Step apparatus for vehicle and vehicle

Information

  • Patent Grant
  • 11590897
  • Patent Number
    11,590,897
  • Date Filed
    Tuesday, May 11, 2021
    3 years ago
  • Date Issued
    Tuesday, February 28, 2023
    a year ago
Abstract
A step apparatus for a vehicle and a vehicle are provided. The step apparatus for the vehicle includes a step; a lifting device connected to the step and configured to be unfolded and folded to adjust a height of the step; and a driver connected to the lifting device and configured to drive the lifting device to be unfolded and folded.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to Chinese Patent Application Nos. 202010393602.3 and 202020770820.X, both applications filed on May 11, 2020, of which the content of each application is incorporated herein by reference in its entirety and for all purposes.


TECHNICAL FIELD

The present disclosure relates to a field of vehicle technologies, and more particularly to a step apparatus for a vehicle and a vehicle having the same.


BACKGROUND

A vehicle step is usually arranged on a chassis under a door to assist a person in getting into or out of a vehicle. The vehicle step is driven by an extension and retraction mechanism to move between an extended position and a retracted position, and the extension and retraction mechanism is connected to the chassis of the vehicle. In the related art, the vehicle step is driven by the extension and retraction mechanism, and the extended position is located below and at an outer side of the retracted position. Such design may attribute the vehicle step with poor stability, as the extension and retraction mechanism has a complex structure, poor flexibility, and poor applicability.


SUMMARY

An aspect of the present disclosure provides a step apparatus for a vehicle.


Another aspect of the present disclosure also provides a vehicle.


The step apparatus for the vehicle, according to an embodiment of the first aspect of the present disclosure, includes a step; a lifting device connected to the step and configured to be unfolded and folded to adjust a level of the step; and a driver connected to the lifting device and configured to drive the lifting device to be unfolded and folded.


The vehicle, according to an embodiment of the second aspect of the present disclosure, includes a vehicle body and a step apparatus for a vehicle. The step apparatus for the vehicle includes a step; a lifting device connected to the step and configured to be unfolded and folded to adjust a level of the step; and a driver connected to the lifting device and configured to drive the lifting device to be unfolded and folded. The step apparatus for the vehicle is mounted to a bottom surface of the vehicle body.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a vehicle according to an embodiment of the present disclosure.



FIG. 2 is a perspective view of the vehicle illustrated in FIG. 1, in which a step is in a side bar position.



FIG. 3 is a perspective view of the vehicle illustrated in FIG. 1, in which a step is in a step position.



FIG. 4 is a perspective view of the vehicle illustrated in FIG. 1, in which a step is in a jack position.



FIG. 5 is a perspective view of a step apparatus for a vehicle according to an embodiment of the present disclosure.



FIG. 6 is an exploded view of the step apparatus for the vehicle illustrated in FIG. 5.



FIG. 7 is a perspective view of a step apparatus for a vehicle according to another embodiment of the present disclosure.



FIG. 8 is an exploded view of the step apparatus for the vehicle illustrated in FIG. 7.



FIG. 9 is a perspective view of a step apparatus for a vehicle according to still another embodiment of the present disclosure.



FIG. 10 is an exploded view of the step apparatus for the vehicle illustrated in FIG. 9.



FIG. 11 is a perspective view of a step apparatus for a vehicle according to yet another embodiment of the present disclosure.



FIG. 12 is an exploded view of the step apparatus for the vehicle illustrated in FIG. 11.



FIG. 13 is an exploded view of a step apparatus for a vehicle according to yet another embodiment of the present disclosure.





DETAILED DESCRIPTION

Reference will be made in detail to embodiments of the present disclosure. The embodiments described herein with reference to drawings are explanatory, illustrative, and used to generally convey the present disclosure. The embodiments shall not be construed to limit the present disclosure. In the specification, it should be understood that terms such as “central,” “longitudinal,” “lateral,” “length,” “width,” “thickness,” “upper,” “lower,” “front,” “rear,” “left,” “right,” “vertical,” “horizontal,” “top,” “bottom,” “inner,” “outer,” “clockwise,” “counterclockwise,” “axial,” “radial,” and “circumferential,” etc., should be construed to refer to orientations or positions as illustrated in the drawings. These relative terms are for convenience of description and do not require that the present disclosure should be constructed or operated in a particular orientation, so they are not to be construed as a limit to the present disclosure.


A step apparatus for a vehicle and a vehicle according to an embodiment of the present disclosure will be described with reference to the accompanying drawings.


As illustrated in FIGS. 1-4, a vehicle 1000 according to an embodiment of the present disclosure includes a vehicle body 200 and a step apparatus 100 for the vehicle 1000. The step apparatus 100 for the vehicle 1000 is arranged on a bottom surface 210 of the vehicle body, i.e., a vehicle chassis.


As illustrated in FIGS. 1-4, the vehicle 1000 includes a door 300, and the step apparatus 100 for the vehicle 1000 is arranged adjacent to and located below the door 300. In the embodiment illustrated in FIGS. 1-4, the vehicle 1000 has two doors 300, and the door 300 is a side door. The present disclosure is not limited to this example embodiment. For example, the vehicle 1000 may have four doors (side doors) 300—with two side doors 300 arranged on each side of the vehicle body 200—and one step apparatus 100 for the vehicle 1000 may be arranged on each side of the vehicle body 200. In some embodiments, the vehicle 1000 may also have a back door (not illustrated), and another step apparatus 100 for the vehicle 1000 adjacent to the back door is arranged at the rear of the vehicle body 200.


The step apparatus for the vehicle 1000 according to the embodiment of the present disclosure will be described below.


As illustrated in FIGS. 5-12, the step apparatus 100 for the vehicle 1000 according to the embodiment of the present disclosure includes a step 1, a lifting device 2, and a driver 3.


The lifting device 2 is connected to the step 1, and the lifting device 2 can be unfolded and folded to adjust a level of the step 1. As illustrated in FIGS. 1-12, the step 1 is connected to the bottom surface 210 of the vehicle body through the lifting device 2, and a distance between the step 1 and the ground can be changed under the action of the lifting device 2.


The driver 3 is connected to the lifting device 2, and the driver 3 is configured to drive the lifting device 2 to be unfolded and folded. As illustrated in FIGS. 5-12, the driver 3 is a linear driver, which can be extended and retracted for linear movements, thereby driving the lifting device 2 to be unfolded to reduce a height of the step 1 (that is, the step 1 moves away from the bottom surface 210 of the vehicle body in an up-down direction), and driving the lifting device 2 to be folded to increase the height of the step 1 (that is, the step 1 moves towards the bottom surface 210 of the vehicle body in the up-down direction). Specifically, the linear driver may be a hydraulic cylinder, an air cylinder, an electric push rod, or the like.


In the step apparatus 100 for the vehicle 1000 according to the embodiment of the present disclosure, the lifting device 2 is connected to the step 1 and can be unfolded and folded under the drive of the driver 3, so as to facilitate adjustments of the level of the step 1, thus providing a simple structure, good stability, and good flexibility and improving applicability.


In some embodiments, the step 1 has a side bar position, a step position, and a jack position. In the side bar position, the step 1 is located at a lower edge of a side face of the vehicle body 200. In the step position, the step 1 is located between the side bar position and the ground. In the jack position, the step 1 abuts the ground to be configured to jack up the vehicle body 200.


As illustrated in FIG. 2, when the lifting device 2 is in a fully folded state, the step 1 has a smallest distance from or is closest to the bottom surface 210 of the vehicle body in the up-down direction, so as to be located at the side bar position. That is, the step 1 is located at the lower edge of the side face of the vehicle body 200, and the step 1 exceeds a width of the vehicle body 200 in a width direction of the vehicle body 200 (i.e., a front-rear direction in FIG. 1), such that the step 1 can serve as a bumper of the vehicle body 200 to have a protective function to protect the vehicle body 200, thus preventing the vehicle 1000 from being hit or scratched.


As illustrated in FIG. 3, when the lifting device 2 is unfolded from the fully folded state to a first unfolded state, the step 1 moves downwards away from the side bar position and is higher than the ground, and a person can get on the vehicle by using the step 1.


As illustrated in FIG. 4, when the lifting device 2 continues to be unfolded from the first unfolded state to the second unfolded state, the step 1 continues to move downwards to abut the ground so as to lift up the vehicle body 200. Tires of the vehicle 1000 are separated from the ground for repair of the vehicle, with the lifting device 2 thereby acting as a jack.


In some embodiments, the lifting device 2 includes a foldable arm assembly 23, which is pivotably connected to the step 1 and the bottom surface 210 of the vehicle body The driver 3 is connected to the arm assembly 23 to drive the arm assembly 23 to be unfolded and folded. The step 1 is driven to move among the side bar position, the step position, and the jack position by the arm assembly 23 under the drive of the driver 3.


In some embodiments, the lifting device 2 further includes a mounting base 21 adapted to be mounted to the bottom surface 210 of the vehicle body, and the arm assembly 23 is pivotably connected to the mounting base 21. In other words, the arm assembly 23 is not limited to being directly pivotably connected to the bottom surface 210 of the vehicle body; it can also be pivotably connected to the bottom surface 210 of the vehicle body through the mounting base 21. Specifically, as illustrated in FIG. 5, the mounting base 21 is adapted to be fixedly connected to the bottom surface 210 of the vehicle body, and an upper end of the arm assembly 23 is pivotably connected to the mounting base 21.


In some embodiments, the lifting device 2 further includes a step base 22; the step 1 is mounted to the step base 22, and the arm assembly 23 is pivotably connected to the step base 22. In other words, the arm assembly 23 is not limited to a manner in which the arm assembly 23 is directly pivotably connected to the step 1; it can also be pivotably connected to the step 1 through the step base 22. Specifically, as illustrated in FIG. 5, the step base 22 is fixedly connected to the step 1, and the step base 22 is pivotably connected to a lower end of the arm assembly 23.


In some embodiments, the lifting device 2 further includes a mounting base 21 and a step base 22. The mounting base 21 is adapted to be mounted to the bottom surface 210 of the vehicle body. The step 1 is mounted to the step base 22. The arm assembly 23 is pivotably connected to the mounting base 21 and the step base 22. Specifically, an upper end of the arm assembly 23 is pivotably connected to the mounting base 21, a top surface of the mounting base 21 is fixedly connected to the bottom surface 210 of the vehicle body, a lower end of the arm assembly 23 is pivotably connected to the step base 22, and the step 1 is fixedly connected to the step base 22.


In some embodiments, the arm assembly 23 includes a plurality of pairs of arms, and each pair of arms includes a first arm 231 and a second arm 232. A first end of the first arm 231 (a lower end of the first arm 231 in FIGS. 5 and 6) and a first end of the second arm 232 (an upper end of the second arm 232 in FIGS. 5 and 6) are connected to the driver 3, and a second end of the first arm 231 (an upper end of the first arm 231 in FIGS. 5 and 6) is pivotably connected to the mounting base 21, and a second end of the second arm 232 (a lower end of the second arm 232 in FIGS. 5 and 6) is pivotably connected to the step base 22. As illustrated in FIGS. 5-12, one first arm 231 and one second arm 232 constitute a pair of arms, and the plurality of pairs of arms are arranged at intervals in a left-right direction. The upper end of the first arm 231 is pivotably connected to the mounting base 21, the lower end of the first arm 231 and the upper end of the second arm 232 are connected to the driver 3, and the lower end of the second arm 232 is pivotably connected to the step base 22.


Specifically, when the linear driver is retracted, at least one of the first arm 231 and the second arm 232 rotates in a direction of being folded together towards each other, so that the step base 22 drives the step 1 to move closer to the mounting base 21 and the bottom surface 210 of the vehicle body to increase the height of the step 1. When the linear driver is extended, at least one of the first arm 231 and the second arm 232 can rotate in a direction of being unfolded relative to each other from being folded together, so that the step base 22 drives the step 1 to move away from the mounting base 21 and the bottom surface 210 of the vehicle body to reduce the height of the step 1.


Specifically, the mounting base 21 includes a first side wall 211 and a second side wall 212 spaced apart in the front-rear direction, and a first U-shaped groove 213 is formed between the first side wall 211 and the second side wall 212. The upper end of the first arm 231 is arranged in the first U-shaped groove 213, and a first pin shaft 233 passes through the upper end of the first arm 231 in the front-rear direction. A rear end of the first pin shaft 233 is pivotably connected to the first side wall 211, and a front end of the first pin shaft 233 is pivotably connected to the second side wall 212, so that the upper end of the first arm 231 is pivotably connected to the mounting base 21 through the first pin shaft 233.


The step base 22 includes a third side wall 221 and a fourth side wall 222 spaced apart in the front-rear direction, and a second U-shaped groove 223 is formed between the third side wall 221 and the fourth side wall 222. The lower end of the second arm 232 is arranged in the second U-shaped groove 223, and a second pin shaft 234 passes through the lower end of the second arm 232 in the front-rear direction. A rear end of the second pin shaft 234 is pivotably connected to the third side wall 221, and a front end of the second pin shaft 234 is pivotably connected to the fourth side wall 222, so that the lower end of the second arm 232 is pivotably connected to the step base 22 through the second pin shaft 234.


In some embodiments, the step apparatus 100 for the vehicle 1000 further includes a connecting assembly 5, and the connecting assembly 5 includes a first connecting plate 51 and a second connecting plate 52. The first connecting plate 51 and the second connecting plate 52 are connected to each other and arranged opposite to each other. The first end of the first arm 231 of each pair of arms is pivotably connected to the first connecting plate 51 and the second connecting plate 52, and the first end of the second arm 232 of each pair of arms is pivotably connected to the first connecting plate 51 and the second connecting plate 52. The driver 3 is connected to the first connecting plate 51 and the second connecting plate 52.


As illustrated in FIGS. 6, 8, 10, and 12, the first connecting plate 51 and the second connecting plate 52 extend substantially in the left-right direction, and the first connecting plate 51 and the second connecting plate 52 are spaced apart and arranged oppositely in the front-rear direction. The lower end of the first arm 231 of each pair of arms is pivotably connected to the first connecting plate 51 and the second connecting plate 52, and the upper end of the second arm 232 of each pair of arms is pivotably connected to the first connecting plate 51 and the second connecting plate 52. An end of the driver 3 is arranged between the first connecting plate 51 and the second connecting plate 52. A front end of a connecting shaft 235 is connected to the first connecting plate 51, and a rear end of the connecting shaft 235 passes through the end of the driver 3 to be connected to the second connecting plate 52.


In some embodiments, as illustrated in FIGS. 5-13, the plurality of pairs of arms include at least one driving arm pair 201. The first end of the first arm 231 of the driving arm pair 201 (the lower end of the first arm 231 of the driving arm pair 201 in FIG. 5) and the first end of the second arm 232 of the driving arm pair 201 (the upper end of the second arm 232 of the driving arm pair 201 in FIG. 5) are connected by a gear transmission, so that the first arm 231 and the second arm 232 of the driving arm pair 201 move synchronously.


In some specific embodiments, as illustrated in FIGS. 5-12, the step apparatus 100 for the vehicle 1000 further includes at least one gear box 4 corresponding to the driving arm pair. The gear box 4 includes a housing 41, a first gear 42, and a second gear 43. The housing 41 is arranged between the first connecting plate 51 and the second connecting plate 52, and the first gear 42 and the second gear 43 are mounted in the housing 41 and mesh with each other. The first end of the first arm 231 of the driving arm pair 201 (the lower end of the first arm 231 of the driving arm pair 201 in FIG. 5) is connected to a gear shaft of the first gear 42, and the first end of the second arm 232 of the driving arm pair 201 (the upper end of the second arm 231 of the driving arm pair 201 in FIG. 5) is connected to a gear shaft of the second gear 43.


As illustrated in FIGS. 5-12, the plurality of pairs of arms include at least one driving arm pair 201, and the first arm 231 and the second arm 232 of the driving arm pair 201 are connected by gears. Specifically, the housing 41 in which the first gear 42 and the second gear 43 are mounted is clamped between the first connecting plate 51 and the second connecting plate 52. The gear shaft of the first gear 42 extends from the first connecting plate 51 and the second connecting plate 52 to be connected to the lower end of the first arm 231 of the driving arm pair 201, the gear shaft of the second gear 43 extends from the first connecting plate 51 and the second connecting plate 52 to be connected to the upper end of the second arm 232, and the first gear 42 and the second gear 43 mesh with each other. Therefore, the housing 41 is driven to move when the driver 3 drives the first connecting plate 51 and the second connecting plate 52 to move, and under the action of the first gear 42 and the second gear 43, the first arm 231 and the second arm 232 can keep a synchronous movement, i.e., both rotate in a direction of being folded together towards each other, or both rotate in a direction of moving away from each other to be unfolded.


In some specific embodiments, at least two driving arm pairs 201 are provided, one of which is a first driving arm pair and the other of which is a second driving arm pair. At least two gear boxes 4 are provided, one of which is a first gear box and the other of which is a second gear box. The first gear box corresponds to the first driving arm pair, and the second gear box corresponds to the second driving arm pair. The connecting assembly 5 includes a first connecting assembly 501 and a second connecting assembly 502. The housing 41 of the first gear box is arranged between one end of the first connecting plate 51 of the first connecting assembly 501 and one end of the second connecting plate 52 of the first connecting assembly 501, and the other end of the first connecting plate 51 of the first connecting assembly 501 and the other end of the second connecting plate 52 of the first connecting assembly 501 are connected to a first end 31 of the driver 3. The housing 41 of the second gear box is arranged between one end of the first connecting plate 51 of the second connecting assembly 502 and one end of the second connecting plate 52 of the second connecting assembly 502, and the other end of the first connecting plate 51 of the second connecting assembly 502 and the other end of the second connecting plate 52 of the second connecting assembly 502 are connected to a second end 32 of the driver 3.


As illustrated in FIGS. 5-12, two driving arm pairs 201 are provided, and the two driving arm pairs 201 are arranged at intervals in the left-right direction. Two gear boxes 4 are provided, and the two gear boxes 4 are arranged at intervals in the left-right direction. Two connecting assemblies 5 are provided, namely, the first connecting assembly 501 and the second connecting assembly 502 arranged at intervals in a direction from left to right. The first end 31 and the second end 32 of the driver 3 are oppositely arranged in the direction from left to right.


A right end of the first connecting plate 51 of the first connecting assembly 501 and a right end of the second connecting plate 52 of the first connecting assembly 501 are connected to the first end 31 of the driver 3. The housing 41 of one gear box 4 is arranged between a left end of the first connecting plate 51 of the first connecting assembly 501 and a left end of the second connecting plate 52 of the first connecting assembly 501. The first gear 42 of the one gear box 4 is connected to the lower end of the first arm 231 of one driving arm pair 201, and the second gear 43 of the one gear box 4 is connected to the upper end of the second arm 232 of the one driving arm pair 201. A left end of the first connecting plate 51 of the second connecting assembly 502 and a left end of the second connecting plate 52 of the second connecting assembly 502 are connected to the second end 32 of the driver 3. The housing 41 of the other gear box 4 is arranged between a right end of the first connecting plate 51 of the second connecting assembly 502 and a right end of the second connecting plate 52 of the second connecting assembly 502. The first gear 42 of the other gear box 4 is connected to the lower end of the first arm 231 of the other driving arm pair 201, and the second gear 43 of the other gear box 4 is connected to the upper end of the second arm 232 of the other driving arm pair 201.


The gear transmission between the first arm 231 and the second arm 232 of the driving arm pair 201 is not limited to the form of the gear box 4 illustrated in FIGS. 5-12. For example, in other specific embodiments, as illustrated in FIG. 13, the first end of the first arm 231 of the driving arm pair 201 is provided with a plurality of first gear teeth 2310, the first end of the second arm 232 of the driving arm pair 201 is provided with a plurality of second gear teeth 2320, and the first gear teeth 2310 and the second gear teeth 2320 mesh with each other. Thus, the plurality of gear teeth at the first end of the first arm 231 mesh with the plurality of gear teeth at the first end of the second arm 232 to realize the synchronization movement of the first arm 231 and the second arm 232 of the driving arm pair 201.


In some specific embodiments, as illustrated in FIG. 13, in the driving arm pair 201, the first arm 231 includes a first side plate 2311 and a second side plate 2312 arranged opposite to each other and spaced apart, and the second arm 232 includes a first side plate 2321 and a second side plate 2322 arranged opposite to each other and spaced apart. A first end of the first side plate 2311 of the first arm (a lower end of the first side plate 2311 of the first arm of the driving arm pair 201 in FIG. 13) and a first end of the first side plate 2321 of the second arm (an upper end of the first side plate 2321 of the second arm of the driving arm pair 201 in FIG. 13) are pivotably connected to the first connecting plate 51. A first end of the second side plate 2312 of the first arm (a lower end of the second side plate 2312 of the first arm of the driving arm pair 201 in FIG. 13) and a first end of the second side plate 2322 of the second arm (an upper end of the second side plate 2322 of the second arm of the driving arm pair 201 in FIG. 13) are pivotably connected to the second connecting plate 52.


The lower end of the first side plate 2311 and the lower end of the second side plate 2312 of the first arm are each provided with a plurality of first gear teeth 2310, and the upper end of the first side plate 2321 and the upper end of the second side plate 2322 of the second arm are each provided with a plurality of second gear teeth 2320. The first gear teeth 2310 of the first side plate 2311 of the first arm mesh with the second gear teeth 2320 of the first side plate 2321 of the second arm, and the first gear teeth 2310 of the second side plate 2312 of the first arm mesh with the second gear teeth 2320 of the second side plate 2322 of the second arm.


As illustrated in FIG. 13, in the driving arm pair 201, the first side plate 2311 and the second side plate 2312 of the first arm are pivotably connected to the first connecting plate 51 and the second connecting plate 52, respectively, through a fifth pin shaft 238. Specifically, the fifth pin shaft 238 extends in the front-rear direction and passes through the first connecting plate 51 and the second connecting plate 52, a rear end of the fifth pin shaft 238 extends out of the first connecting plate 51 and is pivotably connected to the lower end of the first side plate 2311 of the first arm, and a front end of the fifth pin shaft 238 extends out of the second connecting plate 52 and is pivotably connected to the lower end of the second side plate 2312 of the first arm.


The first side plate 2321 and the second side plate 2322 of the second arm are pivotably connected to the first connecting plate 51 and the second connecting plate 52, respectively, through a sixth pin shaft 239. Specifically, the sixth pin shaft 239 extends in the front-rear direction and passes through the first connecting plate 51 and the second connecting plate 52, a rear end of the sixth pin shaft 239 extends out of the first connecting plate 51 and is pivotably connected to the upper end of the first side plate 2321 of the second arm, and a front end of the sixth pin shaft 239 extends out of the second connecting plate 52 and is pivotably connected to the upper end of the second side plate 2322 of the second arm.


Specifically, the fifth pin shaft 238 and the sixth pin shaft 239 are opposed to and spaced apart from each other in the up-down direction.


In some embodiments, the plurality of pairs of arms further include a driven arm pair 202, and the driven arm pair 202 and the driving arm pair 201 are spaced apart in the left-right direction. As illustrated in FIGS. 5, 6, 9, and 10, the plurality of pairs of arms include at least one driven arm pair 202, and the driven arm pair 202 is located between adjacent driving arm pairs 201.


The lower ends of the first arm 231 of the driven arm pair 202 straddle between the first connecting plate 51 and the second connecting plate 52. A third pin shaft 236 extends in the front-rear direction; a front end of the third pin shaft 236 is pivotably connected to one lower end of the first arm 231 of the driven arm pair 202 and the first connecting plate 51, and a rear end of the third pin shaft 236 is pivotably connected to the other lower end of the first arm 231 of the driven arm pair 202 and the second connecting plate 52, so that the lower ends of the first arm 231 of the driven arm pair 202 are pivotably connected to the first connecting plate 51 and the second connecting plate 52 through the third pin shaft 236. The upper ends of the second arm 232 of the driven arm pair 202 straddle between the first connecting plate 51 and the second connecting plate 52. A fourth pin shaft 237 extends in the front-rear direction; a front end of the fourth pin shaft 237 is pivotably connected to one upper end of the second arm 232 of the driven arm pair 202 and the first connecting plate 51, and a rear end of the fourth pin shaft 237 is pivotably connected to the other upper end of the second arm 232 of the driven arm pair 202 and the second connecting plate 52, so that the upper ends of the second arm 232 of the driven arm pair 202 are pivotably connected to the first connecting plate 51 and the second connecting plate 52 through the fourth pin shaft 237.


Specifically, the third pin shaft 236 and the fourth pin shaft 237 are arranged at intervals in the up-down direction, and the connecting shaft 235 is spaced apart from the third pin shaft 236 and the fourth pin shaft 237 in the left-right direction.


As illustrated in FIGS. 5, 6, 9, 10, and 13, two driving arm pairs 201 are provided, and the two driving arm pairs 201 are spaced apart in the left-right direction. Two driven arm pairs 202 are provided, and the two driven arm pairs 202 are located between the two driving arm pairs 201 and are spaced apart in the left-right direction. The driving arm pairs 201 and the driven arm pairs 202 are spaced apart in the left-right direction. The driver 3 extends in the left-right direction.


The lower end of the first arm 231 of one of the driven arm pairs 202 is pivotably connected to the first connecting plate 51 and the second connecting plate 52 of the first connecting assembly 501 through the third pin shaft 236. The upper end of the second arm 232 of this driven arm pair 202 is pivotably connected to the first connecting plate 51 and the second connecting plate 52 of the first connecting assembly 501 through the fourth pin shaft 237. A left end of the driver 3 is connected to the first connecting plate 51 and the second connecting plate 52 of the first connecting assembly 501 through the connecting shaft 235. Specifically, the connecting shaft 235 is located on the right side of the third pin shaft 236 and the fourth pin shaft 237.


The lower end of the first arm 231 of the other driven arm pair 202 is pivotably connected to the first connecting plate 51 and the second connecting plate 52 of the second connecting assembly 502 through the other third pin shaft 236. The upper end of the second arm 232 of this driven arm pair 202 is pivotably connected to the first connecting plate 51 and the second connecting plate 52 of the second connecting assembly 502 through the other fourth pin shaft 237. A right end of the driver 3 is connected to the first connecting plate 51 and the second connecting plate 52 of the second connecting assembly 502 through the other connecting shaft 235. Specifically, the other connecting shaft 235 is located on the left side of the other third pin shaft 236 and the other fourth pin shaft 237.


In some embodiments, the first arm 231 and the second arm 232 of each pair of arms are arranged symmetrically. As illustrated in FIGS. 5-12, the arm assembly 23 has a center line extending in the left-right direction, and the first arm 231 and the second arm 232 of each pair of arms are arranged symmetrically with respect to the center line.


In some embodiments, the first arm 231 and the second arm 232 of each pair of arms are inclined from the driver 3 to an inner side or an outer side of the arm assembly 23. As illustrated in FIGS. 5-8, the joint between the upper end of the first arm 231 and the mounting base 21 is located at an inner side of the joint between the lower end of the first arm 231 and the gear box 4. Specifically, the first arm 231 rotates clockwise downwards, and the second arm 232 rotates counterclockwise upwards, so as to realize the folding of the first arm 231 and the second arm 232. The first arm 231 rotates counterclockwise upwards, and the second arm 232 rotates clockwise downwards, so as to realize the unfolding of the first arm 231 and the second arm 232.


As illustrated in FIGS. 9-12, the joint between the upper end of the first arm 231 and the mounting base 21 is located at an outer side of the joint between the lower end of the first arm 231 and the gear box 4. Specifically, the first arm 231 rotates counterclockwise downwards, and the second arm 232 rotates clockwise upwards, so as to realize the folding of the first arm 231 and the second arm 232. The first arm 231 rotates clockwise upwards, and the second arm 232 rotates counterclockwise downwards, so as to realize the unfolding of the first arm 231 and the second arm 232.


Reference throughout this specification to “an embodiment,” “some embodiments,” “an example,” “a specific example,” or “some examples” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of phrases such as “in some embodiments,” “in one embodiment,” “in an example,” “in a specific example,” or “in some examples” in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples. In addition, those skilled in the related art may combine and incorporate different embodiments or examples and their features described in the specification, without mutual contradictions.


In the present disclosure, unless specified or limited otherwise, a structure in which a first feature is “on” or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature and may also include an embodiment in which the first feature is in indirect contact with the second feature through intermediaries. Furthermore, a first feature “on,” “above,” or “on top of” a second feature may include an embodiment in which the first feature is right “on,” “above,” or “on top of” the second feature and may also include an embodiment in which the first feature is diagonally “on,” “above,” or “on top of” the second feature, or such a phrase may just mean that the first feature is at a height higher than that of the second feature. A first feature “beneath,” “below,” or “on bottom of” a second feature may include an embodiment in which the first feature is right “beneath,” “below,” or “on bottom of” the second feature and may also include an embodiment in which the first feature is diagonally “beneath,” “below,” or “on bottom of” the second feature, or such a phrase may just mean that the first feature is at a height lower than that of the second feature.


In the descriptions, unless specified or limited otherwise, the terms “mounted,” “connected,” “coupled,” and “fixed” and variations thereof should be understood broadly. For example, these may be permanent connections, detachable connections, or integrated connections; mechanical connections, electrical connections, or communicated with each other; direct connections or indirect connections through intermediaries; or intercommunication or interaction relationships of two elements, unless specified or limited otherwise. Those skilled in the related art may understand specific meanings of the above terms in the present disclosure according to specific situations.


Although explanatory embodiments have been illustrated and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles, and scope of the present disclosure.


It is intended that the specification, together with the drawings, be considered exemplary only, where exemplary means an example. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Additionally, the use of “or” is intended to include “and/or”, unless the context clearly indicates otherwise.


While this patent document contains many specifics, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this patent document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.


Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.

Claims
  • 1. A step apparatus for a vehicle, comprising: a step, having a side bar position and a jack position, wherein: in the side bar position, the step is located at a lower edge of a side face of a vehicle body of the vehicle, andin the jack position, the step abuts against a ground and is configured to jack up the vehicle body;a lifting device connected to the step and configured to be unfolded and folded to adjust a level of the step; anda driver connected to the lifting device and configured to drive the lifting device to be unfolded and folded.
  • 2. The step apparatus according to claim 1, wherein the step further has a step position and wherein: in the step position, the step is located between the side bar position and the ground.
  • 3. The step apparatus according to claim 1, wherein the lifting device comprises a foldable arm assembly, the arm assembly is pivotably connected to the step and a bottom surface of the vehicle body of the vehicle, and the driver is connected to the arm assembly to drive the arm assembly to be unfolded and folded.
  • 4. The step apparatus according to claim 3, wherein the lifting device further comprises a mounting base and a step base, wherein the mounting base is configured to be mounted to the bottom surface of the vehicle body, the step is mounted to the step base, and the arm assembly is pivotably connected to the mounting base and the step base.
  • 5. The step apparatus according to claim 1, wherein the driver is a linear driver.
  • 6. The step apparatus according to claim 5, wherein the linear driver is a hydraulic cylinder, an air cylinder, or an electric push rod.
  • 7. A step apparatus for a vehicle, comprising: a step;a lifting device connected to the step and configured to be unfolded and folded to adjust a level of the step; anda driver connected to the lifting device and configured to drive the lifting device to be unfolded and folded,wherein the lifting device comprises a foldable arm assembly, the arm assembly is pivotably connected to the step and a bottom surface of the vehicle body of the vehicle, and the driver is connected to the arm assembly to drive the arm assembly to be unfolded and folded,wherein the lifting device further comprises a mounting base and a step base, wherein the mounting base is configured to be mounted to the bottom surface of the vehicle body, the step is mounted to the step base, and the arm assembly is pivotably connected to the mounting base and the step base, andwherein the arm assembly comprises a plurality of pairs of arms, each pair of arms comprises a first arm and a second arm, a first end of the first arm and a first end of the second arm are connected to the driver, a second end of the first arm is pivotably connected to the mounting base, and a second end of the second arm is pivotably connected to the step base.
  • 8. The step apparatus according to claim 7, further comprising a connecting assembly, wherein the connecting assembly comprises a first connecting plate and a second connecting plate, the first connecting plate and the second connecting plate are connected to each other and arranged opposite to each other, the first end of the first arm of each pair of arms is pivotably connected to the first connecting plate and the second connecting plate, the first end of the second arm of each pair of arms is pivotably connected to the first connecting plate and the second connecting plate, and the driver is connected to the first connecting plate and the second connecting plate.
  • 9. The step apparatus according to claim 8, wherein the plurality of pairs of arms comprise at least one driving arm pair, a first end of a first arm of the driving arm pair and a first end of a second arm of the driving arm pair are connected by a gear transmission, so that the first arm and the second arm of the driving arm pair are configured to move synchronously.
  • 10. The step apparatus according to claim 9, further comprising at least one gear box corresponding to the driving arm pair, wherein the gear box comprises a housing, a first gear, and a second gear, the housing is arranged between the first connecting plate and the second connecting plate, the first gear and the second gear are mounted in the housing and mesh with each other, the first end of the first arm of the driving arm pair is connected to a gear shaft of the first gear, and the first end of the second arm of the driving arm pair is connected to a gear shaft of the second gear.
  • 11. The step apparatus according to claim 9, wherein the first end of the first arm of the driving arm pair is provided with a plurality of first gear teeth, the first end of the second arm of the driving arm pair is provided with a plurality of second gear teeth, and the first gear teeth mesh with the second gear teeth.
  • 12. The step apparatus according to claim 11, wherein, in the driving arm pair, both the first arm and the second arm comprise a first side plate and a second side plate, wherein the first side plate and the second side plate are arranged opposite to and spaced apart from each other, a first end of the first side plate of the first arm and a first end of the first side plate of the second arm are pivotably connected to the first connecting plate, a first end of the second side plate of the first arm and a first end of the second side plate of the second arm are pivotably connected to the second connecting plate,wherein the first end of the first side plate of the first arm and the first end of the second side plate of the first arm are each provided with a plurality of first gear teeth, the first end of the first side plate of the second arm and the first end of the second side plate of the second arm are each provided with a plurality of second gear teeth, the first gear teeth of the first side plate of the first arm mesh with the second gear teeth of the first side plate of the second arm, and the first gear teeth of the second side plate of the first arm mesh with the second gear teeth of the second side plate of the second arm.
  • 13. The step apparatus according to claim 9, wherein the plurality of pairs of arms further comprise at least one driven arm pair, and the at least one driving arm pair and the at least one driven arm pair are arranged at intervals.
  • 14. The step apparatus according to claim 8, wherein the connecting assembly comprises at least a first connecting assembly and a second connecting assembly, a first end of the driver is connected to the first connecting plate and the second connecting plate of the first connecting assembly, and a second end of the driver is connected to the first connecting plate and the second connecting plate of the second connecting assembly.
  • 15. The step apparatus according to claim 7, wherein the first arm and the second arm of each pair of arms are arranged symmetrically.
  • 16. The step apparatus according to claim 7, wherein the first arm and the second arm of each pair of arms are inclined from the driver to an inner side or an outer side of the arm assembly.
  • 17. The step apparatus according to claim 7, wherein the step is structured to have different operation positions which include: a side bar position at which the step is located at a lower edge of a side face of a vehicle body of the vehicle, anda jack position at which the step abuts against a ground and is configured to jack up the vehicle body;wherein the lifting device is configured to be driven by the driver to adjust the level of the step to be at the different operation positions.
  • 18. The step apparatus according to claim 17, wherein the step further has a step position that is located between the side bar position and the ground to provide an intermediate step for a person to step on.
  • 19. A vehicle, comprising: a vehicle body; anda step apparatus for the vehicle, comprising: a step, having a side bar position and a jack position, wherein: in the side bar position, the step is located at a lower edge of a side face of the vehicle body of the vehicle, andin the jack position, the step abuts against a ground and is configured to jack up the vehicle body;a lifting device connected to the step and configured to be unfolded and folded to adjust a level of the step; anda driver connected to the lifting device and configured to drive the lifting device to be unfolded and folded,wherein the step apparatus for the vehicle is mounted to a bottom surface of the vehicle body.
  • 20. The vehicle according to claim 19, wherein the step further has a step position and wherein: in the step position, the step is located between the side bar position and the ground.
  • 21. The vehicle according to claim 19, wherein the lifting device comprises a foldable arm assembly, the arm assembly is pivotably connected to the step and the bottom surface of the vehicle body of the vehicle, and the driver is connected to the arm assembly to drive the arm assembly to be unfolded and folded.
  • 22. The vehicle according to claim 21, wherein the lifting device further comprises a mounting base and a step base, wherein the mounting base is configured to be mounted to the bottom surface of the vehicle body, the step is mounted to the step base, and the arm assembly is pivotably connected to the mounting base and the step base.
Priority Claims (2)
Number Date Country Kind
202010393602.3 May 2020 CN national
202020770820.X May 2020 CN national
US Referenced Citations (467)
Number Name Date Kind
7591 Burdett Aug 1850 A
634385 Wolfe et al. Oct 1899 A
724155 Besse Mar 1903 A
752031 Chadwick Feb 1904 A
817224 Clifford Apr 1906 A
955658 Mitchell et al. Apr 1910 A
1063643 Blake et al. Jun 1913 A
1169140 Fassett et al. Jan 1916 A
1176538 Warner Mar 1916 A
1182169 Hansen May 1916 A
1222127 Perri Apr 1917 A
1239892 Dunderdale Sep 1917 A
1242828 Lyle Oct 1917 A
1250604 Lorenc Dec 1917 A
1268335 Fairchild Jun 1918 A
1364697 Branch Jan 1921 A
1437648 Gore Dec 1922 A
1449031 Blake Mar 1923 A
1471972 Miller Oct 1923 A
1509235 Giuliani Sep 1924 A
1621479 Cleveland et al. Mar 1927 A
1755942 Woolson Apr 1930 A
1800162 Stroud Apr 1931 A
2029745 Stiner Feb 1936 A
2041640 Goss May 1936 A
2118557 Hamilton May 1938 A
2122040 Machovec Jun 1938 A
2125085 Pool Jul 1938 A
2197266 Fredell Apr 1940 A
2209576 McDonald Jul 1940 A
2246986 Pellegrini Jun 1941 A
2436961 Gabriel Mar 1948 A
2487921 Culver Nov 1949 A
2492068 Schofield et al. Dec 1949 A
2566401 Bustin Sep 1951 A
2575615 Crump Nov 1951 A
2583894 Shuck Jan 1952 A
2645504 Branstrator et al. Jul 1953 A
2669613 Despard Feb 1954 A
2678832 Wright May 1954 A
2682671 Faure Jul 1954 A
2764422 McDonald Sep 1956 A
2774494 Malmström Dec 1956 A
2825582 McDonald Mar 1958 A
2921643 Vanderveld Jan 1960 A
2925876 Wagner Feb 1960 A
2998265 Kozicki Aug 1961 A
3008533 Haberle Nov 1961 A
3012633 Magee Dec 1961 A
3039562 Wagner Jun 1962 A
3095216 Browne et al. Jun 1963 A
3164394 Husko Jan 1965 A
3172499 Stairs Mar 1965 A
3266594 Antosh et al. Aug 1966 A
3329443 Lowder et al. Jul 1967 A
3392990 Wolf Jul 1968 A
3488066 Hansen Jan 1970 A
3494634 De Paula Feb 1970 A
3515406 Endsley Jun 1970 A
3517942 Cuffe et al. Jun 1970 A
3522396 Norden Jul 1970 A
3528574 Denner et al. Sep 1970 A
3572754 Fowler Mar 1971 A
3608957 Maneck Sep 1971 A
3650423 O'Brien Mar 1972 A
3671058 Kent Jun 1972 A
3745595 Nagy Jul 1973 A
3756622 Pyle et al. Sep 1973 A
3762742 Bucklen Oct 1973 A
3784227 Rogge Jan 1974 A
3799288 Manuel Mar 1974 A
3807757 Carpenter et al. Apr 1974 A
3833240 Weiler Sep 1974 A
3853369 Holden Dec 1974 A
3863890 Ruffing Feb 1975 A
3865399 Way Feb 1975 A
3869022 Wallk Mar 1975 A
3869169 Johnson et al. Mar 1975 A
3887217 Thomas Jun 1975 A
3889997 Schoneck Jun 1975 A
3891261 Finneman Jun 1975 A
3913497 Maroshick Oct 1975 A
3915475 Casella et al. Oct 1975 A
3957284 Wright May 1976 A
3961809 Clugston Jun 1976 A
3980319 Kirkpatrick Sep 1976 A
3981515 Rosborough Sep 1976 A
3986724 Rivinius Oct 1976 A
3997211 Graves Dec 1976 A
4020920 Abbott May 1977 A
4053172 McClure Oct 1977 A
4058228 Hall Nov 1977 A
4068542 Brand et al. Jan 1978 A
4073502 Frank et al. Feb 1978 A
4089538 Eastridge May 1978 A
4098346 Stanfill Jul 1978 A
4103872 Hirasuka Aug 1978 A
4106790 Weiler Aug 1978 A
4110673 Nagy et al. Aug 1978 A
4116457 Nerem et al. Sep 1978 A
4124099 Dudynskyj Nov 1978 A
4145066 Shearin Mar 1979 A
4164292 Karkau Aug 1979 A
4168764 Walters Sep 1979 A
4174021 Barlock Nov 1979 A
4180143 Clugston Dec 1979 A
4185849 Jaeger Jan 1980 A
4188889 Favrel Feb 1980 A
4194754 Hightower Mar 1980 A
4205862 Tarvin Jun 1980 A
4219104 MacLeod Aug 1980 A
4231583 Learn Nov 1980 A
4275664 Reddy Jun 1981 A
4325668 Julian et al. Apr 1982 A
4369984 Hagen Jan 1983 A
4424751 Blochlinger Jan 1984 A
4440364 Cone et al. Apr 1984 A
4462486 Dignan Jul 1984 A
4536004 Brynielsson et al. Aug 1985 A
4542805 Hamlin et al. Sep 1985 A
4570962 Chavira Feb 1986 A
4623160 Trudell Nov 1986 A
D287001 Jarvie et al. Dec 1986 S
4676013 Endo Jun 1987 A
4679810 Kimball Jul 1987 A
4696349 Harwood et al. Sep 1987 A
D292904 Bielby Nov 1987 S
4708355 Tiede Nov 1987 A
4711613 Fretwell Dec 1987 A
4720116 Williams et al. Jan 1988 A
4733752 Sklar Mar 1988 A
4757876 Peacock Jul 1988 A
4846487 Criley Jul 1989 A
4858888 Cruz et al. Aug 1989 A
4909700 Fontecchio et al. Mar 1990 A
4911264 McCafferty Mar 1990 A
4926965 Fox May 1990 A
4930973 Robinson Jun 1990 A
4958979 Svensson Sep 1990 A
4982974 Guidry Jan 1991 A
4991890 Paulson Feb 1991 A
D316394 Carr Apr 1991 S
5005667 Anderson Apr 1991 A
5005850 Baughman Apr 1991 A
5007654 Sauber Apr 1991 A
5028063 Andrews Jul 1991 A
5039119 Baughman Aug 1991 A
5085450 DeHart, Sr. Feb 1992 A
5137294 Martin Aug 1992 A
5154125 Renner et al. Oct 1992 A
5195609 Ham et al. Mar 1993 A
5199731 Martin Apr 1993 A
5228707 Yoder Jul 1993 A
5228761 Huebschen et al. Jul 1993 A
5238300 Slivon et al. Aug 1993 A
5253973 Fretwell Oct 1993 A
D340905 Orth et al. Nov 1993 S
5257767 McConnell Nov 1993 A
5257847 Yonehara Nov 1993 A
5261779 Goodrich Nov 1993 A
5280934 Monte Jan 1994 A
5284349 Bruns et al. Feb 1994 A
5286049 Khan Feb 1994 A
5342073 Poole Aug 1994 A
5358268 Hawkins Oct 1994 A
5375864 McDaniel Dec 1994 A
5423463 Weeks Jun 1995 A
5425615 Hall et al. Jun 1995 A
5439342 Hall et al. Aug 1995 A
5462302 Leitner Oct 1995 A
5478124 Warrington Dec 1995 A
5498012 McDaniel et al. Mar 1996 A
5501475 Bundy Mar 1996 A
5505476 Maccabee Apr 1996 A
5513866 Sisson May 1996 A
5538100 Hedley Jul 1996 A
5538265 Chen et al. Jul 1996 A
5538269 McDaniel et al. Jul 1996 A
5547040 Hanser et al. Aug 1996 A
5549312 Garvert Aug 1996 A
5584493 Demski et al. Dec 1996 A
5601300 Fink et al. Feb 1997 A
5624127 Arreola et al. Apr 1997 A
5697623 Bermes et al. Dec 1997 A
5697626 McDaniel Dec 1997 A
5727840 Ochiai et al. Mar 1998 A
5779208 McGraw Jul 1998 A
5842709 Maccabee Dec 1998 A
5876051 Sage Mar 1999 A
5897125 Bundy Apr 1999 A
5937468 Wiedeck et al. Aug 1999 A
5941342 Lee Aug 1999 A
5957237 Tigner Sep 1999 A
5980449 Benson et al. Nov 1999 A
5988970 Holtom Nov 1999 A
6012545 Faleide Jan 2000 A
6027090 Liu Feb 2000 A
6042052 Smith et al. Mar 2000 A
6055780 Yamazaki May 2000 A
6065924 Budd May 2000 A
6082693 Benson et al. Jul 2000 A
6082751 Hanes et al. Jul 2000 A
6112152 Tuttle Aug 2000 A
6135472 Wilson et al. Oct 2000 A
6149172 Pascoe et al. Nov 2000 A
6158756 Hansen Dec 2000 A
6168176 Mueller Jan 2001 B1
6170842 Mueller Jan 2001 B1
6179312 Paschke et al. Jan 2001 B1
6179546 Citrowske Jan 2001 B1
6203040 Hutchins Mar 2001 B1
6213486 Kunz et al. Apr 2001 B1
6224317 Kann May 2001 B1
6264222 Johnston et al. Jul 2001 B1
6270099 Farkash Aug 2001 B1
6325397 Pascoe Dec 2001 B1
6352295 Leitner Mar 2002 B1
6357992 Ringdahl et al. Mar 2002 B1
6375207 Dean et al. Apr 2002 B1
6412799 Schrempf Jul 2002 B1
6422342 Armstrong et al. Jul 2002 B1
6425572 Lehr Jul 2002 B1
6430164 Jones et al. Aug 2002 B1
6435534 Stone Aug 2002 B1
6439342 Boykin Aug 2002 B1
6460915 Bedi et al. Oct 2002 B1
6471002 Weinermen Oct 2002 B1
6511086 Schlicht Jan 2003 B2
6511402 Shu Jan 2003 B2
6513821 Heil Feb 2003 B1
6533303 Watson Mar 2003 B1
6536790 Ojanen Mar 2003 B1
6588783 Fichter Jul 2003 B2
6612596 Jeon et al. Sep 2003 B2
6641158 Leitner Nov 2003 B2
6659484 Knodle et al. Dec 2003 B2
6663125 Cheng Dec 2003 B1
6746033 McDaniel Jun 2004 B1
6769704 Cipolla Aug 2004 B2
6810995 Warford Nov 2004 B2
6812466 O'Connor et al. Nov 2004 B2
6830257 Leitner Dec 2004 B2
6834875 Leitner Dec 2004 B2
6840526 Anderson et al. Jan 2005 B2
6874801 Fichter Apr 2005 B2
6880843 Greer, Jr. Apr 2005 B1
6912912 Reichinger et al. Jul 2005 B2
6918624 Miller et al. Jul 2005 B2
6926295 Berkebile et al. Aug 2005 B2
6938909 Leitner Sep 2005 B2
6942233 Leitner et al. Sep 2005 B2
6942272 Livingston Sep 2005 B2
6948903 Ablabutyan et al. Sep 2005 B2
6951357 Armstrong et al. Oct 2005 B2
6955370 Fabiano et al. Oct 2005 B2
6959937 Schneider et al. Nov 2005 B2
6966597 Tegtmeier Nov 2005 B2
6971652 Bobbert et al. Dec 2005 B2
6997469 Lanoue et al. Feb 2006 B2
7000932 Heil et al. Feb 2006 B2
7007961 Leitner Mar 2006 B2
7017927 Henderson et al. Mar 2006 B2
7055839 Leitner Jun 2006 B2
7090276 Bruford et al. Aug 2006 B1
7111859 Kim et al. Sep 2006 B2
7118120 Lee et al. Oct 2006 B2
7163221 Leitner Jan 2007 B2
7258386 Leitner Aug 2007 B2
7287771 Lee et al. Oct 2007 B2
7360779 Crandall Apr 2008 B2
7367574 Leitner May 2008 B2
7380807 Leitner Jun 2008 B2
7398985 Leitner et al. Jul 2008 B2
7413204 Leitner Aug 2008 B2
7416202 Fichter Aug 2008 B2
7487986 Leither et al. Feb 2009 B2
7516703 Tazreiter Apr 2009 B2
7566064 Leitner et al. Jul 2009 B2
7584975 Leitner Sep 2009 B2
7594672 Piotrowski Sep 2009 B2
7621546 Ross et al. Nov 2009 B2
7637519 Leitner et al. Dec 2009 B2
7673892 Kuntze et al. Mar 2010 B2
7717444 Fichter May 2010 B2
7740261 Leitner et al. Jun 2010 B2
7793596 Hirtenlehner Sep 2010 B2
7823896 VanBelle Nov 2010 B2
7874565 Duncan Jan 2011 B2
D634687 Vukel Mar 2011 S
7900944 Watson Mar 2011 B2
7909344 Bundy Mar 2011 B1
7934737 Okada May 2011 B2
7976042 Watson et al. Jul 2011 B2
8038164 Stahl et al. Oct 2011 B2
8042821 Yang Oct 2011 B2
D649100 Cheng Nov 2011 S
8052162 Yang et al. Nov 2011 B2
8056913 Kuntze et al. Nov 2011 B2
8070173 Watson Dec 2011 B2
8136826 Watson Mar 2012 B2
8146935 Adams Apr 2012 B1
8157277 Leitner et al. Apr 2012 B2
8177247 Carr May 2012 B1
8205901 Yang et al. Jun 2012 B2
D665713 Pochurek et al. Aug 2012 S
8262113 Chafey et al. Sep 2012 B1
8297635 Agoncillo et al. Oct 2012 B2
D671874 Kekich et al. Dec 2012 S
8342550 Stickles et al. Jan 2013 B2
8342551 Watson et al. Jan 2013 B2
8360455 Leitner et al. Jan 2013 B2
8408571 Leitner et al. Apr 2013 B2
8419034 Leitner et al. Apr 2013 B2
8469380 Yang et al. Jun 2013 B2
8602431 May Dec 2013 B1
8827294 Leitner et al. Sep 2014 B1
8833782 Huotari et al. Sep 2014 B2
8844957 Leitner et al. Sep 2014 B2
D720674 Stanesic et al. Jan 2015 S
8936266 Leitner et al. Jan 2015 B2
8944451 Leitner et al. Feb 2015 B2
9156406 Stanesic et al. Oct 2015 B2
9272667 Smith Mar 2016 B2
9302626 Leitner et al. Apr 2016 B2
9346404 Bundy May 2016 B1
9346405 Leitner et al. May 2016 B2
9511717 Smith Dec 2016 B2
9522634 Smith Dec 2016 B1
9527449 Smith Dec 2016 B2
9550458 Smith et al. Jan 2017 B2
9561751 Leitner et al. Feb 2017 B2
9573467 Chen et al. Feb 2017 B2
9656609 Du et al. May 2017 B2
9669766 Du et al. Jun 2017 B2
9669767 Du et al. Jun 2017 B2
9688205 Du et al. Jun 2017 B2
9701249 Leitner et al. Jul 2017 B2
9764691 Stickles et al. Sep 2017 B2
9809172 Stanesic et al. Nov 2017 B2
9834147 Smith Dec 2017 B2
9902328 Mazur Feb 2018 B1
9944231 Leitner et al. Apr 2018 B2
9975742 Mason May 2018 B1
10010467 Sato Jul 2018 B2
10049505 Harvey Aug 2018 B1
10053017 Leitner et al. Aug 2018 B2
10065486 Smith et al. Sep 2018 B2
10077016 Smith et al. Sep 2018 B2
10081302 Frederick et al. Sep 2018 B1
10106069 Rasekhi Oct 2018 B2
10106086 Eckstein et al. Oct 2018 B1
10106087 Stojkovic et al. Oct 2018 B2
10106088 Smith Oct 2018 B2
10118557 Pribisic Nov 2018 B2
10124735 Du et al. Nov 2018 B2
10124839 Povinelli et al. Nov 2018 B2
10140618 Crawford Nov 2018 B2
10144345 Stinson et al. Dec 2018 B2
10150419 Derbis et al. Dec 2018 B2
10155474 Salter et al. Dec 2018 B2
10173595 Ulrich Jan 2019 B1
10183623 Kirshnan et al. Jan 2019 B2
10183624 Leitner et al. Jan 2019 B2
10189517 Povinelli et al. Jan 2019 B2
10195997 Smith Feb 2019 B2
10207598 Reynolds et al. Feb 2019 B2
10214963 Simula et al. Feb 2019 B2
10384614 Du et al. Aug 2019 B1
10427607 Otacioglu Oct 2019 B2
10539285 Johnson Jan 2020 B1
10576879 Salter Mar 2020 B1
10618472 Du Apr 2020 B2
10649483 Liu et al. May 2020 B2
10682960 Du Jun 2020 B2
10821904 Du Nov 2020 B2
10885759 Lee Jan 2021 B1
11021108 Du Jun 2021 B2
11198394 Du et al. Dec 2021 B2
11208043 Du et al. Dec 2021 B2
11208044 Smith et al. Dec 2021 B2
11292390 Du et al. Apr 2022 B2
11318889 Du et al. May 2022 B2
11414017 Qing et al. Aug 2022 B2
20030011164 Cipolla Jan 2003 A1
20030038446 Anderson et al. Feb 2003 A1
20030090081 Oakley May 2003 A1
20030094781 Jaramillo et al. May 2003 A1
20030132595 Fabiano Jul 2003 A1
20030200700 Leitner Oct 2003 A1
20040100063 Henderson et al. May 2004 A1
20040108678 Berkebile et al. Jun 2004 A1
20040135339 Kim Jul 2004 A1
20050035568 Lee et al. Feb 2005 A1
20050146157 Leitner Jul 2005 A1
20050231149 Numauchi Oct 2005 A1
20050280242 Fabiano Dec 2005 A1
20060082096 Sukonthapanich et al. Apr 2006 A1
20060214386 Watson Sep 2006 A1
20060219484 Ogura Oct 2006 A1
20060284440 Leitner Dec 2006 A1
20070017743 Yeh Jan 2007 A1
20080042396 Watson Feb 2008 A1
20080100023 Ross May 2008 A1
20080100025 Leitner et al. May 2008 A1
20090250896 Watson Oct 2009 A1
20090295114 Yang et al. Dec 2009 A1
20090295115 Yang et al. Dec 2009 A1
20100044993 Watson Feb 2010 A1
20110115187 Leitner et al. May 2011 A1
20110246021 Prokhorov Oct 2011 A1
20120025485 Yang et al. Feb 2012 A1
20120046846 Dollens Feb 2012 A1
20130154230 Ziaylek Jun 2013 A1
20150094898 Tellis Apr 2015 A1
20150097353 Rasmussen et al. Apr 2015 A1
20150137482 Woolf May 2015 A1
20150197199 Kuo Jul 2015 A1
20150321612 Leitner et al. Nov 2015 A1
20150321613 Leitner et al. Nov 2015 A1
20160039346 Yang et al. Feb 2016 A1
20160193964 Stanesic et al. Jul 2016 A1
20160280190 Franz Sep 2016 A1
20170008459 Leitner et al. Jan 2017 A1
20170021781 Du Jan 2017 A1
20170036605 Du Feb 2017 A1
20170036606 Du Feb 2017 A1
20170036607 Du et al. Feb 2017 A1
20170144606 Smith May 2017 A1
20170190308 Smith Jun 2017 A1
20170246993 Smith Aug 2017 A1
20170267182 Leitner Sep 2017 A1
20170355315 Leitner Dec 2017 A1
20180095457 Lee Apr 2018 A1
20180118530 August May 2018 A1
20180141497 Smith May 2018 A1
20180201194 Stanesic Jul 2018 A1
20180257572 Du et al. Sep 2018 A1
20180281687 Derbis et al. Oct 2018 A1
20180293811 Liu Oct 2018 A1
20180326911 Leitner Nov 2018 A1
20190009725 Stojkovic et al. Jan 2019 A1
20190047477 Crandall Feb 2019 A1
20190054961 Ngo Feb 2019 A1
20190071021 Pribisic Mar 2019 A1
20190071042 Smith Mar 2019 A1
20190084482 Long et al. Mar 2019 A1
20190084628 Povinelli et al. Mar 2019 A1
20190292026 Felps Sep 2019 A1
20200023779 Du et al. Jan 2020 A1
20200023780 Du et al. Jan 2020 A1
20200047674 Du et al. Feb 2020 A1
20200262354 Du et al. Aug 2020 A1
20200265658 Du et al. Aug 2020 A1
20200269763 Du et al. Aug 2020 A1
20200277169 Zhan Sep 2020 A1
20200282814 Alban et al. Sep 2020 A1
20200282913 Qing Sep 2020 A1
20200290424 Zhan Sep 2020 A1
20200299116 Fan Sep 2020 A1
20200282914 Du et al. Oct 2020 A1
20200331396 Du et al. Oct 2020 A1
20210078591 Du et al. Mar 2021 A1
20210213885 Du et al. Jul 2021 A1
20210347303 Qing et al. Nov 2021 A1
20210347304 Qing et al. Nov 2021 A1
20220194299 Du et al. Jun 2022 A1
20220219612 Du et al. Jul 2022 A1
Foreign Referenced Citations (111)
Number Date Country
1021826 Nov 1977 CA
2082177 May 1994 CA
2218280 Jun 1999 CA
2332193 Sep 2001 CA
2370618 Nov 2007 CA
2174368 Aug 1994 CN
2806241 Aug 2006 CN
1976833 Jun 2007 CN
101279594 Oct 2008 CN
102394918 Mar 2012 CN
202806579 Mar 2013 CN
103507719 Jan 2014 CN
203728468 Jul 2014 CN
104192070 Dec 2014 CN
2044474223 Jul 2015 CN
105083136 Nov 2015 CN
105083137 Nov 2015 CN
105128751 Dec 2015 CN
105450762 Mar 2016 CN
106249641 Dec 2016 CN
106499293 Mar 2017 CN
107601333 Jan 2018 CN
207361653 May 2018 CN
108263303 Jul 2018 CN
108454518 Aug 2018 CN
207758678 Aug 2018 CN
108583446 Sep 2018 CN
108632335 Oct 2018 CN
108791086 Nov 2018 CN
208037900 Nov 2018 CN
108973868 Dec 2018 CN
208232903 Dec 2018 CN
109253888 Jan 2019 CN
208325054 Jan 2019 CN
208344082 Jan 2019 CN
208532082 Feb 2019 CN
1042403 Oct 1958 DE
1220276 Jun 1966 DE
2555468 Jun 1977 DE
7922488 Jul 1982 DE
3151621 Jul 1983 DE
3932142 Apr 1990 DE
8910933 Oct 1990 DE
0066493 Dec 1982 EP
373842 Jun 1990 EP
0418615 Mar 1991 EP
0559624 Aug 1995 EP
0966367 Sep 1998 EP
0901783 Mar 1999 EP
1116840 Jul 2001 EP
1213185 Dec 2004 EP
3002157 Apr 2016 EP
3176038 Jan 2019 EP
3237254 Feb 2019 EP
1271901 Sep 1961 FR
1350593 Dec 1963 FR
2225612 Aug 1974 FR
2651739 Mar 1991 FR
2764254 Dec 1998 FR
191315077 Aug 1913 GB
254426 Jul 1926 GB
340162 Dec 1930 GB
381672 Oct 1932 GB
745918 Mar 1956 GB
934387 Aug 1963 GB
936846 Sep 1963 GB
987846 Mar 1965 GB
1430813 Apr 1976 GB
1471256 Apr 1977 GB
2045699 Nov 1980 GB
2055705 Mar 1981 GB
2129378 May 1984 GB
2201511 Sep 1988 GB
2288014 Oct 1995 GB
201741011829 Oct 2018 IN
63-255144 Oct 1988 JP
H04138944 May 1992 JP
H04339040 Nov 1992 JP
H04342629 Nov 1992 JP
H05310061 Nov 1993 JP
H05310081 Nov 1993 JP
H08132967 May 1996 JP
H10287182 Oct 1998 JP
2018-177089 Nov 2018 JP
2019-001222 Jan 2019 JP
2000-0003099 Feb 2000 KR
101719102 Mar 2017 KR
2017001699 Aug 2018 MX
2017001700 Aug 2018 MX
2017006328 Aug 2018 MX
2017008032 Sep 2018 MX
2017010183 Sep 2018 MX
403594 Nov 1973 SU
783097 Nov 1980 SU
198805759 Aug 1988 WO
199500359 Jan 1995 WO
1997027139 Jul 1997 WO
199843856 Oct 1998 WO
2000047449 Aug 2000 WO
2001000441 Jan 2001 WO
2003039910 May 2003 WO
2003039920 May 2003 WO
2003066380 Aug 2003 WO
2003069294 Aug 2003 WO
2006050297 May 2006 WO
2009103163 Aug 2009 WO
2017176226 Oct 2017 WO
2018148643 Aug 2018 WO
2018197393 Nov 2018 WO
2019009131 Jan 2019 WO
2019034493 Feb 2019 WO
Non-Patent Literature Citations (17)
Entry
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2015/097930 dated May 10, 2016.
U.S. Office Action dated Nov. 18, 2019 for U.S. Appl. No. 16/510,775, filed Jul. 12, 2019. (9 pages).
U.S. Office Action dated Dec. 20, 2019 for U.S. Appl. No. 16/655,149, filed Oct. 16, 2019. (11 pages).
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2019/075535 dated Nov. 11, 2019. (English translation, p. 1-21).
International Search Report of the International Searching Authority for PCT International Application No. PCT/CN2019/077842 dated Oct. 12, 2019. (English Translation, p. 1-20).
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2019/082919 dated Oct. 11, 2019. (English Translation, p. 1-20).
U.S. Office Action dated Jun. 9, 2020 for U.S. Appl. No. 16/826,094, filed Mar. 20, 2020 (10 pages).
U.S. Office Action dated Jun. 9, 2020 for U.S. Appl. No. 15/931,474, filed May 13, 2020 (12 pages).
U.S. Notice of Allowance for U.S. Appl. No. 16/510,775 dated Feb. 3, 2020.
U.S. Notice of Allowance for U.S. Appl. No. 16/655,149 dated Feb. 20, 2020.
U.S. Notice of Allowance for U.S. Appl. No. 16/826,083 dated Oct. 9, 2020.
Australian Application No. 2019250149 Office Action dated Oct. 6, 2020, pp. 1-4).
Final Office Action dated Oct. 27, 2020 for U.S. Appl. No. 15/931,474, filed Oct. 27, 2020 (13 pages).
Final Office Action dated Feb. 16, 2021 for U.S. Appl. No. 16/826,094, filed Mar. 20, 2020 (15 pages).
Non-Final Office Action dated Jun. 10, 2021 for U.S. Appl. No. 16/517,527, filed Jul. 19, 2019 (6 pages).
U.S. Appl. No. 16/742,632 Notice of Allowance dated Jun. 29, 2021, pp. 1-7.
Chinese Application No. 201910125764.6 Office Action dated May 6, 2021, pp. 1-13.
Related Publications (1)
Number Date Country
20210347304 A1 Nov 2021 US