a stent is constructed from the bottom-up. A stent-form (or framework) will be used as a template, onto which a laminated structure of bioabsorbable polymer(s)+drug(s) is overlaid—forming the final stent. This final stent may be fully bioabsorbable if an absorbable stent-form is utilized. In the case of a non-absorbable stent-form (e.g. stainless steel), all of the polymer and drug shall be absorbed/eluted, leaving only the very thin metallic stent-form embedded in the vessel wall.
In one embodiment, the stent-form can be an exact structural replica of the to-be-produced stent. In this embodiment, the stent form would have approximately the same longitudinal and radial dimensions as the final stent. The stent form would have between 2× and 100× thinner wires/struts.
The laminated structure provides significantly improved mechanical properties in a predominantly polymer-based, bioabsorbable, balloon-expandable stent. The laminated structure that results from successive coatings on the stent-form provides a mechanically effective stent (e.g. with deployed hoop strength >300 mm Hg luminal pressure) with thinner struts than traditional metallic stents and which are superior to the known bioabsorbable polymeric stents.
In creating the bioabsorbable stent, the present methods apply several layers (2-100) of bioabsorbable polymer(s) to the stent form (coat-sinter-coat-sinter, repeat). This will result in a laminated polymer structure upon the stent-form, thus building the struts up to the target dimensions for use (which may be smaller, the same or larger than a metallic stent of similar strut design—depending on the desired mechanical properties of the stent). Single or multiple drugs may be included in one, some or all of these layers. Alternatively the drugs could be located substantially between the polymer layers.
This discreet location of drug/drugs is designed to provide specific, time-targeted elution profiles and may enable the elution of multiple drugs in serial fashion.
Elements of this embodiment include:
A. The stent form:
B. Means for creating the bioabsorbable polymer(s)+drug(s) matrix on the stent-form—forming the final device.
In another embodiment, the invention provides a process wherein the pattern of a stent is carved out of a sheet of polymeric material (e.g., a flat sheet). In one embodiment, the polymeric sheet is a bioabsorbable polymer+drug(s) formulation. Further, the sheet may contain a laminated structure of multiple layers (2-100) made from one or more bioabsorbable polymers. The sheet may contain none, one or multiple drugs. After the pattern of the stent is carved into the polymer sheet, the sheet is rolled into the specified diameter for the stent. This rolled stent is welded into a cylindrical form.
The laminated structure provides significantly improved mechanical properties in a predominantly polymer-based, bioabsorbable, balloon-expandable stent. The laminated structure that results from successive coatings on the stent-form may provide a mechanically effective stent (e.g. with deployed hoop strength >300 mm Hg luminal pressure) with thinner struts than traditional metallic stents and certainly superior to the known bioabsorbable polymeric stents.
This discreet location of drug/drugs is designed to provide specific, time-targeted elution profiles and may enable the elution of multiple drugs in serial fashion.
The Polymer Laminate: The polymeric sheet material is ideally comprised of bioabsorbable polymers. The polymeric sheet material is ideally a laminated structure. In the laminate, we envision ideal properties to be obtained by alternating ‘hard’-‘soft’ bioabsorbable polymers. The first material aspect of the, invention is the creation and unique properties of the polymer film.
Forming the polymer sheet:
Inclusion of drug: The drug can be formulated in one of three places within the polymer sheet.
Upon the surface of the material (either luminal or ab-luminal). Note that such a surface treatment of drug could be applied at any step in the stent manufacturing process: sheet, carved, rolled, welded, final.
Within one of the polymer films comprising the laminate
Between two of the polymer films comprising the laminate.
Carving of the stent architecture: Methods for the carving include, without limitation: physical cutting by press, roller, knife, jet, or laser and/or chemically etched by wet-chemistry or dry-plasma means. One alternative method of carving may be to physically carve the stent architecture while the polymer sheet is exposed to a compressed fluid environment (e.g. similar to Micell's sintering process). Such exposure could ‘soften’ the polymer sheet aiding in carving.
All manner of current polymer sheet-forming technologies would apply; including the ancillary necessities of lubricants, mold-release, etc.
Rolling and welding of the carved sheet into a final stent: The final step in the process is to roll the carved sheet into a cylinder and weld this geometry in place. Rolling is straightforward processing around a sized mandrel (may be augmented by temperature or exposure to compressed fluids). The welding may be performed via conventional methods such as solvent, temperature (bulk heating, laser, etc.), etc. The welding process is preferably done via compressed-fluid-based sintering.
The invention provides improved mechanical properties compared to conventional bioabsorbable stents. The present invention provides a laminated bioabsorbable polymer stent, with significantly increased in strength, deformability, hoop stress (both pre- and post-expansion) and other mechanical properties. A laminate structure is inherently stronger and more effective in the deformation processes necessary for DES use (crimping onto a balloon, expansion into the diseased vessel). Also the invention provides the ability to obtain greater hoop-strength in the deployed stent based on the laminate architecture of the stents. For example, the present invention allows the formation of a laminate of different bioabsorbable polymers (e.g., PLA, PGA and copolymers thereof) with different mechanical properties: hard-soft-hard-soft-hard-soft type of laminated structure.
One attribute of a hard-soft structure will be to provide a unique and novel control of the pressure needed for expansion of the stent. By designing the soft laminate layer to act as the ‘slip layer’ or ‘lubrication’ between neighboring layers the stress needed for expansion can be ‘dialed in’ (range 3-30 atm pressure for full expansion).
Another advantage of the present invention is the ability to create a stent with a completely novel drug-elution profile. Via the ability to have different materials in each layer of the laminate structure and the ability to control the location of drug(s) independently in these layers, the method enables a bioabsorbable stent that could release drugs at very specific elution profiles, programmed sequential and/or parallel elution profiles. Also, the present invention allows controlled elution of one drug without affecting the elution of a second drug (or different doses of the same drug).
The embodiments incorporating a stent form or framework provide the ability to radiographically monitor the stent in deployment. In an alternative embodiment, the inner-diameter of the stent can be masked (e.g. by a non-conductive mandrel). Such masking would prevent additional layers from being on the interior diameter (abluminal) surface of the stent. The resulting configuration may be desirable to provide preferential elution of the drug toward the vessel wall (luminal surface of the stent) where the therapeutic effect of anti-restenosis is desired, without providing the same antiproliferative drug(s) on the abluminal to surface, where they may retard healing; which in turn is suspected to be a cause of late-stage safety problems with current DESs.
The present invention provides numerous advantages. The invention is advantageous allows for employing a platform combining layer formation methods based on compressed fluid technologies; electrostatic capture and sintering methods. The platform results in drug eluting stents having enhanced therapeutic and mechanical properties. The invention is particularly advantageous in that it employs optimized laminate polymer technology. In particular, the present invention allows the formation of discrete layers of specific drug platforms.
Conventional processes for spray coating stents require that drug and polymer be dissolved in solvent or mutual solvent before spray coating can occur. The platform provided herein the drugs and polymers are coated on the stent framework in discrete steps, which can be carried out simultaneously or alternately. This allows discrete of the active agent (e.g.; a drug) within a polymer matrix thereby allowing the placement of more than one drug on a single active agent on a single medical device with or without an intervening polymer layer. For example, the present platform provides a dual drug eluting stent.
Some of the advantages provided by the subject invention include employing compressed fluids (e.g., supercritical fluids, for example E-RESS based methods); solvent free deposition methodology; a platform that allows processing at lower temperatures thereby preserving the qualities of the active agent and the polymer matrix; the ability to incorporate two, three or more drugs while minimizing deleterious effects from direct interactions between the various drugs and/or their excipients during the fabrication and/or storage of the drug eluting stents; a dry deposition; enhanced adhesion and mechanical properties of the layers on the stent framework; precision deposition and rapid batch processing; and ability to form intricate structure.
In one embodiment, the present invention provides a multi-drug delivery platform which produces strong, resilient and flexible drug eluting stents including an anti-restenosis drug (e.g.; a limus or taxol) and anti-thrombosis drug (e.g.; heparin or an analog thereof) and well characterized bioabsorbable polymers. The drug eluting stents provided herein minimize potential for thrombosis, in part, by reducing or totally eliminating thrombogenic polymers and reducing or totally eliminating residual drugs that could inhibit healing.
The platform provides optimized delivery of multiple drug therapies for example for early stage treatment (restenosis) and late-stage (thrombosis).
The platform also provides an adherent coating which enables access through tortuous lesions without the risk of the coating being compromised.
Another advantage of the present platform is the ability to provide highly desirable eluting profiles (e.g., the profile illustrated in
Advantages of the invention include the ability to reduce or completely eliminate potentially thrombogenic polymers as well as possibly residual drugs that may inhibit long term healing. As well, the invention provides advantageous stents having optimized strength and resilience if coatings which in turn allows access to complex lesions and reduces or completely eliminates delamination. Laminated layers of bioabsorbable polymers allow controlled elution of one or more drugs.
The platform provided herein reduces or completely eliminates shortcoming that have been associated with conventional drug eluting stents. For example, the platform provided herein allows for much better tuning of the period of time for the active agent to elute and the period of time necessary for the polymer matrix to resorb thereby minimizing thrombosis and other deleterious effects associate with poorly controlled drug release.
Additional advantages of the present platform are illustrated in
Definitions
As used in the present specification, the following words and phrases are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.
“Substrate” as used herein, refers to any surface upon which it is desirable to deposit a coating comprising a polymer and a pharmaceutical or biological agent, wherein the coating process does not substantially modify the morphology of the pharmaceutical agent or the activity of the biological agent. Biomedical implants are of particular interest for the present invention; however the present invention is not intended to be restricted to this class of substrates. Those of skill in the art will appreciate alternate substrates that could benefit from the coating process described herein, such as pharmaceutical tablet cores, as part of an assay apparatus or as components in a diagnostic kit (e.g. a test strip).
“Biomedical implant” as used herein refers to any implant for insertion into the body of a human or animal subject, including but not limited to stents (e.g., vascular stents), electrodes, catheters, leads, implantable pacemaker, cardioverter or defibrillator housings, joints, screws, rods, ophthalmic implants, femoral pins, bone plates, grafts, anastomotic devices, perivascular wraps, sutures, staples, shunts for hydrocephalus, dialysis grafts, colostomy bag attachment devices, car drainage tubes, leads for pace makers and implantable cardioverters and defibrillators, vertebral disks, bone pins, suture anchors, hemostatic to barriers, clamps, screws, plates, clips, vascular implants, tissue adhesives and sealants, tissue scaffolds, various types of dressings (e.g., wound dressings), bone substitutes, intraluminal devices, vascular supports, etc.
The implants may be formed from any suitable material, including but not limited to organic polymers (including stable or inert polymers and biodegradable polymers), metals, inorganic materials such as silicon, and composites thereof, including layered structures with a core of one material and one or more coatings of a different material. Substrates made of a conducting material facilitate electrostatic capture. However, the invention contemplates the use of electrostatic capture in conjunction with substrate having low conductivity or which non-conductive. To enhance electrostatic capture when a non-conductive-substrate is employed, the substrate is processed while maintaining a strong electrical field in the vicinity of the substrate.
Subjects into which biomedical implants of the invention may be applied or inserted include both human subjects (including male and female subjects and infant, juvenile, adolescent, adult and geriatric subjects) as well as animal subjects (including but not limited to dog, cat, horse, monkey, etc.) for veterinary purposes.
In a preferred embodiment the biomedical implant is an expandable intraluminal vascular graft or stent (e.g., comprising a wire mesh tube) that can be expanded within a blood vessel by an angioplasty balloon associated with a catheter to dilate and expand the lumen of a blood vessel, such as described in U.S. Pat. No. 4,733,665 to Palmaz Shaz.
“Pharmaceutical agent” as used herein refers to any of a variety of drugs or pharmaceutical compounds that can be used as active agents to prevent or treat a disease (meaning any treatment of a disease in a mammal, including preventing the disease, i.e. causing the clinical symptoms of the disease not to develop; inhibiting the disease, i.e. arresting the development of clinical symptoms; and/or relieving the disease, i.e. causing the regression of clinical symptoms). It is possible that the pharmaceutical agents of the invention may also comprise two or more drugs or pharmaceutical compounds. Pharmaceutical agents, include but are not limited to antirestenotic agents, antidiabetics, analgesics, antiinflammatory agents, antirheumatics, antihypotensive agents, antihypertensive agents, psychoactive drugs, tranquillizers, antiemetics, muscle relaxants, glucocorticoids, agents for treating ulcerative colitis or Crohn's disease, antiallergics, antibiotics, antiepileptics, anticoagulants, antimycotics, antitussives, arteriosclerosis remedies, diuretics, proteins, peptides, enzymes, enzyme inhibitors, gout remedies, hormones and inhibitors thereof, cardiac glycosides, immunotherapeutic agents and cytokines, laxatives, lipid-lowering agents, migraine remedies, mineral products, otologicals, anti parkinson agents, thyroid therapeutic agents, spasmolytics, platelet aggregation inhibitors, vitamins, cytostatics and metastasis inhibitors, phytopharmaceuticals, chemotherapeutic agents and amino acids. Examples of suitable active ingredients are acarbose, antigens, beta-receptor blockers, non-steroidal antiinflammatory drugs {NSAIDs], cardiac glycosides, acetylsalicylic acid, virustatics, aclarubicin, acyclovir, cisplatin, actinomycin, alpha- and beta-sympatomimetics, (dmeprazole, allopurinol, alprostadil, prostaglandins, amantadine, ambroxol, amlodipine, methotrexate, S-aminosalicylic acid, amitriptyline, amoxicillin, anastrozole, atenolol, azathioprine, balsalazide, beclomethasone, betahistine, bezafibrate, bicalutamide, diazepam and diazepam derivatives, budesonide, bufexamac, buprenorphine, methadone, calcium salts, potassium salts, magnesium salts, candesartan, carbamazepine, captopril, cefalosporins, cetirizine, chenodeoxycholic acid, ursodeoxycholic acid, theophylline and theophylline derivatives, trypsins, cimetidine, clarithromycin, clavulanic acid, clindamycin, clobutinol, clonidine, cotrimoxazole, codeine, caffeine, vitamin D and derivatives of vitamin D, colestyramine, cromoglicic acid, coumarin and coumarin derivatives, cysteine, cytarabine, cyclophosphamide, ciclosporin, cyproterone, cytabarine, dapiprazole, desogestrel, desonide, dihydralazine, diltiazem, ergot alkaloids, dimenhydrinate, dimethyl sulphoxide, dimeticone, domperidone and domperidan derivatives, dopamine, doxazosin, doxorubizin, doxylamine, dapiprazole, benzodiazepines, diclofenac, glycoside antibiotics, desipramine, econazole, ACE inhibitors, enalapril, ephedrine, epinephrine, epoetin and epoetin derivatives, morphinans, calcium antagonists, irinotecan, modafinil, orlistat, peptide antibiotics, phenytoin, riluzoles, risedronate, sildenafil, topiramate, macrolide antibiotics, oestrogen and oestrogen derivatives, progestogen and progestogen derivatives, testosterone and testosterone derivatives, androgen and androgen derivatives, ethenzamide, etofenamate, etofibrate, fenofibrate, etofylline, etoposide, famciclovir, famotidine, felodipine, fenofibrate, fentanyl, fenticonazole, gyrase inhibitors, fluconazole, fludarabine, fluarizine, fluorouracil, fluoxetine, flurbiprofen, ibuprofen, flutamide, fluvastatin, follitropin, formoterol, fosfomicin, furosemide, fusidic acid, gallopamil, ganciclovir, gemfibrozil, gentamicin, ginkgo, Saint John's wort, glibenclamide, urea derivatives as oral antidiabetics, glucagon, glucosamine and glucosamine derivatives, glutathione, glycerol and glycerol derivatives, hypothalamus hormones, goserelin, gyrase inhibitors, guanethidine, halofantrine, haloperidol, heparin and heparin derivatives, hyaluronic acid, hydralazine, hydrochlorothiazide and hydrochlorothiazide derivatives, salicylates, hydroxyzine; idarubicin, ifosfamide, imipramine, indometacin, indoramine, insulin, interferons, iodine and iodine derivatives, isoconazole, isoprenaline, glucitol and glucitol derivatives, itraconazole, ketoconazole, ketoprofen, ketotifen, lacidipine, lansoprazole, levodopa, levomethadone, thyroid hormones, lipoic acid and lipoic acid derivatives, lisinopril, lisuride, lofepramine, lomustine, loperamide, loratadine, maprotiline, mebendazole, mebeverine, meclozine, mefenamic acid, mefloquine, meloxicam, mepindolol, meprobamate, meropenem, mesalazine, mesuximide, metamizole, metformin, methotrexate, methylphenidate, methylprednisolone, metixene, metoclopramide, metoprolol, metronidazole, mianserin, miconazole, minocycline, minoxidil, misoprostol, mitomycin, mizolastine, moexipril, morphine and morphine derivatives, evening primrose, nalbuphine, naloxone, tilidine, naproxen, narcotine, natamycin, neostigmine, nicergoline, nicethamide, nifedipine, niflumic acid, nimodipine, nimorazole, nimustine, nisoldipine, adrenaline and adrenaline derivatives, norfloxacin, novamine sulfone, noscapine, nystatin, ofloxacin, olanzapine, olsalazine, omeprazole, omoconazole, ondansetron, oxaceprol, oxacillin, oxiconazole, oxymetazoline, pantoprazole, paracetamol, paroxetine, penciclovir, oral penicillins, pentazocine, pentifylline, pentoxifylline, perphenazine, pethidine, plant extracts, phenazone, pheniramine, barbituric acid derivatives, phenylbutazone, phenytoin, pimozide, pindolol, piperazine, piracetam, pirenzepine, piribedil, piroxicam, pramipexole, pravastatin, prazosin, procaine, promazine, propiverine, propranolol, propyphenazone, prostaglandins, protionamide, proxyphylline, quetiapine, quinapril, quinaprilat, ramipril, ranitidine, reproterol, reserpine, ribavirin, rifampicin, risperidone, ritonavir, ropinirole, roxatidine, roxithromycin, ruscogenin, rutoside and rutoside derivatives, sabadilla, salbutamol, salmeterol, scopolamine, selegiline, sertaconazole, sertindole, sertralion, silicates, sildenafil, simvastatin; sitosterol, sotalol, spaglumic acid, sparfloxacin, spectinomycin, spiramycin, spirapril, spironolactone, stavudine, streptomycin, sucralfate, sufentanil, sulbactam, sulphonamides, sulfasalazine, sulpiride, sultamicillin, sultiam, sumatriptan, suxamethonium chloride, tacrine, tacrolimus, taliolol, tamoxifen, taurolidine, tazarotene, temazepam, teniposide, tenoxicam, terazosin, terbinafine, terbutaline, terfenadine, terlipressin, tertatolol, tetracyclins, teryzoline, theobromine, theophylline, butizine, thiamazole, phenothiazines, thiotepa, tiagabine, tiapride, propionic acid derivatives, ticlopidine, timolol, tinidazole, tioconazole, tioguanine, tioxolone, tiropramide, tizanidine, tolazoline, tolbutamide, tolcapone, tolnaftate, tolperisone, topotecan, torasemide, antioestrogens, tramadol, tramazoline, trandolapril, tranylcypromine, trapidil, trazodone, triamcinolone and triamcinolone derivatives, triamterene, trifluperidol, trifluridine, trimethoprim, trimipramine, tripelennamine, triprolidine, trifosfamide, tromantadine, trometamol, tropalpin, troxerutine, tulobuterol, tyramine, tyrothricin, urapidil, ursodeoxycholic acid, chenodeoxycholic acid, valaciclovir, valproic acid, vancomycin, vecuronium chloride, Viagra, venlafaxine, verapamil, vidarabine, vigabatrin, viloazine, vinblastine, vincamine, vincristine, vindesine, vinorelbine, vinpocetine, viquidil, warfarin, xantinol nicotinate, xipamide, zafirlukast, zalcitabine, zidovudine, zolmitriptan, zolpidem, zoplicone, zotipine and the like. See, e.g., U.S. Pat. No. 6,897,205; see also U.S. Pat. Nos. 6,838,528; 6,497,729.
Examples of therapeutic agents employed in conjunction with the invention include, rapamycin, 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin, 40-O-(2-Hydroxy)ethoxycarbonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin, 40-O-(6-Hydroxy)hexyl-rapamycin, 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 40-O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 40-O-2-Acetoxy)ethyl-rapamycin, 40-O-(2-Nicotinoyloxy)ethyl-rapamycin, 40-O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin, 40-O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 40-O-(2-Aminoethyl)-rapamycin, 40-O-(2-Acetaminoethyl)-rapamycin, 40-O-(2-Nicotinamidoethyl)-rapamycin, 40-O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 40-O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), and 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus).
The active ingredients may, if desired, also be used in the form of their pharmaceutically acceptable salts or derivatives (meaning salts which retain the biological effectiveness and properties of the compounds of this invention and which are not biologically or otherwise undesirable), and in the case of chiral active ingredients it is possible to employ both optically active isomers and racemates or mixtures of diastereoisomers.
“Stability” as used herein in refers to the stability of the drug in a polymer coating deposited on a substrate in its final product form (e.g., stability of the drug in a coated stent). The term stability will define 5% or less degradation of the drug in the final product form.
“Active biological agent” as used herein refers to a substance, originally produced by living organisms, that can be used to prevent or treat a disease (meaning any treatment of a disease in a mammal, including preventing the disease, i.e. causing the clinical symptoms of the disease not to develop; inhibiting the disease, i.e. arresting the development of clinical symptoms; and/or relieving the disease, i.e. causing the regression of clinical symptoms). It is possible that the active biological agents of the invention may also comprise two or more active biological agents or an active biological agent combined with a pharmaceutical agent, a stabilizing agent or chemical or biological entity. Although the active biological agent may have been originally produced by living organisms, those of the present invention may also have been synthetically prepared, or by methods combining biological isolation and synthetic modification. By way of a non-limiting example, a nucleic acid could be isolated form from a biological source, or prepared by traditional techniques, known to those skilled in the art of nucleic acid synthesis. Furthermore, the nucleic acid may be further modified to contain non-naturally occurring moieties. Non-limiting examples of active biological agents include peptides, proteins, enzymes, glycoproteins, nucleic acids (including deoxyribonucleotide or ribonucleotide polymers in either single or double stranded form, and unless otherwise limited, encompasses known analogues of natural nucleotides that hybridize to nucleic acids in a manner similar to naturally occurring nucleotides), antisense nucleic acids, fatty acids, antimicrobials, vitamins, hormones, steroids, lipids, polysaccharides, carbohydrates and the like. They further include, but are not limited to, antirestenotic agents, antidiabetics, analgesics, antiinflammatory agents, antirheumatics, antihypotensive agents, antihypertensive agents, psychoactive drugs, tranquillizers, antiemetics, muscle relaxants, glucocorticoids, agents for treating ulcerative colitis or Crohn's disease, antiallergics, antibiotics, antiepileptics, anticoagulants, antimycotics, antitussives, arteriosclerosis remedies, diuretics, proteins, peptides, enzymes, enzyme inhibitors, gout remedies, hormones and inhibitors thereof, cardiac glycosides, immunotherapeutic agents and cytokines, laxatives, lipid-lowering agents, migraine remedies, mineral products, otologicals, anti parkinson agents, thyroid therapeutic agents, spasmolytics, platelet aggregation inhibitors, vitamins, cytostatics and metastasis inhibitors, phytopharmaceuticals and chemotherapeutic agents. Preferably, the active biological agent is a peptide, protein or enzyme, including derivatives and analogs of natural peptides, proteins and enzymes.
“Activity” as used herein refers to the ability of a pharmaceutical or active biological agent to prevent or treat a disease (meaning any treatment of a disease in a mammal, including preventing the disease, i.e. causing the clinical symptoms of the disease not to develop; inhibiting the disease, i.e. arresting the development of clinical symptoms; and/or relieving the disease, i.e. causing the regression of clinical symptoms). Thus the activity of a pharmaceutical or active biological agent should be of therapeutic or prophylactic value.
“Secondary, tertiary and quaternary structure” as used herein are defined as follows. The active biological agents of the present invention will typically possess some degree of secondary, tertiary and/or quaternary structure, upon which the activity of the agent depends.
As an illustrative, non-limiting example, proteins possess secondary, tertiary and quaternary structure. Secondary structure refers to the spatial arrangement of amino acid residues that are near one another in the linear sequence. The a-helix and the a-strand are elements of secondary structure. Tertiary structure refers to the spatial arrangement of amino acid residues that are far apart in the linear sequence and to the pattern of disulfide bonds. Proteins containing more than one polypeptide chain exhibit an additional level of structural organization. Each polypeptide chain in such a protein is called a subunit Quaternary structure refers to the spatial arrangement of subunits and the nature of their contacts. For example hemoglobin consists of two α and two β chains. It is well known that protein function arises from its conformation or three dimensional arrangement of atoms (a stretched out polypeptide chain is devoid of activity). Thus one aspect of the present invention is to manipulate active biological agents, while being careful to maintain their conformation, so as not to lose their therapeutic activity.
“Polymer” as used herein, refers to a series of repeating monomeric units that have been cross-linked or polymerized. Any suitable polymer can be used to carry out the present invention. It is possible that the polymers of the invention may also comprise two, three, four or more different polymers. In some embodiments, of the invention only one polymer is used. In some preferred embodiments a combination of two polymers are used. Combinations of polymers can be in varying ratios, to provide coatings with differing properties. Those of skill in the art of polymer chemistry will be familiar with the different properties of polymeric compounds.
“Therapeutically desirable morphology” as used herein refers to the gross form and structure of the pharmaceutical agent, once deposited on the substrate, so as to provide for optimal conditions of ex vivo storage, in vivo preservation and/or in vivo release. Such optimal conditions may include, but arc not limited to increased shelf life, increased in vivo stability, good biocompatibility, good bioavailability or modified release rates. Typically, for the present invention, the desired morphology of a pharmaceutical agent would be crystalline or semi-crystalline or amorphous, although this may vary widely depending on many factors including, but not limited to, the nature of the pharmaceutical agent, the disease to be treated/prevented, the intended storage conditions for the substrate prior to use or the location within the body of any biomedical implant. Preferably at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% of the pharmaceutical agent is in crystalline or semi-crystalline form.
“Stabilizing agent” as used herein refers to any substance that maintains or enhances the stability of the biological agent. Ideally these stabilizing agents are classified as Generally Regarded As Safe (GRAS) materials by the US Food and Drug Administration (FDA). Examples of stabilizing agents include, but are not limited to carrier proteins, such as albumin, gelatin, metals or inorganic salts. Pharmaceutically acceptable excipient that may be present can further be found in the relevant literature, for example in the Handbook of Pharmaceutical Additives: An International Guide to More Than 6000 Products by Trade Name, Chemical, Function, and Manufacturer; Michael and Irene Ash (Eds.); Gower. Publishing Ltd.; Aldershot, Hampshire, England, 1995.
“Compressed fluid” as used herein refers to a fluid of appreciable density (e.g., >0.2 g/cc) that is a gas at standard temperature and pressure. “Supercritical fluid”, “near-critical fluid”, “near-supercritical fluid”, “critical fluid”, “densified fluid” or “densified gas” as used herein refers to a compressed fluid under conditions wherein the temperature is at least 80% of the critical temperature of the fluid and the pressure is at least 50% of the critical pressure of the fluid.
Examples of substances that demonstrate supercritical or near critical behavior suitable for the present invention include, but are not limited to carbon dioxide, isobutylene, ammonia, water, methanol, ethanol, ethane, propane, butane, pentane, dimethyl ether, xenon, sulfur hexafluoride, halogenated and partially halogenated materials such as chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, perfluorocarbon (such as perfluoromethane and perfuoropropane, chloroform, trichloro-fluoromethane, dichloro-difluoromethane, dichioro-tetrafluoroethane) and mixtures thereof.
“Sintering” as used herein refers to the process by which parts of the matrix or the entire polymer matrix becomes continuous (e.g., formation of a continuous polymer film). As discussed below, the sintering process is controlled to produce a fully conformal continuous matrix (complete sintering) or to produce regions or domains of continuous coating while producing voids (discontinuities) in the matrix. As well, the sintering process is controlled such that some phase separation is obtained between polymer different polymers (e.g., polymers A and B) and/or to produce phase separation between discrete polymer particles. Through the sintering process, the adhesions properties of the coating are improved to reduce flaking of detachment of the coating from the substrate during manipulation in use. As described below, in some embodiments, the sintering process is controlled to provide incomplete sintering of the polymer matrix. In embodiments involving incomplete sintering, a polymer matrix is formed with continuous domains, and voids, gaps, cavities, pores, channels or, interstices that provide space for sequestering a therapeutic agent which is released under controlled conditions. Depending on the nature of the polymer, the size of polymer particles and/or other polymer properties, a compressed gas, a densified gas, a near critical fluid or a super-critical fluid may be employed. In one example, carbon dioxide is used to treat a substrate that has been coated with a polymer and a drug, using dry powder and RESS electrostatic coating processes. In another example, isobutylene is employed in the sintering process. In other examples a mixture of carbon dioxide and isobutylene is employed.
When an amorphous material is heated to a temperature above its glass transition temperature, or when a crystalline material is heated to a temperature above a phase transition temperature, the molecules comprising the material are more mobile, which in turn means that they are more active and thus more prone to reactions such as oxidation. However, when an amorphous material is maintained at a temperature below its glass transition temperature, its molecules are substantially immobilized and thus less prone to reactions. Likewise, when a crystalline material is maintained at a temperature below its phase transition temperature, its molecules are substantially immobilized and thus less prone to reactions. Accordingly, processing drug components at mild conditions, such as the deposition and sintering conditions described herein, minimizes cross-reactions and degradation of the drug component. One type of reaction that is minimized by the processes of the invention relates to the ability to avoid conventional solvents which in turn minimizes autoxidation of drug, whether in amorphous, semi-crystalline, or crystalline form, by reducing exposure thereof to free radicals, residual solvents and autoxidation initiators.
“Rapid Expansion of Supercritical Solutions” or “RESS” as used herein involves the dissolution of a polymer into a compressed fluid, typically a supercritical fluid, followed by rapid expansion into a chamber at lower pressure, typically near atmospheric conditions. The rapid expansion of the supercritical fluid solution through a small opening, with its accompanying decrease in density, reduces the dissolution capacity of the fluid and results in the nucleation and growth of polymer particles. The atmosphere of the chamber is maintained in an electrically neutral state by maintaining an isolating “cloud” of gas in the chamber. Carbon dioxide or other appropriate gas is employed to prevent electrical charge is transferred from the substrate to the surrounding environment.
“Bulk properties” properties of a coating including a pharmaceutical or a biological agent that can be enhanced through the methods of the invention include for example: adhesion, smoothness, con formality, thickness, and compositional mixing.
“Electrostatically charged” or “electrical potential” or “electrostatic capture” as used herein refers to the collection of the spray-produced particles upon a substrate that has a different electrostatic potential than the sprayed particles. Thus, the substrate is at an attractive electronic potential with respect to the particles exiting, which results in the capture of the particles upon the substrate. i.e. the substrate and particles are oppositely charged, and the particles transport through the fluid medium of the capture vessel onto the surface of the substrate is enhanced via electrostatic attraction. This may be achieved by charging the particles and grounding the substrate or conversely charging the substrate and grounding the particles, or by some other process, which would be easily envisaged by one of skill in the art of electrostatic capture.
The present invention provides several advantages which overcome or attenuate the limitations of current technology for bioabsorbable stents. Fro example, an inherent limitation of conventional bioabsorbable polymeric materials relates to the difficulty in forming to a strong, flexible, deformable (e.g. balloon deployable) stent with low profile. The polymers generally lack the strength of high-performance metals. The present invention overcomes these limitations by creating a laminate structure in the essentially polymeric stent. Without wishing to be bound by any specific theory or analogy, the increased strength provided by the stents of the invention can be understood by comparing the strength of plywood vs. the strength of a thin sheet of wood.
Embodiments of the invention involving a thin metallic stent-framework provide advantages including the ability to overcome the inherent elasticity of most polymers. It is generally difficult to obtain a high rate (e.g., 100%) of plastic deformation in polymers (compared to elastic deformation where the materials have some ‘spring back’ to the original shape). Again, without wishing to be bound by any theory, the central metal stent framework (that would be too small and weak to serve as a stent itself) would act like wires inside of a plastic, deformable stent, basically overcoming any ‘elastic memory’ of the polymer.
The following examples are given to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.
In this example a sheet of polymer film is imprinted by rolling a cylinder across the surface of the sheet. The polymer sheet is made from bioabsorbable polymers prepared by spraying alternating layers of different polymers onto a conductive substrate. The order in which the layers are applied is determined by the desired film mechanical properties. Drug may be applied between each layer or selectively between desired layers. Drug is applied using a dry powder coating technique. A cylindrical, patterned rod is rolled across the polymer film creating a stent in a gravure printing like process. Several methods exist for creating the pattered rod such as using photoresist-etch process. Alternatively the pattern could be laser cut into the solid rod. The flat polymer sheet is cut into strips with widths slightly greater than the circumference of the finished stent. The polymer strips are then rolled around a lubricious non-patterned cylinder (i.e., Teflon) that acts as a form. This object is then placed in, pressure vessel and sealed. Gas such as dichlorofluoromethane is added to the pressure vessel until the pressure inside the vessel equals the vapor pressure of the gas at the temperature of the vessel. A suitable gas is dichlorofluoromethane at a temperature of 37° C. The gas sinters the polymer strip and welds the seam together creating a polymeric stent supported on a Teflon cylinder. After the stent is sintered it is slid off the support.
In this example a bioabsorable metal such as magnesium is used as a form onto which bioabsorbable polymer(s) can be sprayed in layered fashion. A polymer layer of one type such as PLA is sprayed on the stent and sintered. A second polymer layer of another type such as PGA is then sprayed onto the metal form holding the first polymer layer. The stent is sintered again to create a tri-layered structure consisting of metal-polymer type I-polymer type II. The process could be repeated with the same or additional types of polymers to build a coating of desired thickness and desired mechanical properties. Between any two layers, drug such as rapamycin or Taxol or other anti-restenotic could be dry powder coated onto any given polymer layer or the metal base stent itself.
A metal, such as stainless steel, base stent is etched to a vanishingly small size while being supported on a Teflon or similarly lubricious rod. The outside diameter of the rod is slightly smaller than the inside diameter of the stent and serves to support the etched metal to stent and mask the inside (luminal) surface. The mask should limit the amount of material deposited on this surface. The stent can coated as in example 2 to achieve the desired mechanical and coating properties. Furthermore, a second drug can be deposited in any desired layer to achieve a desired elution profile.
An alternative to example 3 is removal of the mask for the luminal surface of the stent. Both the stent surfaces are coated with drug(s) and polymer. The stent is supported by its own mechanical strength on the stent fixture. A single or multiple drugs (Paclitaxel or Picrolimus, for example) can be deposited in any layer of the polymer coating or through the thickness of the polymer coat.
Polymer sheets created by spraying individual polymer layers on a flat surface are welded to together using compressed gas, gas or supercritical gas. A sheet of polymer is cut to a width that slightly exceeds the circumference of a finished stent. The sheet is then folded around a lubricious rod (graphite, Teflon or similar material) with an outside diameter equal to the inside diameter of a finished stent. The specific diameter is determined by the specific stent application. This object is then exposed to a gas, compressed gas or supercritical gas that can sinter the seam together forming a continuous cylinder of polymer.
The foregoing is illustrative of the present invention, and is not to be construed as limiting thereof. While embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application is filed pursuant to 35 U.S.C. §371 as a United States National Phase Application of International Application No. PCT/US2008/050536, entitled “Stents Having Biodegradable Layers,” filed Jan. 8, 2008, which claims the benefit of U.S. Provisional Application No. 60/884,005, filed Jan. 8, 2007 and U.S. Provisional Application No. 60/912,408, filed Apr. 17, 2007, each of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/050536 | 1/8/2008 | WO | 00 | 11/6/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/086369 | 7/17/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3087660 | Endicott | Apr 1963 | A |
3087860 | Endicott | Apr 1963 | A |
3123077 | Alcamo | Mar 1964 | A |
3457280 | Schmitt et al. | Jul 1969 | A |
3597449 | Deprospero et al. | Aug 1971 | A |
3737337 | Schnoring et al. | Jun 1973 | A |
3773919 | Boswell et al. | Nov 1973 | A |
3929992 | Sehgal et al. | Dec 1975 | A |
4000137 | Dvonch et al. | Dec 1976 | A |
4188373 | Krezanoski | Feb 1980 | A |
4285987 | Ayer et al. | Aug 1981 | A |
4326532 | Hammar | Apr 1982 | A |
4336381 | Nagata et al. | Jun 1982 | A |
4389330 | Tice et al. | Jun 1983 | A |
4474572 | McNaughton et al. | Oct 1984 | A |
4474751 | Haslam et al. | Oct 1984 | A |
4478822 | Haslam et al. | Oct 1984 | A |
4530840 | Tice et al. | Jul 1985 | A |
4582731 | Smith | Apr 1986 | A |
4606347 | Fogarty et al. | Aug 1986 | A |
4617751 | Johansson | Oct 1986 | A |
4655771 | Wallsten | Apr 1987 | A |
4675189 | Kent et al. | Jun 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4734227 | Smith | Mar 1988 | A |
4734451 | Smith | Mar 1988 | A |
4758435 | Schaaf | Jul 1988 | A |
4762593 | Youngner | Aug 1988 | A |
4931037 | Wetterman | Jun 1990 | A |
4950239 | Gahara | Aug 1990 | A |
4985625 | Hurst | Jan 1991 | A |
5000519 | Moore | Mar 1991 | A |
5090419 | Palestrant | Feb 1992 | A |
5096848 | Kawamura | Mar 1992 | A |
5102417 | Palmaz | Apr 1992 | A |
5104404 | Wolff | Apr 1992 | A |
5106650 | Hoy et al. | Apr 1992 | A |
5125570 | Jones | Jun 1992 | A |
5158986 | Cha et al. | Oct 1992 | A |
5185776 | Townsend | Feb 1993 | A |
5195969 | Wang et al. | Mar 1993 | A |
5243023 | Dezern | Sep 1993 | A |
5270086 | Hamlin | Dec 1993 | A |
5288711 | Mitchell et al. | Feb 1994 | A |
5320634 | Vigil et al. | Jun 1994 | A |
5324049 | Mistrater et al. | Jun 1994 | A |
5340614 | Perman et al. | Aug 1994 | A |
5342621 | Eury | Aug 1994 | A |
5350361 | Tsukashima et al. | Sep 1994 | A |
5350627 | Nemphos et al. | Sep 1994 | A |
5356433 | Rowland et al. | Oct 1994 | A |
5360403 | Mische | Nov 1994 | A |
5362718 | Skotnicki et al. | Nov 1994 | A |
5366504 | Andersen et al. | Nov 1994 | A |
5368045 | Clement et al. | Nov 1994 | A |
5372676 | Lowe | Dec 1994 | A |
5385776 | Maxfield et al. | Jan 1995 | A |
5387313 | Thoms | Feb 1995 | A |
5403347 | Roby et al. | Apr 1995 | A |
5470603 | Staniforth et al. | Nov 1995 | A |
5494620 | Liu et al. | Feb 1996 | A |
5500180 | Anderson et al. | Mar 1996 | A |
5545208 | Wolff et al. | Aug 1996 | A |
5556383 | Wang et al. | Sep 1996 | A |
5562922 | Lambert | Oct 1996 | A |
5569463 | Helmus et al. | Oct 1996 | A |
5570537 | Black et al. | Nov 1996 | A |
5578709 | Woiszwillo | Nov 1996 | A |
5599576 | Opolski | Feb 1997 | A |
5607442 | Fischell et al. | Mar 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5626611 | Liu et al. | May 1997 | A |
5626862 | Brem et al. | May 1997 | A |
5632772 | Alcime et al. | May 1997 | A |
5669932 | Fischell et al. | Sep 1997 | A |
5674192 | Sahatjian et al. | Oct 1997 | A |
5674242 | Phan et al. | Oct 1997 | A |
5725570 | Heath | Mar 1998 | A |
5733303 | Israel et al. | Mar 1998 | A |
5766158 | Opolski | Jun 1998 | A |
5800511 | Mayer | Sep 1998 | A |
5807404 | Richter | Sep 1998 | A |
5811032 | Kawai et al. | Sep 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5871436 | Eury | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5876426 | Kume et al. | Mar 1999 | A |
5913895 | Burpee et al. | Jun 1999 | A |
5924631 | Rodrigues et al. | Jul 1999 | A |
5948020 | Yoon et al. | Sep 1999 | A |
5957975 | Lafont et al. | Sep 1999 | A |
5981568 | Kunz et al. | Nov 1999 | A |
5981719 | Woiszwillo et al. | Nov 1999 | A |
6013855 | McPherson et al. | Jan 2000 | A |
6036978 | Gombotz et al. | Mar 2000 | A |
6039721 | Johnson et al. | Mar 2000 | A |
6068656 | Von Oepen | May 2000 | A |
6071308 | Ballou et al. | Jun 2000 | A |
6077880 | Castillo et al. | Jun 2000 | A |
6090925 | Woiszwillo et al. | Jul 2000 | A |
6129755 | Mathis et al. | Oct 2000 | A |
6143037 | Goldsten et al. | Nov 2000 | A |
6143314 | Chandrashekar et al. | Nov 2000 | A |
6146356 | Wang et al. | Nov 2000 | A |
6146404 | Kim et al. | Nov 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6171327 | Daniel et al. | Jan 2001 | B1 |
6190699 | Luzzi et al. | Feb 2001 | B1 |
6193744 | Ehr et al. | Feb 2001 | B1 |
6206914 | Soykan et al. | Mar 2001 | B1 |
6217608 | Penn et al. | Apr 2001 | B1 |
6231599 | Ley | May 2001 | B1 |
6231600 | Zhong et al. | May 2001 | B1 |
6245104 | Alt | Jun 2001 | B1 |
6248127 | Shah et al. | Jun 2001 | B1 |
6248129 | Froix | Jun 2001 | B1 |
6251980 | Lan et al. | Jun 2001 | B1 |
6268053 | Woiszwillo et al. | Jul 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6284758 | Egi et al. | Sep 2001 | B1 |
6299635 | Frantzen | Oct 2001 | B1 |
6309669 | Setterstrom et al. | Oct 2001 | B1 |
6319541 | Pletcher et al. | Nov 2001 | B1 |
6325821 | Gaschino et al. | Dec 2001 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6342062 | Suon et al. | Jan 2002 | B1 |
6344055 | Shukov | Feb 2002 | B1 |
6355691 | Goodman | Mar 2002 | B1 |
6358556 | Ding et al. | Mar 2002 | B1 |
6361819 | Tedeschi et al. | Mar 2002 | B1 |
6362718 | Patrick et al. | Mar 2002 | B1 |
6364903 | Tseng et al. | Apr 2002 | B2 |
6368658 | Schwarz et al. | Apr 2002 | B1 |
6372246 | Wei et al. | Apr 2002 | B1 |
6387121 | Alt | May 2002 | B1 |
6409716 | Sahatjian et al. | Jun 2002 | B1 |
6414050 | Howdle et al. | Jul 2002 | B1 |
6416779 | D-Augustine et al. | Jul 2002 | B1 |
6448315 | Lidgren et al. | Sep 2002 | B1 |
6458387 | Scott et al. | Oct 2002 | B1 |
6461380 | Cox | Oct 2002 | B1 |
6461644 | Jackson et al. | Oct 2002 | B1 |
6488703 | Kveen et al. | Dec 2002 | B1 |
6495163 | Jordan | Dec 2002 | B1 |
6497729 | Moussy et al. | Dec 2002 | B1 |
6506213 | Mandel et al. | Jan 2003 | B1 |
6517860 | Roser et al. | Feb 2003 | B1 |
6521258 | Mandel et al. | Feb 2003 | B1 |
6524698 | Schmoock | Feb 2003 | B1 |
6530951 | Bates | Mar 2003 | B1 |
6537310 | Palmaz et al. | Mar 2003 | B1 |
6541033 | Shah | Apr 2003 | B1 |
6572813 | Zhang et al. | Jun 2003 | B1 |
6602281 | Klein | Aug 2003 | B1 |
6610013 | Fenster et al. | Aug 2003 | B1 |
6627246 | Mehta et al. | Sep 2003 | B2 |
6649627 | Cecchi et al. | Nov 2003 | B1 |
6660176 | Tepper et al. | Dec 2003 | B2 |
6669785 | DeYoung et al. | Dec 2003 | B2 |
6669980 | Hanson et al. | Dec 2003 | B2 |
6670407 | Howdle et al. | Dec 2003 | B2 |
6682757 | Wright | Jan 2004 | B1 |
6706283 | Appel et al. | Mar 2004 | B1 |
6710059 | Labrie et al. | Mar 2004 | B1 |
6720003 | Cheng et al. | Apr 2004 | B2 |
6726712 | Raeder-Devens et al. | Apr 2004 | B1 |
6736996 | Carbonell et al. | May 2004 | B1 |
6743505 | Antall et al. | Jun 2004 | B2 |
6749902 | Yonker et al. | Jun 2004 | B2 |
6755871 | Damaso et al. | Jun 2004 | B2 |
6756084 | Fulton et al. | Jun 2004 | B2 |
6767558 | Wang et al. | Jul 2004 | B2 |
6780475 | Fulton et al. | Aug 2004 | B2 |
6794902 | Becker et al. | Sep 2004 | B2 |
6800663 | Asgarzadeh et al. | Oct 2004 | B2 |
6815218 | Jacobson et al. | Nov 2004 | B1 |
6821549 | Jayaraman | Nov 2004 | B2 |
6837611 | Kuo et al. | Jan 2005 | B2 |
6838089 | Carlsson et al. | Jan 2005 | B1 |
6838528 | Zhao | Jan 2005 | B2 |
6858598 | McKearn et al. | Feb 2005 | B1 |
6860123 | Uhlin | Mar 2005 | B1 |
6868123 | Uhlin et al. | Mar 2005 | B2 |
6884377 | Burnham et al. | Apr 2005 | B1 |
6884823 | Plerick et al. | Apr 2005 | B1 |
6897205 | Beckert et al. | May 2005 | B2 |
6905555 | DeYoung et al. | Jun 2005 | B2 |
6908624 | Hossainy et al. | Jun 2005 | B2 |
6916800 | McKearn et al. | Jul 2005 | B2 |
6923979 | Fotland et al. | Aug 2005 | B2 |
6936270 | Watson et al. | Aug 2005 | B2 |
6939569 | Green et al. | Sep 2005 | B1 |
6973718 | Sheppard et al. | Dec 2005 | B2 |
7056591 | Pacetti et al. | Jun 2006 | B1 |
7094256 | Shah et al. | Aug 2006 | B1 |
7148201 | Stern et al. | Dec 2006 | B2 |
7152452 | Kokish | Dec 2006 | B2 |
7160592 | Rypacek et al. | Jan 2007 | B2 |
7163715 | Kramer | Jan 2007 | B1 |
7169404 | Hossainy et al. | Jan 2007 | B2 |
7171255 | Holupka et al. | Jan 2007 | B2 |
7201750 | Eggers et al. | Apr 2007 | B1 |
7201940 | Kramer | Apr 2007 | B1 |
7229837 | Chen | Jun 2007 | B2 |
7278174 | Villalobos | Oct 2007 | B2 |
7279174 | Pacetti et al. | Oct 2007 | B2 |
7282020 | Kaplan | Oct 2007 | B2 |
7308748 | Kokish | Dec 2007 | B2 |
7323454 | De Nijs et al. | Jan 2008 | B2 |
7326734 | Zi et al. | Feb 2008 | B2 |
7329383 | Stinson | Feb 2008 | B2 |
7378105 | Burke et al. | May 2008 | B2 |
7419696 | Berg et al. | Sep 2008 | B2 |
7429378 | Serhan et al. | Sep 2008 | B2 |
7444162 | Hassan | Oct 2008 | B2 |
7455688 | Furst et al. | Nov 2008 | B2 |
7456151 | Li et al. | Nov 2008 | B2 |
7462593 | Cuttitta et al. | Dec 2008 | B2 |
7485113 | Varner et al. | Feb 2009 | B2 |
7498042 | Igaki et al. | Mar 2009 | B2 |
7524865 | D'Amato et al. | Apr 2009 | B2 |
7537610 | Reiss | May 2009 | B2 |
7537785 | Loscalzo et al. | May 2009 | B2 |
7553827 | Attawia et al. | Jun 2009 | B2 |
7713538 | Lewis et al. | May 2010 | B2 |
7727275 | Betts et al. | Jun 2010 | B2 |
7745566 | Chattopadhyay et al. | Jun 2010 | B2 |
7763277 | Canham et al. | Jul 2010 | B1 |
7771468 | Whitbourne et al. | Aug 2010 | B2 |
7837726 | Von Oepen et al. | Nov 2010 | B2 |
7842312 | Burgermeister et al. | Nov 2010 | B2 |
7919108 | Reyes et al. | Apr 2011 | B2 |
7955383 | Krivoruchko et al. | Jun 2011 | B2 |
7967855 | Furst et al. | Jun 2011 | B2 |
7972661 | Pui et al. | Jul 2011 | B2 |
8070796 | Furst et al. | Dec 2011 | B2 |
8295565 | Gu et al. | Oct 2012 | B2 |
8298565 | Taylor et al. | Oct 2012 | B2 |
8377356 | Huang et al. | Feb 2013 | B2 |
8535372 | Fox et al. | Sep 2013 | B1 |
8709071 | Huang et al. | Apr 2014 | B1 |
8753659 | Lewis et al. | Jun 2014 | B2 |
8753709 | Hossainy et al. | Jun 2014 | B2 |
8758429 | Taylor et al. | Jun 2014 | B2 |
8795762 | Fulton et al. | Aug 2014 | B2 |
8834913 | Shaw et al. | Sep 2014 | B2 |
8852625 | DeYoung et al. | Oct 2014 | B2 |
8900651 | McClain et al. | Dec 2014 | B2 |
9433516 | McClain et al. | Sep 2016 | B2 |
20010026804 | Boutignon | Oct 2001 | A1 |
20010034336 | Shah et al. | Oct 2001 | A1 |
20010037143 | Oepen | Nov 2001 | A1 |
20010044629 | Stinson | Nov 2001 | A1 |
20010049551 | Tseng et al. | Dec 2001 | A1 |
20020007209 | Scheerder et al. | Jan 2002 | A1 |
20020051485 | Bottomley | May 2002 | A1 |
20020051845 | Mehta et al. | May 2002 | A1 |
20020082680 | Shanley et al. | Jun 2002 | A1 |
20020091433 | Ding et al. | Jul 2002 | A1 |
20020099332 | Slepian et al. | Jul 2002 | A1 |
20020125860 | Schworm et al. | Sep 2002 | A1 |
20020133072 | Wang et al. | Sep 2002 | A1 |
20020144757 | Craig et al. | Oct 2002 | A1 |
20020151959 | Von Oepen | Oct 2002 | A1 |
20030001830 | Wampler et al. | Jan 2003 | A1 |
20030004563 | Jackson et al. | Jan 2003 | A1 |
20030031699 | Van Antwerp | Feb 2003 | A1 |
20030077200 | Craig et al. | Apr 2003 | A1 |
20030088307 | Shulze et al. | May 2003 | A1 |
20030125800 | Shulze et al. | Jul 2003 | A1 |
20030143315 | Pui et al. | Jul 2003 | A1 |
20030170305 | O'Neil et al. | Sep 2003 | A1 |
20030180376 | Dalal et al. | Sep 2003 | A1 |
20030185964 | Weber et al. | Oct 2003 | A1 |
20030204238 | Tedeschi | Oct 2003 | A1 |
20030222017 | Fulton et al. | Dec 2003 | A1 |
20030222018 | Yonker et al. | Dec 2003 | A1 |
20030232014 | Burke et al. | Dec 2003 | A1 |
20040013792 | Epstein et al. | Jan 2004 | A1 |
20040018228 | Fischell et al. | Jan 2004 | A1 |
20040022400 | Magrath | Feb 2004 | A1 |
20040022853 | Ashton et al. | Feb 2004 | A1 |
20040044397 | Stinson | Mar 2004 | A1 |
20040059290 | Palasis et al. | Mar 2004 | A1 |
20040102758 | Davila et al. | May 2004 | A1 |
20040106982 | Jalisi | Jun 2004 | A1 |
20040122205 | Nathan | Jun 2004 | A1 |
20040126542 | Fujiwara et al. | Jul 2004 | A1 |
20040143317 | Stinson et al. | Jul 2004 | A1 |
20040144317 | Chuman et al. | Jul 2004 | A1 |
20040147904 | Hung et al. | Jul 2004 | A1 |
20040157789 | Geall | Aug 2004 | A1 |
20040170685 | Carpenter et al. | Sep 2004 | A1 |
20040193177 | Houghton et al. | Sep 2004 | A1 |
20040193262 | Shadduck | Sep 2004 | A1 |
20040220660 | Shanley et al. | Nov 2004 | A1 |
20040224001 | Pacetti et al. | Nov 2004 | A1 |
20040236416 | Falotico | Nov 2004 | A1 |
20040260000 | Chaiko | Dec 2004 | A1 |
20050003074 | Brown et al. | Jan 2005 | A1 |
20050004661 | Lewis et al. | Jan 2005 | A1 |
20050010275 | Sahatjian et al. | Jan 2005 | A1 |
20050015046 | Weber et al. | Jan 2005 | A1 |
20050019747 | Anderson et al. | Jan 2005 | A1 |
20050033414 | Zhang et al. | Feb 2005 | A1 |
20050038498 | Dubrow et al. | Feb 2005 | A1 |
20050048121 | East et al. | Mar 2005 | A1 |
20050049694 | Neary | Mar 2005 | A1 |
20050060028 | Horres et al. | Mar 2005 | A1 |
20050069630 | Fox et al. | Mar 2005 | A1 |
20050070989 | Lye et al. | Mar 2005 | A1 |
20050070990 | Stinson | Mar 2005 | A1 |
20050074479 | Weber et al. | Apr 2005 | A1 |
20050075714 | Cheng et al. | Apr 2005 | A1 |
20050079199 | Heruth et al. | Apr 2005 | A1 |
20050079274 | Palasis et al. | Apr 2005 | A1 |
20050084533 | Howdle et al. | Apr 2005 | A1 |
20050131513 | Myers et al. | Jun 2005 | A1 |
20050147734 | Seppala et al. | Jul 2005 | A1 |
20050159704 | Scott | Jul 2005 | A1 |
20050166841 | Robida | Aug 2005 | A1 |
20050175772 | Worsham et al. | Aug 2005 | A1 |
20050177223 | Palmaz | Aug 2005 | A1 |
20050191491 | Wang et al. | Sep 2005 | A1 |
20050196424 | Chappa | Sep 2005 | A1 |
20050208102 | Schultz | Sep 2005 | A1 |
20050209244 | Prescott et al. | Sep 2005 | A1 |
20050216075 | Wang et al. | Sep 2005 | A1 |
20050238829 | Motherwell et al. | Oct 2005 | A1 |
20050245637 | Hossainy et al. | Nov 2005 | A1 |
20050255327 | Chaney | Nov 2005 | A1 |
20050260186 | Bookbinder et al. | Nov 2005 | A1 |
20050268573 | Yan | Dec 2005 | A1 |
20050288481 | Desnoyer et al. | Dec 2005 | A1 |
20050288629 | Kunis | Dec 2005 | A1 |
20060001011 | Wilson et al. | Jan 2006 | A1 |
20060002974 | Pacetti et al. | Jan 2006 | A1 |
20060020325 | Burgermeister et al. | Jan 2006 | A1 |
20060030652 | Adams et al. | Feb 2006 | A1 |
20060045901 | Weber | Mar 2006 | A1 |
20060073329 | Boyce et al. | Apr 2006 | A1 |
20060089705 | Ding et al. | Apr 2006 | A1 |
20060093771 | Rypacek et al. | May 2006 | A1 |
20060094744 | Maryanoff et al. | May 2006 | A1 |
20060106455 | Furst et al. | May 2006 | A1 |
20060116755 | Stinson | Jun 2006 | A1 |
20060121080 | Lye et al. | Jun 2006 | A1 |
20060121089 | Michal et al. | Jun 2006 | A1 |
20060134168 | Chappa et al. | Jun 2006 | A1 |
20060134211 | Lien et al. | Jun 2006 | A1 |
20060136041 | Schmid et al. | Jun 2006 | A1 |
20060147698 | Carroll et al. | Jul 2006 | A1 |
20060153729 | Stinson | Jul 2006 | A1 |
20060160455 | Sugyo et al. | Jul 2006 | A1 |
20060188547 | Bezwada | Aug 2006 | A1 |
20060193886 | Owens et al. | Aug 2006 | A1 |
20060193890 | Owens et al. | Aug 2006 | A1 |
20060198868 | Dewitt et al. | Sep 2006 | A1 |
20060210638 | Liversidge et al. | Sep 2006 | A1 |
20060216324 | Stucke et al. | Sep 2006 | A1 |
20060222756 | Davila et al. | Oct 2006 | A1 |
20060228415 | Oberegger et al. | Oct 2006 | A1 |
20060228453 | Cromack et al. | Oct 2006 | A1 |
20060235506 | Ta et al. | Oct 2006 | A1 |
20060276877 | Owens et al. | Dec 2006 | A1 |
20060287611 | Fleming | Dec 2006 | A1 |
20070009564 | McClain et al. | Jan 2007 | A1 |
20070009664 | Fallais et al. | Jan 2007 | A1 |
20070026042 | Narayanan | Feb 2007 | A1 |
20070032864 | Furst et al. | Feb 2007 | A1 |
20070038227 | Massicotte et al. | Feb 2007 | A1 |
20070038289 | Nishide et al. | Feb 2007 | A1 |
20070043434 | Meerkin et al. | Feb 2007 | A1 |
20070059350 | Kennedy et al. | Mar 2007 | A1 |
20070065478 | Hossainy | Mar 2007 | A1 |
20070110888 | Radhakrishnan et al. | May 2007 | A1 |
20070123973 | Roth et al. | May 2007 | A1 |
20070123977 | Cottone et al. | May 2007 | A1 |
20070128274 | Zhu et al. | Jun 2007 | A1 |
20070148251 | Hossainy et al. | Jun 2007 | A1 |
20070154513 | Atanasoska | Jul 2007 | A1 |
20070154554 | Burgermeister et al. | Jul 2007 | A1 |
20070196242 | Boozer et al. | Aug 2007 | A1 |
20070196423 | Ruane et al. | Aug 2007 | A1 |
20070198081 | Castro et al. | Aug 2007 | A1 |
20070200268 | Dave | Aug 2007 | A1 |
20070203569 | Burgermeister et al. | Aug 2007 | A1 |
20070219579 | Paul | Sep 2007 | A1 |
20070225795 | Granada et al. | Sep 2007 | A1 |
20070259017 | Francis | Nov 2007 | A1 |
20070280992 | Margaron et al. | Dec 2007 | A1 |
20080030066 | Mercier et al. | Feb 2008 | A1 |
20080051866 | Chen et al. | Feb 2008 | A1 |
20080065192 | Berglund | Mar 2008 | A1 |
20080071347 | Cambronne | Mar 2008 | A1 |
20080071358 | Weber et al. | Mar 2008 | A1 |
20080071359 | Thornton et al. | Mar 2008 | A1 |
20080075753 | Chappa | Mar 2008 | A1 |
20080077232 | Nishide | Mar 2008 | A1 |
20080085880 | Viswanath et al. | Apr 2008 | A1 |
20080095919 | McClain et al. | Apr 2008 | A1 |
20080097575 | Cottone | Apr 2008 | A1 |
20080097591 | Savage et al. | Apr 2008 | A1 |
20080098178 | Veazey et al. | Apr 2008 | A1 |
20080107702 | Jennissen | May 2008 | A1 |
20080118543 | Pacetti et al. | May 2008 | A1 |
20080124372 | Hossainy et al. | May 2008 | A1 |
20080138375 | Yan et al. | Jun 2008 | A1 |
20080206304 | Lindquist et al. | Aug 2008 | A1 |
20080213464 | O'Connor | Sep 2008 | A1 |
20080233267 | Berglund | Sep 2008 | A1 |
20080255510 | Wang | Oct 2008 | A1 |
20080269449 | Chattopadhyay et al. | Oct 2008 | A1 |
20080286325 | Reyes et al. | Nov 2008 | A1 |
20080292776 | Dias et al. | Nov 2008 | A1 |
20080300669 | Hossainy | Dec 2008 | A1 |
20090043379 | Prescott | Feb 2009 | A1 |
20090062909 | Taylor et al. | Mar 2009 | A1 |
20090068266 | Raheja et al. | Mar 2009 | A1 |
20090076446 | Dubuclet et al. | Mar 2009 | A1 |
20090082855 | Borges et al. | Mar 2009 | A1 |
20090098178 | Hofmann et al. | Apr 2009 | A1 |
20090105687 | Deckman et al. | Apr 2009 | A1 |
20090105809 | Lee et al. | Apr 2009 | A1 |
20090110711 | Trollsas et al. | Apr 2009 | A1 |
20090111787 | Lim et al. | Apr 2009 | A1 |
20090123515 | Taylor et al. | May 2009 | A1 |
20090186069 | DeYoung et al. | Jul 2009 | A1 |
20090202609 | Keough et al. | Aug 2009 | A1 |
20090216317 | Cromack et al. | Aug 2009 | A1 |
20090227949 | Freyman et al. | Sep 2009 | A1 |
20090231578 | Ling et al. | Sep 2009 | A1 |
20090263460 | McDonald | Oct 2009 | A1 |
20090285974 | Kerrigan et al. | Nov 2009 | A1 |
20090292351 | McClain et al. | Nov 2009 | A1 |
20090297578 | Trollsas et al. | Dec 2009 | A1 |
20100000328 | Mahmoud | Jan 2010 | A1 |
20100006358 | Ishikawa | Jan 2010 | A1 |
20100015200 | McClain et al. | Jan 2010 | A1 |
20100030261 | McClain | Feb 2010 | A1 |
20100042206 | Yadav et al. | Feb 2010 | A1 |
20100055145 | Betts et al. | Mar 2010 | A1 |
20100055294 | Wang et al. | Mar 2010 | A1 |
20100063570 | Pacetti et al. | Mar 2010 | A1 |
20100063580 | McClain et al. | Mar 2010 | A1 |
20100074934 | Hunter | Mar 2010 | A1 |
20100131044 | Patel | May 2010 | A1 |
20100155496 | Stark et al. | Jun 2010 | A1 |
20100166869 | Desai et al. | Jul 2010 | A1 |
20100196482 | Radovic-Moreno et al. | Aug 2010 | A1 |
20100198330 | Hossainy et al. | Aug 2010 | A1 |
20100198331 | Rapoza et al. | Aug 2010 | A1 |
20100211164 | McClain et al. | Aug 2010 | A1 |
20100228348 | McClain et al. | Sep 2010 | A1 |
20100233332 | Xing et al. | Sep 2010 | A1 |
20100239635 | McClain et al. | Sep 2010 | A1 |
20100241220 | McClain et al. | Sep 2010 | A1 |
20100256746 | Taylor et al. | Oct 2010 | A1 |
20100256748 | Taylor et al. | Oct 2010 | A1 |
20100262224 | Kleiner | Oct 2010 | A1 |
20100272775 | Cleek et al. | Oct 2010 | A1 |
20100272778 | McClain et al. | Oct 2010 | A1 |
20100285085 | Stankus et al. | Nov 2010 | A1 |
20100298928 | McClain et al. | Nov 2010 | A1 |
20100305689 | Venkatraman et al. | Dec 2010 | A1 |
20110009953 | Luk et al. | Jan 2011 | A1 |
20110034422 | Kannan et al. | Feb 2011 | A1 |
20110159069 | Shaw et al. | Jun 2011 | A1 |
20110160751 | Granja | Jun 2011 | A1 |
20110172763 | Ndondo-Lay | Jul 2011 | A1 |
20110190864 | McClain et al. | Aug 2011 | A1 |
20110223212 | Taton et al. | Sep 2011 | A1 |
20110238161 | Fulton et al. | Sep 2011 | A1 |
20110257732 | McClain et al. | Oct 2011 | A1 |
20110264190 | McClain et al. | Oct 2011 | A1 |
20110301697 | Hoffmann et al. | Dec 2011 | A1 |
20120064124 | McClain et al. | Mar 2012 | A1 |
20120064143 | Sharp et al. | Mar 2012 | A1 |
20120065723 | Drasler et al. | Mar 2012 | A1 |
20120101566 | Mews et al. | Apr 2012 | A1 |
20120150275 | Shaw-Klein | Jun 2012 | A1 |
20120160408 | Clerc et al. | Jun 2012 | A1 |
20120172787 | McClain et al. | Jul 2012 | A1 |
20120177742 | McClain et al. | Jul 2012 | A1 |
20120231037 | Levi et al. | Sep 2012 | A1 |
20120271396 | Zheng et al. | Oct 2012 | A1 |
20120280432 | Chen et al. | Nov 2012 | A1 |
20120290075 | Mortisen et al. | Nov 2012 | A1 |
20120323311 | McClain et al. | Dec 2012 | A1 |
20130006351 | Taylor et al. | Jan 2013 | A1 |
20130035754 | Shulze et al. | Feb 2013 | A1 |
20130087270 | Hossainy et al. | Apr 2013 | A1 |
20130172853 | McClain et al. | Jul 2013 | A1 |
20140343667 | McClain | Nov 2014 | A1 |
20140350522 | McClain et al. | Nov 2014 | A1 |
20140371717 | McClain et al. | Dec 2014 | A1 |
20150024116 | Matson et al. | Jan 2015 | A1 |
20150025620 | Taylor et al. | Jan 2015 | A1 |
20160095726 | McClain et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2237466 | Nov 1998 | CA |
2589761 | Dec 2004 | CA |
2615452 | Jan 2007 | CA |
2650590 | Nov 2007 | CA |
2679712 | Jul 2008 | CA |
2684482 | Oct 2008 | CA |
2721832 | Dec 2009 | CA |
2423899 | Mar 2001 | CN |
1465410 | Jan 2004 | CN |
1575860 | Feb 2005 | CN |
1649551 | Aug 2005 | CN |
1684641 | Oct 2005 | CN |
101161300 | Apr 2008 | CN |
102481195 | May 2012 | CN |
4336209 | Mar 1995 | DE |
29702671 | Apr 1997 | DE |
29716476 | Dec 1997 | DE |
19633901 | Feb 1998 | DE |
29716467 | Feb 1998 | DE |
19740506 | Mar 1998 | DE |
19754870 | Aug 1998 | DE |
19822157 | Nov 1999 | DE |
69611186 | May 2001 | DE |
0335341 | Oct 1989 | EP |
0604022 | Jun 1994 | EP |
800801 | Oct 1997 | EP |
0876806 | Nov 1998 | EP |
0982041 | Mar 2000 | EP |
1195822 | Apr 2002 | EP |
1325758 | Jul 2003 | EP |
1327422 | Jul 2003 | EP |
1454677 | Sep 2004 | EP |
1502655 | Feb 2005 | EP |
1909973 | Apr 2008 | EP |
2197070 | Jun 2010 | EP |
2293357 | Mar 2011 | EP |
2293366 | Mar 2011 | EP |
2758253 | Jul 1998 | FR |
1994-098902 | Apr 1994 | JP |
H06218063 | Aug 1994 | JP |
H08206223 | Aug 1996 | JP |
H09-056807 | Mar 1997 | JP |
H1029524 | Feb 1998 | JP |
H10151207 | Jun 1998 | JP |
H10314313 | Dec 1998 | JP |
H1157018 | Mar 1999 | JP |
2000316981 | Nov 2000 | JP |
2001521503 | Nov 2001 | JP |
2003533492 | Nov 2001 | JP |
2003-205037 | Jul 2003 | JP |
2003-533286 | Nov 2003 | JP |
2003-533493 | Nov 2003 | JP |
2007502281 | Feb 2004 | JP |
2004512059 | Apr 2004 | JP |
2004173770 | Jun 2004 | JP |
2004-518458 | Jun 2004 | JP |
2004-529674 | Sep 2004 | JP |
2004528060 | Sep 2004 | JP |
2005-505318 | Feb 2005 | JP |
2005519080 | Jun 2005 | JP |
2005-523119 | Aug 2005 | JP |
2005-523332 | Aug 2005 | JP |
2005-296690 | Oct 2005 | JP |
2006506191 | Feb 2006 | JP |
2006512175 | Apr 2006 | JP |
2009-501566 | Jan 2009 | JP |
2010052503 | Mar 2010 | JP |
10-2004-0034064 | Apr 2004 | KR |
9409010 | Apr 1994 | WO |
WO-9506487 | Mar 1995 | WO |
9616691 | Jun 1996 | WO |
WO 9620698 | Jul 1996 | WO |
9632907 | Oct 1996 | WO |
9641807 | Dec 1996 | WO |
WO 9745502 | Dec 1997 | WO |
9802441 | Jan 1998 | WO |
9908729 | Feb 1999 | WO |
9915530 | Apr 1999 | WO |
9916388 | Apr 1999 | WO |
9917680 | Apr 1999 | WO |
0006051 | Feb 2000 | WO |
0025702 | May 2000 | WO |
0032238 | Jun 2000 | WO |
0114387 | Mar 2001 | WO |
WO-0154662 | Aug 2001 | WO |
0187345 | Nov 2001 | WO |
0187368 | Nov 2001 | WO |
WO-01-87371 | Nov 2001 | WO |
WO-0187372 | Nov 2001 | WO |
WO-0240702 | May 2002 | WO |
WO-0243799 | Jun 2002 | WO |
02055122 | Jul 2002 | WO |
WO-02-074194 | Sep 2002 | WO |
WO-02090085 | Nov 2002 | WO |
02100456 | Dec 2002 | WO |
WO-03039553 | May 2003 | WO |
WO-03-082368 | Oct 2003 | WO |
03090684 | Nov 2003 | WO |
WO-03101624 | Dec 2003 | WO |
WO-2004009145 | Jan 2004 | WO |
2004028406 | Apr 2004 | WO |
WO-2004028589 | Apr 2004 | WO |
WO-2004043506 | May 2004 | WO |
WO-2004045450 | Jun 2004 | WO |
WO-2004098574 | Nov 2004 | WO |
WO-2005-042623 | May 2005 | WO |
WO-2005063319 | Jul 2005 | WO |
WO-2005069889 | Aug 2005 | WO |
WO-2005-117942 | Dec 2005 | WO |
WO-2006014534 | Feb 2006 | WO |
WO-2006052575 | May 2006 | WO |
2006063430 | Jun 2006 | WO |
WO-2006065685 | Jun 2006 | WO |
WO-2006-083796 | Aug 2006 | WO |
WO-2006-099276 | Sep 2006 | WO |
2007017707 | Jan 2007 | WO |
2007017708 | Jan 2007 | WO |
WO-2007-002238 | Jan 2007 | WO |
WO-2007-002238 | Jan 2007 | WO |
WO-2007-011707 | Jan 2007 | WO |
WO-2007-011707 | Jan 2007 | WO |
WO-2007-011708 | Jan 2007 | WO |
WO-2007-011708 | Jan 2007 | WO |
WO-2007-127363 | Jan 2007 | WO |
WO-2007092179 | Aug 2007 | WO |
WO 2007143609 | Dec 2007 | WO |
WO-2008042909 | Apr 2008 | WO |
WO-2008-046641 | Apr 2008 | WO |
WO-2008-046642 | Apr 2008 | WO |
WO-2008052000 | May 2008 | WO |
WO-2008070996 | Jun 2008 | WO |
WO 2008086369 | Jul 2008 | WO |
WO-2008-131131 | Oct 2008 | WO |
WO-20080148013 | Dec 2008 | WO |
2009039553 | Apr 2009 | WO |
2009051614 | Apr 2009 | WO |
WO-2009051614 | Apr 2009 | WO |
WO-2009051780 | Apr 2009 | WO |
WO-2009146209 | Dec 2009 | WO |
WO 2010009335 | Jan 2010 | WO |
WO-2010075590 | Jul 2010 | WO |
WO-2010-111196 | Sep 2010 | WO |
WO-2010-111196 | Sep 2010 | WO |
WO-2010-111232 | Sep 2010 | WO |
WO-2010-111232 | Sep 2010 | WO |
WO-2010-111238 | Sep 2010 | WO |
WO-2010-111238 | Sep 2010 | WO |
WO-2010-120552 | Oct 2010 | WO |
WO-2010-120552 | Oct 2010 | WO |
WO-2010-121187 | Oct 2010 | WO |
WO-2010-121187 | Oct 2010 | WO |
2010136604 | Dec 2010 | WO |
WO-2011-009096 | Jan 2011 | WO |
WO-2011097103 | Aug 2011 | WO |
2011119159 | Sep 2011 | WO |
WO-2011119762 | Sep 2011 | WO |
WO-2011130448 | Oct 2011 | WO |
WO-2011133655 | Oct 2011 | WO |
2012009684 | Jan 2012 | WO |
WO-2012009684 | Jan 2012 | WO |
WO-2012034079 | Mar 2012 | WO |
2012078955 | Jun 2012 | WO |
WO-2012082502 | Jun 2012 | WO |
WO-2012092504 | Jul 2012 | WO |
WO-2012142319 | Oct 2012 | WO |
WO-2012166819 | Dec 2012 | WO |
WO-2013012689 | Jan 2013 | WO |
WO-2013025535 | Feb 2013 | WO |
WO-2013059509 | Apr 2013 | WO |
WO-2013173657 | Nov 2013 | WO |
WO-2013177211 | Nov 2013 | WO |
WO-2014063111 | Apr 2014 | WO |
2014165264 | Oct 2014 | WO |
2014186532 | Nov 2014 | WO |
Entry |
---|
PCT/US2011/032371, International Search Report dated Jul. 7, 2011. |
PCT/US10/42355 Search Report and Written Opinion dated Sep. 2, 2010. |
PCT/US09/50883 Search Report dated Nov. 17, 2009. |
Domingo, C. et al., “Precipication of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle,” J. Supercritical Fluids 10:39-55 (1997). |
Mario, C.D. et al., “Drug-Eluting Bioabsorbable Magnesium Stent,” J. Interventional Cardiology 16(6):391-395 (2004). |
McAlpine, J.B. et al., “Revised NMR Assignments for Rapamycine,” J. Antibiotics 44:688-690 (1991). |
Ong and Serruys, “Technology Insight: an overview of research in drug-eluting stents,” Nat. Clin. Parct. Cardiovas. Med. 2(12):647-658 (2005). |
PCT/US06/24221 Search Report mailed Jan. 29, 2007. |
PCT/US06/27321 Search Report mailed Oct. 16, 2007. |
PCT/US06/27322 Search Report mailed Apr. 25, 2007. |
PCT/US07/10227 Search Report mailed Aug. 8, 2008. |
PCT/US07/80213 Search Report dated Apr. 16, 2008. |
PCT/US07/82275 Search Report mailed Apr. 18, 2008. |
PCT/US08/11852 Search Report dated Dec. 19, 2008. |
PCT/US08/64732 Search Report dated Sep. 4, 2008. |
PCT/US08/60671 Search Report dated Sep. 5, 2008. |
PCT/US08/50536 Search Report dated Jun. 2, 2008. |
PCT/US09/41045 Search Report dated Aug. 11, 2009. |
Schreiber, S.L. et al., “Atomic Structure of the Rapamycin Human Immunophilin FKBP-12 Complex,” J. Am. Chem. Soc. 113:7433-7435 (1991). |
Latella et al., “Nanoindentation hardness. Young's modulus, and creep behavior of organic-inorganic silica-based sol-gel thin films on copper,” J Mater Res 23(9): 2357-2365 (2008). |
Schmidt et al., “A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems,” Catheterization and Cardiovascular Interventions 73:350-360 (2009). |
Schmidt et al., “Trackability, Crossability, and Pushability of Coronary Stent Systems—An Experimental Approach,” Biomed Techn 47 (2002), Erg. 1, S. 124-126. |
Schmidt et al., “In vitro measurement of quality parameters of stent-catheter systems,” Biomed Techn 50(S1):1505-1506 (2005). |
Schmidt et al., “New aspects of in vitro testing of arterial stents based on the new European standard,” EN 14299, [online] (2009), [retrieved on Mar. 10, 2001] http://www.lib0ev.de/pl/pdf/EN14299.pdf (2009). |
Szabadits et al., “Flexibility and trackability of laser cut coronary stent systems,” Acta of Bioengineering and Biomechanics 11(3):11-18 (2009). |
PCT/US10/42355 Search Report mailed Sep. 2, 2010. |
PCT/US10/28253 Search Report and Written Opinion mailed Dec. 6, 2010. |
PCT/US10/28265 Search Report and Written Opinion mailed Dec. 13, 2010. |
PCT/US10/28195 Search Report and Written Opinion mailed Jan. 21, 2011. |
PCT/US10/31470 Search Report and Written Opinion mailed Jan. 28, 2011. |
PCT/US10/29494 Search Report and Written Opinion mailed Feb. 7, 2011. |
PCT/US11/22623 Search Report and Written Opinion mailed Mar. 28, 2011. |
U.S. Appl. No. 12/426,198 Office Action Mailed Mar. 23, 2011. |
U.S. Appl. No. 11/995,685 Office Action Mailed Aug. 20, 2010. |
U.S. Appl. No. 11/995,685 Office Action Mailed Nov. 24, 2009. |
U.S. Appl. No. 11/158,724 Office Action Mailed Sep. 8, 2008. |
U.S. Appl. No. 11/158,724 Office Action Mailed Sep. 17, 2009. |
Akoh et al., “One-Stage Synthesis of Raffinose Fatty Acid Polyesters.”Journal Food Science (1987) 52:1570. |
Albert et al., “Antibiotics for preventing recurrent urinary tract infection in non-pregnant women,”Cochrane Database System Rev. 3, CD001209 (2004). |
Au et al., “Methods to improve efficacy of intravesical mitomycin C: Results of a randomized phase III trial,” Journal of the National Cancer Institute, 93(8), 597-604 (2001). |
AU2006270221 Exam Report dated Apr. 6, 2010. |
AU2011232760 Exam Report dated Apr. 10, 2013. |
AU2012203203 Exam Report dated Apr. 12, 2013. |
AU2007243268 Exam Report dated May 15, 2013. |
AU2007243268 Exam Report dated Aug. 31, 2011. |
AU2009251504 Exam Report dated Dec. 8, 2011. |
AU2009270849 Exam Report dated Feb. 14, 2012. |
Balss et al., “Quantitative spatial distribution of sirolumus and polymers in drug-eluting stents using confocal Raman microscopy,” J. of Biomedical Materials Research Part A, 258-270 (2007). |
Belu et al., “Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary Joan Mass Spectroscopy,” Anal. Chem. 80:624-632 (2008). |
Belu, et al., “Chemical imaging of drug eluting coatings: Combining surface analysis and confocal Rama microscopy” J. Controlled Release 126: 111-121 (2008). |
Boneff, “Topical Treatment of Chronic Prostatitis and Premature Ejaculation,” International Urology and Nephrology 4(2):183-186 (1971). |
Bookbinder et al., “A recombinant human enzyme for enhanced interstitial transport of therapeutics,” Journal of Controlled Release 114:230-241 (2006). |
Borchert et al., “Prevention and treatement of urinary tract infection with probiotics: Review and research perspective,” Indian Journal Urol. 24(2):139-144 (2008). |
Brunstein et al., “Histamine, a vasoactive agent with vascular disrupting potential improves tumour response by enhancing local drug delivery,” British Journal of Cancer 95:1663-1669 (2006). |
Bugay et al., “Raman Analysis of Pharmaceuticals,” in “Applications of Vibrational Spectroscopy in Pharmaceutical Research and Development,” Ed. Pivonka, D.E., Chalmers, J.M., Griffiths, P.R. (2007) Wiley and Sons. |
CA 2615452 Office Action dated Dec. 19, 2012. |
CA 2684482 Office Action Jul. 11, 2012. |
CA 2684482 Office Action dated Nov. 10, 2011. |
CA 2688314 Office Action dated Jun. 6, 2012. |
CA 2730995 Office Action dated Sep. 26, 2012. |
CA 2757276 Office Action dated Feb. 15, 2013. |
CA 2756307 Office action dated Feb. 18, 2013. |
CA 2756386 Office action dated Mar. 15, 2013. |
CA 2759015 Office action dated Apr. 8, 2013. |
CA 2756388 Office Action dated Apr. 11, 2013. |
CA 2613280 Office Action dated Oct. 2, 2012. |
Cadieux et al., “Use of triclosan-eluting ureteral stents in patients with long-term stents,” J. Endourol (Epub) (Jun. 19, 2009). |
Channon et al., “Nitric Oxide Synthase in Atherosclerosis and Vascular Injury: Insights from Experimental Gene Therapy,” Arteriosclerosis, Thrombosis and Vascular Biology, 20(8):1873-1881 (2000). |
Chen et al Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials. Dec. 2005;26(35):7418-24. |
Chopek et al. “The influence of carbon fibres on the resorption time and mechanical properties of the lactide-glycolide co-polymer.” J. Biomater. Sci. Polymer Edn, vol. 18, No. 11, pp. 1355-1368 (2007). |
Clair and Burks, “Thermoplastic/Melt-Processable Polyimides,” NASA Conf. Pub. #2334 (1984), pp. 337-355. |
CN 2006800258093 Office Action dated May 30, 2012. |
CN 200880007308.1 Office Action dated Nov. 23, 2011. |
CN 200880007308.1 Office Action dated Oct. 18, 2012. |
CN 200880020515 Office Action dated Oct. 9, 2012. |
CN 200880100102.3 Office Action dated Jun. 1, 2012. |
CN 200980122691 Office Action dated Oct. 10, 2012. |
CN 200780047425.6 Office action dated Aug. 3, 2012. |
CN 200780047425.6 Office action dated Feb. 28, 2013. |
CN 200980136432.2 Office action dated Jan. 14, 2013. |
CN 200880100102.3 Office Action dated Apr. 11, 2013. |
CRC Handbook of chemistry and physics. 71st ed. David R. Lide, Editor-in-Chief. Boca Raton, FL, CRC Press; 1990; 6-140. |
Cyrus et al., “Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury,” Arterioscler Thromb Vasc Biol 2008;28:820-826. |
Derwent-ACC-No. 2004-108578 Abstracting 2004003077; Jan. 8, 2004; 3 pages. |
DiStasi et al., “Percutaneous sequential bacillus Calmette-Guerin and mitomycin C for panurothelial carcinomatosis,” Can. J. Urol. 12(6):2895-2898 (2005). |
Domb and Langer, “Polyanhydrides. I. Preparation of High Molecular Weight Polyanhydrides.”J. Polym Sci. 25:3373-3386 (1987). |
Dzik-Jurasz, “Molecular imaging in vivo: an introduction,” The British Journal of Radiology, 76:S98-S109 (2003). |
EA 201001497 Office Action dated Feb. 11, 2013. |
EA 200901254/28 Office Action dated Jul. 18, 2012. |
Electrostatic Process, Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc. 1999; 7:15-39. |
Eltze et al., “Imidazoquinolinon, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly (ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors,” Mol. Pharmacol 74(6):1587-1598 (2008). |
EP06773731.2 Search Report dated Oct. 2, 2012. |
EP06787258.0 Search Report dated Feb. 6, 2012. |
EP07756094.4 Search Report dated Aug. 31, 2012. |
EP08733210.2 Search Report dated Oct. 23, 2012. |
EP08756215.3 Search Report dated Oct. 5, 2011. |
EP08756215.3 Search Report dated Jan. 28, 2013. |
EP09805981.9 Office Action dated Feb. 13, 2013. |
EP06787258.0 Office Action dated Mar. 15, 2013. |
EP09755571.8 Search Report dated Apr. 9, 2013. |
EP08705772.5 Search Report dated Feb. 20, 2013. |
Ettmayer et al. Lessons learned from marketed and investigational prodrugs. J Med Chem. May 6, 2004;47(10):2393-404. |
Fibbi et al., “Chronic inflammation in the pathogenesis of benign prostatic hyperplasia,” Int J Androl. Jun. 1, 2010;33(3):475-88. |
Fleischmann et al., “High Expression of Gastrin-Releasing Peptide Receptors in the Vascular bed of Urinary Tract Cancers: Promising Candidates for Vascular Targeting Applications.” Jun. 2009, Endocr. Relat. Cancer 16(2):623-33. |
Froehlich et al., “Conscious sedation for gastroscopy: patient tolerance and cardiorespiratory parameters,” Gastroenterology 108(3):697-704 (1995). |
Fujiwara et al., “Insulin-like growth factor 1 treatment via hydrogels rescues cochlear hair cells from ischemic injury,” Oct. 29, 2008, NeuroReport 19(16):1585-1588. |
Fulton et al. Thin Fluoropolymer films and nanoparticle coatings from the rapid expansion of supercritical carbon dioxide solutions with electrostatic collection, Polymer Communication. 2003; 2627-3632. |
Green et al., “Simple conjugated polymer nanoparticles as biological labels,” Proc Roy Soc A. published online Jun. 24, 2009 doi:10.1098/rspa.2009.0181. |
Griebenow et al., “On Protein Denaturation in Aqueous-Organic Mixtures but not in Pure Organic Solvents,” J. Am Chem Soc., vol. 118. No. 47, 11695-11700 (1996). |
Hamilos et al., “Differential effects of Drug-Eluting Stents on Local Endothelium-Dependent Coronary Vasomotion.” JACC vol. 51, No. 22, 2008, Endothelium and DES Jun. 3, 2008:2123-9. |
Hartmann et al., “Tubo-ovarian abscess in virginal adolescents: exposure of the underlying etiology,” J. Pediatr Adolesc Gynecol, 22(3):313-16 (2009). |
Hasegawa et al., “Nylong 6/Na-montmorillonite nanocomposites prepared by compounding Nylon 6 with Na-montmorillonite slurry,” Polymer 44 (2003) 2933-2937. |
Hinds, WC. Aerosol Technology, Properties, Behavior and Measurement of Airborne Particles, Department of Environmental Health Sciences, Harvard University School of Public Health, Boston, Massachusetts. 1982; 283-314. |
Hladik et al., “Can a topical microbicide prevent rectal HIV transmission?” PLoS Med. 5(8):e167 (2008). |
Iconomidou et al., “Secondary Structure of Chorion Proteins of the Teleosatan Fish Dentex dentex by ATR FR-IR and FT-Raman Spectroscopy,” J. of Structural Biology, 132, 112-122 (2000). |
IN-368/DELNP/2008 Exam Report dated Oct. 17, 2011. |
IL—208648 Official Notification dated Feb. 9, 2012. |
Jackson et al., “Characterization of perivascular poly(lactic-co-glycolic acid) films containing paclitaxel” Int. J of Pharmaceutics, 283:97-109 (2004), incorporated in its entirety herein by reference. |
Jensen et al., Neointimal hyperplasia after sirollmus-eluting and paclitaxel-eluting stend implantation in diabetic patients: the randomized diabetes and drug eluting stent (DiabeDES) intravascular ultrasound trial. European heart journal (29), pp. 2733-2741. Oct. 2, 2008. Retrieved from the Internet. Retrieved on [Jul. 17, 2012]. |
Jewell, et al., “Release of Plasmid DNA from Intravascular Stents Coated with Ultrathin Multilayered Polyelectrolyte Films” Biomacromolecules. 7: 2483-2491 (2006). |
Johns, H.E, J.R.Cunningham, Thomas, Charles C., Publisher, “The Physics of Radiology,”1983, Springfield, IL, pp. 133-143. |
Joner et al. “Site-specific targeting of nanoparticle prednisolone reduces in-stent restenosis in a rabbit model of established atheroma,” Arterioscler Thromb Vasc Biol. 2008;28:1960-1966. |
Mei et al., “Local Delivery of Modified Paclitaxel-Loaded Poly( ε-caprolactone)/Pluronic F68 Nanoparticles for Long-Term Inhibition of Hyperplasia,” Journal of Pharmaceutical Sciences, vol. 98, No. 6, Jun. 2009. |
Jovanovic et al. “Stabilization of Proteins in Dry Powder Formulations Using Supercritical Fluid Technology,” Pharm. Res. 2004; 21(11). |
JP 2008-521633 Office Action dated Oct. 12, 2012. |
JP2008-521633 Office Action dated Dec. 28, 2011. |
JP-2009-534823 Office Action dated Sep. 20, 2012. |
JP-2009-534823 Office Action dated Feb. 21, 2012. |
JP-2009-545647 Office Action dated Jun. 5, 2012. |
JP-2010-504253 Office Action dated Dec. 12, 2011. |
JP-2010-504253 Office Action dated Dec. 7, 2012. |
JP-2011-518920 Office action dated Dec. 17, 2012. |
JP-2009-534823 Office Action dated Apr. 23, 2013. |
JP-2012-503677 Office action dated Jan. 18, 2013. |
Kazemi et al., “The effect of betamethasone gel in reducing sore throat, cough, and hoarseness after laryngo-tracheal intubation,” Middle East J. Anesthesiol. 19(1):197-204 (2007). |
Kehinde et al., “Bacteriology of urinary tract infection associated with indwelling J ureteral stents,” J. Endourol. 18(9):891-896 (2004). |
Kelly et al., “Double-balloon trapping technique for embolization of a large wide-necked superior cerebellar artery aneurysm: case report,” Neurosurgery 63(4 Suppl 2):291-292 (2008). |
Khan et al., “Cyclic Acetals of 4, 1′,6′-Trichloro-4, 1′,6′,-Trideoxy- Trideoxy-galacto-Sucrose and their Conversion into Methyl Ether Derivatives.”. Carb. Res. (1990) 198:275-283. |
Khan et al., “Chemistry and the new uses of Sucrose: How Important?” Pur and Appl. Chem (1984) 56:833-844. |
Khan et al., “Enzymic Regioselective Hydrolysis of Peracetylated Reducing Disaccharides, Specifically at the Anomeric Centre: Intermediates for the Synthesis of Oligosaccharides.” Tetrahedron Letters (1933) 34:7767. |
Khayankarn et al., “Adhesion and Permeability of Polyimide-Clay Nanocomposite Films for Protective Coatings,” Journal of Applied Polymer Science, vol. 89, 2875-2881 (2003). |
Koh et al. “A novel nanostructured poly(lactic-co-glycolic-acid)—multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies.” |
KR10-2008-7003756 Office Action dated Oct. 30, 2012. |
Kurt et al., “Tandem oral, rectal and nasal administrations of Ankaferd Blood Stopper to control profuse bleeding leading to hemodynamic instability,” Am J. Emerg. Med. 27(5):631, e1-2 (2009). |
Labhasetwar et al., “Arterial uptake of biodegradable nanoparticles: effect of surface modifications,” Journal of Pharmaceutical Sciences, vol. 87, No. 10, Oct. 1998; 1229-1234. |
Lamm et al., “Bladder Cancer: Current Optimal Intravesical Treatment: Pharmacologic Treatment,” Urologic Nursing 25(5):323-6, 331-2 (Oct. 26, 2005). |
Lawrence et al., “Rectal tacrolimus in the treatment of resistant ulcerative proctitis,” Aliment. Pharmacol Ther. 28(10):1214-20 (2008). |
Lee et al., “Novel therapy for hearing loss: delivery of insulin-like growth factor 1 to the cochlea using gelatin hydrogel,”Otol. Neurotol. 28(7):976-81 (2007). |
Lehmann et al, “Drug treatment of nonviral sexually transmitted diseases: specific issues in adolescents,” Pediatr Drugs 3(7):481-494 (2001. |
Mahoney et al., “Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary Ion mass Spectrometry,” Anal. Chem. , 80, 624-632 (2008). |
Mehik et al., “Alfuzosin treatment for chronic prostatitis/chronic pelvic pain syndrome: a prospecitve, randomized, double-blind, placebo-controlled, pilot study,” Urology 62(3):425-429 (2003). |
Melonakos et al., Treatment of low-grade bulbar transitional cell carcinoma with urethral instillation of mitomycin C, Oct. 28, 2008, Adv. Urol., 173694 Epub. |
Merrett et al., “Interaction of corneal cells with transforming growth factor beta2-modified poly dimethyl siloxane surfaces,” Journal of Biomedical Materials Research, Part A, vol. 67A, No. 3, pp. 981-993 (2003). |
Middleton and Tipton, Synthetic biodegradable polymers as orthopedic devises. Biomaterials 2000; 21:2335-46. |
Minchin, “Nanomedicine. sizing up targets with nanoparticles,” Nature Nanotechnology, vol. 33, Jan. 2008, 12-13. |
Minoque et al., “Laryngotracheal topicalization with lidocaine before intubation decreases the incidence of coughing on emergence from general anesthesia,” Anesth. Analg. 99(4):1253-1257 (2004). |
Mishima et al. “Microencapsulation of Proteins by Rapid Expansion of Supercritical Solution with a Nonsolvent,” AIChE J. 2000;46(4):857-65. |
Mocco et al., “Pharos neurovascular intracranail stent: Elective use for a symptomatic stenosis refractory to medical therapy,” Catheter Cardiovasc. Interv. (epub) (Mar. 2009). |
Mollen et al., “Prevalence of tubo-ovarian abcess in adolescents diagnosed with pelvice inflammatory disease in a pediatric emergency department,” Pediatr. Emerg. Care, 22(9): 621-625 (2006). |
Moroni et al., “Post-ischemic brain damage:targeting PARP-1 within the ischemic neurovaschular units as a realistic avenue to stroke treatment,” FEBS J. 276(1):36-45 (2009). |
Muhlen et al., “Magnetic Resonance Imaging Contrast Agent Targeted Toward Activated Platelets Allows in Vivo Detection of Thrombosis and Monitoring of Thrombolysis Circulation,” 118:258-267 (2008). |
Murphy et al., “Chronic prostatitis: management strategies,” Drugs 69(1): 71-84 (2009). |
NZ 588549 Examination Report dated Mar. 28, 2011. |
NZ 600814 Examination Report dated Jun. 29, 2012. |
O'Neil et al., “Extracellular matrix binding mixed micelles for drug delivery applications,” Journal of Controlled Release 137 (2009) 146-151. |
O'Donnell et al., “Salvage intravesical therapy with interferon-alpha 2b plus low dose bacillus Calmette-Guerin alone perviously failed,” Journ. Urology, 166(4):1300-1304 (2001). |
Olbert et al., “In vitro and in vivo effects of CpG-Oligodeoxynucleotides (CpG-ODN) on murine transitional cell carcinoma and on the native murine urinary bladder wall,” Anticancer Res. 29(6):2067-2076 (2009). |
PCT/US09/50883 International Search Report mailed Nov. 17, 2009. |
PCT/US12/46545 International Search Report mailed Nov. 20, 2012. |
PCT/US12/50408 International Search Report mailed Oct. 19, 2012. |
PCT/US2012/040040 International Search Report mailed Sep. 7, 2012. |
Perry et al., Chemical Engineer's Handbook, 5th Edition, McGraw-Hill, New York, 1973; 20-106. |
Torchlin, “Micellar Nanocarriers: Pharmaecutial Perspectives,” Pharmaceutical Research, vol. 24, No. 1, Jan. 2007. |
Plas et al., “Tubers and tumors: rapamycin therapy for benign and malignant tumors”, Curr Opin Cell Bio 21: 230-236, (2009). |
Poling et al., The Properties of Gases and Liquids. McGraw-Hill. 2001; 9:1-9.97. |
Pontari, “Chronic prostatitis/chronic pelvic pain syndrome in elderly men: toward better understanding and treatment,” Drugs Aging 20(15):1111-1115 (2003). |
Pontari, “Inflammation and anti-inflammatory therapy in chronic prostatits,” Urology 60(6Suppl):29-33 (2002). |
Raganath et al., “Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour,” Pharm Res (Epub) Jun. 20, 2009). |
Ranade et al., “Physical characterization of controlled release of paclitaxel from the Taxus Express2 drug-eluting stent,” J. Biomed Mater. Res. 71(4):625-634 (2004). |
Reddy et al., “Inhibition of apoptosis through localized delivery of rapamycin-loaded nanoparticles prevented neointimal hyperplasia and reendothelialized injured artery,” Circ Cardiovasc Interv 2008;1;209-216. |
Ristikankare et al., “Sedation, topical pharnygeal anesthesia and cardiorespiratory safety during gastroscopy,” J. Clin Gastorenterol. 40(1):899-905 (2006). |
Sahajanand Medical Technologies (Supralimus Core; Jul. 6, 2008). |
Salo et al., “Biofilm formation by Escherichia coli isolated from patients with urinary tract infections,” Clin Nephrol. 71(5):501-507 (2009). |
Saxena et al., “Haemodialysis catheter-related bloodstream infections: current treatment options and strategies for prevention,” Swiss Med Wkly 135:127-138 (2005). |
Schetsky, L. McDonald, “Shape Memory Alloys”, Encyclopedia of Chemical Technology (3d Ed), John Wiley & Sons 1982, vol. 20 pp. 726-736. |
Scheuffler et al., “Crystal Structure of Human Bone Morphogenetic Protein-2 at 2.7 Angstrom resolution,” Journal of Molecular Biology, vol. 287, Issue 1, Mar. 1999, retrieved online at http://www.sciencedirect.com/science/article/pii/S002283699925901. |
Sen et al., “Topical heparin: A promising agent for the prevention of tracheal stenosis in airway surgery,” J. Surg. Res (Epub ahead of print) Feb. 21, 2009. |
Serruys, Patrick et al., Comparison of Coronary-Artery Bypass Surgery and Stenting for the Treatment of Multivessel Disease, N. Engl. J. Med., 2001, vol. 344, No. 15, pp. 1117-1124. |
SG201007602-4 Written Opinion dated Jun. 20, 2012. |
SG201007602-4 Examination Report dated Feb. 13, 2013. |
Simpson et al., “Hyaluronan and hyaluronidase in genitourinary tumors.”Front Biosci. 13:5664-5680. |
Smith et al., “Mitomycin C and the endoscopic treatment of laryngotracheal stenosis: are two applications better than one?” Laryngoscope 119(2):272-283 (2009). |
Sumathi et al., “Controlled comparison between betamethasone gel and lidocaine jelly applied over tracheal tube to reduce postoperative sore throat, cough, and hoarseness of voice,” Br. J. Anaesth. 100(2):215-218 (2008. |
Testa, B. Prodrug research: futile or fertile? Biochem Pharmacol. Dec. 1, 2004;68(11):2097-106. |
Thalmann et al., “Long-term experience with bacillus Calmette-Guerin therapy of upper urinary tract transitional cell carcinoma in patients not eligible for surgery,” J Urol. 168(4 Pt 1):1381-1385 (2002). |
Merriam-Webster Online Dictionary, obtained onlie at: http://www.merriam-webster.com/dictionary/derivative, downloaded 07 Jul. 5, 2008. |
U.S. Appl. No. 11/158,724 Office Action Mailed Sep. 26, 2012. |
U.S. Appl. No. 11/877,591 Office Action Mailed Feb. 29, 2012. |
U.S. Appl. No. 11/877,591 Office Action Mailed Sep. 21, 2012. |
U.S. Appl. No. 11/995,687 Office Action Mailed Apr. 6, 2012. |
U.S. Appl. No. 11/995,687 Office Action Mailed Sep. 28, 2011. |
U.S. Appl. No. 12,298,459 Office Action Mailed Aug. 10, 2011. |
U.S. Appl. No. 12/298,459 Office Action Mailed Apr. 6, 2012. |
U.S. Appl. No. 12/426,198 Office Action Mailed Feb. 6, 2012. |
U.S. Appl. No. 12/443,959 Office Action Mailed Dec. 13, 2012. |
U.S. Appl. No. 12/443,959 Office Action mailed Feb. 15, 2012. |
U.S. Appl. No. 12/504,597 Final Office Action Mailed Oct. 3, 2012. |
U.S. Appl. No. 12/504,597 Office Action Mailed Dec. 5, 2011. |
U.S. Appl. No. 12/595,848 Office Action Mailed Jan. 13, 2012. |
U.S. Appl. No. 12/601,101 Office Action Mailed Dec. 27, 2012. |
U.S. Appl. No. 12/601,101 Office Action Mailed Mar. 27, 2012. |
U.S. Appl. No. 12/648,106 Final Office Action Mailed Sep. 25, 2012. |
U.S. Appl. No. 12/648,106 Office Action Mailed Jan. 30, 2012. |
U.S. Appl. No. 12/729,156 Final Office Action Mailed Oct. 16, 2012. |
U.S. Appl. No. 12/729,156 Office Action Mailed Feb. 1, 2012. |
U.S. Appl. No. 12/729,580 Office Action Mailed Apr. 10, 2012. |
U.S. Appl. No. 12/729,580 Office Action Mailed Jan. 22, 2013. |
U.S. Appl. No. 12/729,603 Final Office Action Mailed Oct. 10, 2012. |
U.S. Appl. No. 12/729,603 Office Action Mailed Mar. 27, 2012. |
U.S. Appl. No. 12/751,902 Office Action Mailed Jul. 13, 2012. |
U.S. Appl. No. 12/595,848 Office Action Mailed Mar. 15, 2013. |
U.S. Appl. No. 12/738,411 Final Office action Mailed Apr. 11, 2013. |
U.S. Appl. No. 13/605,904 Office Action Mailed Nov. 27, 2012. |
U.S. Appl. No. 12/762,007 Office action Mailed Feb. 11, 2013. |
U.S. Appl. No. 13/384,216 Office action Mailed Apr. 24, 2013. |
U.S. Appl. No. 13/340,472 Office action Mailed Apr. 26, 2013. |
U.S. Appl. No. 12/729,156 Office action Mailed May 8, 2013. |
U.S. Appl. No. 13/014,632 Office action Mailed May 8, 2013. |
Unger et al., “Poly(ethylene carbonate): A thermoelastic and biodegradable biomaterial for drug eluting stent coatings?” Journal fo Controlled Release, vol. 117, Issue 3, 312-321 (2007). |
Verma et al., “Effect of surface properties on nanoparticle-cell interactions,” Small 2010, 6, No. 1, 12-21. |
Wagenlehner et al., “A pollen extract (Cernilton) in patients with inflammatory chronic prostatitis/chronic pelvic pain syndrome: a multicentre, randomized, prospective, double-blind, placebo-controlled phase 3 study,” Eur Urol 9 (Epub) (Jun. 3, 2009). |
Wang et al. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials 2000; 27:5588-95. |
Wang et al., “Treatment with melagatran alone or in combination with thrombolytic therapy reduced ischemic brain injury,” Exp. Neurol 213(1):171-175 (2008). |
Warner et al., “Mitomycin C and airway surgery: how well does it work?” Ontolaryngol Head Neck Surg. 138(6):700-709 (2008). |
Wermuth, CG Similarity in drugs: reflections on analogue design. Drug Discov Today. Apr. 2006;11(7-8):348-54. |
Witjes et al., “Intravesical pharmacotherapy for non-muscle-invasive bladder cancer: a critical analysis of currently available drugs, treatment schedules, and long-term results,” Eur. Urol. 53(1):45-52. |
Wu et al., “Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites.” Polymer 48 (2007) 4449-4458. |
Xu et al., “Biodegradation of poly(1-lactide-co-glycolide tube stents in bile” Polymer Degradation and Stability. 93:811-817 (2008). |
Xue et al., “Spray-as-you-go airway topical anesthesia in patients with a difficult airway: a randomized, double-blind comparison of 2% and 4% lidocaine,” Anesth. Analg. 108(2): 536-543 (2009). |
Yepes et al., “Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic,” Trends Neurosci. 32(1):48-55 (2009). |
Yousof et al., “Reveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunction and associated cell death during cerebral ischemia,” Brain Res. 1250:242-253 (2009). |
Zhou et al. Synthesis and Characterization of Biodegradable Low Molecular Weight Aliphatic Polyesters and Their Use in Protein-Delivery Systems. J Appl Polym Sci 2004; 91:1848-56. |
PCT/US2011/044263 International Search Report, International Preliminary Report on Patentability and Written Opinion dated Feb. 9, 2012. |
PCT/US2007/82775 International Preliminary Report on Patentablity dated Apr. 28, 2009. |
PCT/US09/69603 International Search Report mailed Nov. 5, 2010. |
PCT/US10/28253 International Preliminary Report on Patentability dated Sep. 27, 2011. |
PCT/US12/33367 International Search Report mailed Aug. 1, 2012. |
PCT/US10/42355 International Preliminary Report on Patentability dated Jan. 17, 2012. |
PCT/US2011/67921 Search Report and Written Opinion mailed Jun. 22, 2012. |
PCT/US2011/051092 International Preliminary Report on Patentability dated Mar. 21, 2013. |
PCT/US10/28195 International Preliminary Report on Patentability dated Oct. 6, 2011. |
Abreu Filho et al., “Influence of metal alloy and the profile of coronary stents in patients with multivessel coronary disease,” Clinics 2011;66(6):985-989. |
AU2012203577 Exam Report dated Jun. 7, 2013. |
AU2011256902 Exam Report dated Jun. 13, 2013. |
CA 2730995 Office action dated May 29, 2013. |
CA 2650590 Office action dated Jul. 23, 2013. |
CN 200880007308.1 Office Action dated Jul. 3, 2013. |
CN 200880020515 Office Action dated Jul. 22, 2013. |
Cohen, et al. “Sintering Technique for the Preparation of Polymer Matrices for the Controlled Release of Macromolecules.” Journal of Pharamceutical Sciences, vol. 73, No. 8, 1984, p. 1034-1037. |
Colombo et al. “Selection of Coronary Stents,” Journal of the American College of Cardiology, vol. 40, No. 6, 2002, p. 1021-1033. |
EP07756094.4 Office action dated May 29, 2013. |
EP08733210.2 Office action dated Jul. 16, 2013. |
EP11769546.0 Search Report dated Sep. 19, 2013. |
EP09798764.8 Search Report dated Sep. 30, 2013. |
EP10756696.0 Search Report dated Oct. 10, 2013. |
EP10765295.0 Search Report dated Oct. 17, 2013. |
JP-2011-505248 Office action dated Jun. 4, 2013. |
JP-2010-510441 Office action dated May 7, 2013. |
JP-2009-545647 Office Action dated May 14, 2013. |
KR10-2008-7003756 Office Action dated Sep. 23, 2013. |
Shekunov et al. “Crystallization Processes in Pharmaceutical Technology and Drug Delivery Design.” Journal of Crystal Growth 211 (2000), pp. 122-136. |
U.S. Appl. No. 12,298,459 Office Action Mailed May 31, 2013. |
U.S. Appl. No. 13/229,473 Office Action Mailed Jun. 17, 2013. |
U.S. Appl. No. 13/605,904 Office Action Mailed Jun. 28, 2013. |
U.S. Appl. No. 11/877,591 Office Action Mailed Jul. 1, 2013. |
U.S. Appl. No. 12/748,134 Office Action Mailed Jul. 18, 2013. |
U.S. Appl. No. 12/738,411 Office action Mailed Aug. 21, 2013. |
U.S. Appl. No. 12/648,106 Office Action Mailed Sep. 18, 2013. |
U.S. Appl. No. 13/229,473 Final Office Action Mailed Sep. 24, 2013. |
U.S. Appl. No. 12/762,007 Final Office action Mailed Oct. 22, 2013. |
U.S. Appl. No. 12/595,848 Office Action Mailed Oct. 22, 2013. |
PCT/US2011/29667 International Search Report and Written Opinion mailed Jun. 1, 2011. |
PCT/US2011/67921 International Preliminary Report on Patentability dated Jul. 11, 2013. |
CA 2615452 Office Action dated Oct. 8, 2013. |
CA 2613280 Office action dated Dec. 10, 2013. |
CA 2756386 Office action dated Oct. 24, 2013. |
CN 200880100102.3 Office Action dated Dec. 11, 2013. |
CN 200980136432.2 Office action dated Nov. 4, 2013. |
EA 200901254 Office Action dated Jul. 29, 2013. |
EA 201001497 Office Action dated Jul. 29, 2013. |
EP08705772.5 Office Action dated Oct. 30, 2013. |
EP09755571.8 Office Action dated Dec. 13, 2013. |
EP10764884.2 Search Report dated Oct. 28, 2013. |
IL—201550 Official Notification dated Dec. 8, 2013. |
IN-6884DEFNP2009 Office Action dated Oct. 31, 2013. |
JP-2012-503677 Office action dated Nov. 1, 2013. |
JP-2012-151964 Office Action dated Dec. 10, 2013. |
PCT/US06/24221 International Preliminary Report on Patentability dated Dec. 24, 2007. |
PCT/US06/27321 International Preliminary Report on Patentability dated Jan. 16, 2008. |
PCT/US06/27322 International Preliminary Report on Patentability dated Jan. 16, 2008. |
PCT/US07/10227 International Preliminary Report on Patentability dated Oct. 28, 2008. |
PCT/US07/80213 International Preliminary Report on Patentability dated Apr. 7, 2009. |
PCT/US08/11852 International Preliminary Report on Patentability dated Apr. 20, 2010. |
PCT/US08/50536 International Preliminary Report on Patentability dated Jul. 14, 2009. |
PCT/US08/60671 International Preliminary Report on Patentability dated Oct. 20, 2009. |
PCT/US08/64732 International Preliminary Report on Patentability dated Dec. 1, 2009. |
PCT/US09/41045 International Preliminary Report on Patentability dated Oct. 19, 2010. |
PCT/US09/69603 International Preliminary Report on Patentability dated Jun. 29, 2011. |
PCT/US10/28265 International Report on Patentability dated Sep. 27, 2011. |
PCT/US10/29494 International Preliminary Report on Patentability dated Oct. 4, 2011. |
PCT/US10/31470 International Preliminary Report on Patentability dated Oct. 18, 2011. |
PCT/US11/032371 International Report on Patentability dated Oct. 16, 2012. |
PCT/US11/051092 International Search Report dated Apr. 2, 2012. |
PCT/US11/051092 Written Opinion dated Mar. 9, 2013. |
PCT/US11/22623 International Preliminary Report on Patentability dated Aug. 7, 2012. |
PCT/US12/33367 International Preliminary Report on Patentability dated Oct. 15, 2013. |
U.S. Appl. No. 11/158,724 Office action Mailed Dec. 31, 2013. |
U.S. Appl. No. 11/877,591 Final Action dated Nov. 4, 2013. |
U.S. Appl. No. 12/729,580 Final Action dated Nov. 14, 2013. |
U.S. Appl. No. 12/751,902 Office Action Mailed Dec. 19, 2013. |
U.S. Appl. No. 13/340,472 Office action Mailed Jan. 15, 2014. |
U.S. Appl. No. 13/384,216 Final Action dated Nov. 6, 2013. |
U.S. Appl. No. 13/014,632 Office action Mailed Jan. 10, 2014. |
Zilberman et al., Drug-Eluting bioresorbable stents for various applications, Annu Rev Biomed Eng., 2006;8:158-180. |
AU2011256902 Office Action dated Jun. 10, 2014. |
CA 2757276 Office Action dated Feb. 5, 2014. |
CA 2794704 Office Action dated Feb. 7, 2014. |
CA 2667228 Office Action dated Jan. 22, 2014. |
CA 2679712 Office Action dated Feb. 24, 2014. |
CA 2667228 office action dated May 7, 2013. |
CA 2730995 Office Action dated Feb. 20, 2014. |
CA 2756307 Office Action dated Mar. 24, 2014. |
CA 2756388 Office Action dated Apr. 14, 2014. |
CA 2759015 Office Action dated Jul. 21, 2014. |
CA 2756386 Office Action dated May 16, 2014. |
CA 2805631 Office Action dated Jan. 17, 2014. |
CA 2823355 Office Action dated Apr. 14, 2014. |
CN 200880007308.1 Office Action dated Jan. 2, 2014. |
CN 200880020515 Office Action dated Apr. 15, 2014. |
CN 200880100102.3 Office Action dated Aug. 27, 2014. |
CN 200980136432.2 Office Action dated Jul. 3, 2014. |
CN 201080024973.9 Office Action dated Dec. 20, 2013. |
CN 201080024973.9 Office Action dated Aug. 7, 2014. |
CN 201210206265.8 Office Action dated Sep. 15, 2014. |
EP07756094.4 Office Action dated Jan. 21, 2014. |
EP10756676.2 Search Report dated Jan. 31, 2014. |
EP10800642.0 Search Report dated Mar. 19, 2014. |
EP11772624.0 Search Report dated Jun. 5, 2014. |
EP09798764.8 Office Action dated Jun. 30, 2014. |
EP118077601.7 Search Report dated Sep. 17, 2014. |
EP11852627.6 Search Report dated Sep. 17, 2014. |
Han, et al., “Studies of a Novel Human Thrombomodulin Immobilized Substrate: Surface Characterization and Anticoagulation Activity Evaluation.” J. Biomater. Sci. Polymer Edn, 2001, 12 (10), 1075-1089. |
ID—W00201003529 Office Action dated Apr. 28, 2014. |
IN-7740/DELNP/2009 Office Action dated Jul. 29, 2014. |
JP-2009-545647 Office Action dated Apr. 22, 2014. |
JP-2011-518920 Office Action dated Oct. 23, 2013. |
JP-2013-024508 Office Action dated May 2, 2014. |
JP-2013-190903 Office Action dated Sep. 2, 2014. |
KR10-2013-7031237 Office action dated Mar. 17, 2014. |
Matsumoto, D, et al. Neointimal Coverage of Sirolimus-Eluting Stents at 6-month Follow-up: Evaluated by Optical Coherence Tomography, European Heart Journal, Nov. 29, 2006; 28:961-967. |
PCT/US13/41466 International Search Report and Written Opinion dated Oct. 17, 2013. |
PCT/US13/42093 International Search Report and Written Opinion dated Oct. 24, 2013. |
PCT/US2011/033225 International Search Report and Written Opinion dated Jul. 7, 2011. |
PCT/US2012/60896 International Search Report and Written Opinion dated Dec. 28, 2012. |
PCT/US2013/065777 International Search Report and Written Opinion dated Jan. 29, 2014. |
PCT/US2014/025017 International Search Report and Written Opinion dated Jul. 7, 2014. |
Putkisto, K. et al. “Polymer Coating of Paper Using Dry Surface Treatment—Coating Structure and Performance”, ePlace newsletter, Apr. 12, 2004, vol. 1, No. 8, pp. 1-20. |
U.S. Appl. No. 11/158,724 Office Action Mailed Jun. 25, 2014. |
U.S. Appl. No. 11/877,591 Office Action Mailed May 7, 2014. |
U.S. Appl. No. 11/877,591 Final Office Action Mailed Sep. 29, 2014. |
U.S. Appl. No. 12/426,198 Office Action Mailed Feb. 7, 2014. |
U.S. Appl. No. 12/504,597 Office Action Mailed Apr. 1, 2014. |
U.S. Appl. No. 12/522,379 Office Action Mailed Apr. 8, 2014. |
U.S. Appl. No. 12/595,848 Office Action Mailed Jun. 3, 2014. |
U.S. Appl. No. 12/601,101 Office Action Mailed Feb. 13, 2014. |
U.S. Appl. No. 12/729,156 Office Action Mailed Feb. 13, 2014. |
U.S. Appl. No. 12/729,580 Office Action Mailed Sep. 10, 2014. |
U.S. Appl. No. 12/729,603 Office Action Mailed Jun. 25, 2014. |
U.S. Appl. No. 12/738,411 Office Action Mailed Feb. 6, 2014. |
U.S. Appl. No. 12/738,411 Office Action Mailed May 30, 2014. |
U.S. Appl. No. 12/762,007 Final Office Action Mailed Apr. 30, 2014. |
U.S. Appl. No. 13/086,335 Office Action Mailed Apr. 4, 2014. |
U.S. Appl. No. 13/340,472 Office Action Mailed Aug. 29, 2014. |
U.S. Appl. No. 13/445,723 Office action Mailed Mar. 14, 2014. |
U.S. Appl. No. 13/090,525 Office action Mailed Apr. 11, 2014. |
U.S. Appl. No. 11/995,685 Office action Mailed Jun. 18, 2014. |
David Grant, Crystallization Impact on the Nature and Properties of the Crystalline Product, 2003, SSCI, http://www.ssci-inc.com/Information/RecentPublications/ApplicationNotes/CrystallizationImpact/tabid/138/Default.aspx. |
Analytical Ultracentrifugation of Polymers and Nanoparticles, W. Machtle and L. Borger, (Springer) 2006, p. 41. |
Chalmers, et al. (2007) Wiley and Sons. |
European International Search Report of PCT/EP01/05736 dated Oct. 24, 2001. |
Finn et al. Differential Response of Delayed Healing . . . Circulation vol. 112 (2005) 270-8. |
Greco et al. (Journal of Thermal Analysis and Calorimetry, vol. 72 (2003) 1167-1174.). |
Handschumacher, R.E. et al., Purine and Pyrimidine Antimetabolites, Chemotherapeutic Agents, pp. 712-732, Ch. XV1-2, 3rd Edition, Edited by J. Holland, et al., Lea and Febigol, publishers. |
Higuchi, Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension, Journal of Pharmaceutical Sciences, vol. 50, No. 10, p. 874, Oct. 1961. |
Ji, et al., “96-Wellliquid-liquid extraction liquid chromatographytandem mass spectrometry method for the quantitative determination of ABT -578 in human blood samples” Journal of Chromatography B. 805:67-75 (2004). |
Ju et al., J. Pharm. Sci. vol. 84, No. 12, 1455-1463. |
Levit, et al., “Supercritical C02 Assisted Electrospinning” J. of Supercritical Fluids, 329-333, vol. 31, Issue 3, (Nov. 2004). |
Lewis, D. H., “Controlled Release of Bioactive Agents from Lactides/Glycolide Polymers” in Biodegradable Polymers as Drug Delivery Systems, Chasin, M. and Langer, R., eds., Marcel Decker (1990). |
Luzzi, L.A., J. Phann. Psy. 59:1367 (1970). |
Park et al., Pharm. Res. (1987) 4(6):457-464. |
PCT/EP01/05736 International Preliminary Examination Report dated Jan. 14, 2002. |
PCT/EP2000/004658 International Search Report from dated Sep. 15, 2000. |
PCT/US06/27321 Written Opinion dated Oct. 16, 2007. |
PCT/US07/82775 International Preliminary Report on Patentablity dated May 5, 2009. |
PCT/US09/50883 International Preliminary Report on Patentability dated Jan. 18, 2011. |
PCT/US11/33225 International Search Report and Written Opinion dated Jul. 7, 2011. |
PCT/US11/44263 International Search Report and Written Opinion dated Feb. 9, 2012. |
PCT/US12/50408 International Search Report mailed Oct. 16, 2012. |
PCT/US13/41466 International Preliminary Report on Patentability dated Nov. 18, 2014. |
PCT/US13/42093 International Preliminary Report on Patentability dated Nov. 25, 2014. |
PCT/US14/38117 International Search Report and Written Opinion dated Oct. 7, 2014. |
Wang et al. “Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization” J. Biomater. Sci. Polymer Edn. 11(3):301-318 (2000). |
Extended European Search Report for Application No. 14797966.0 dated Dec. 19, 2016. |
Number | Date | Country | |
---|---|---|---|
20100063580 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
60884005 | Jan 2007 | US | |
60912408 | Apr 2007 | US |