This application claims the benefit of priority to Chinese Patent Application Nos. 202010393602.3 and 202020770820.X, both applications filed on May 11, 2020, of which the content of each application is incorporated herein by reference in its entirety and for all purposes.
The present disclosure relates to a field of vehicle technologies, and more particularly to a step apparatus for a vehicle and a vehicle having the same.
A vehicle step is usually arranged on a chassis under a door to assist a person in getting into or out of a vehicle. The vehicle step is driven by an extension and retraction mechanism to move between an extended position and a retracted position, and the extension and retraction mechanism is connected to the chassis of the vehicle. In the related art, the vehicle step is driven by the extension and retraction mechanism, and the extended position is located below and at an outer side of the retracted position. Such design may attribute the vehicle step with poor stability, as the extension and retraction mechanism has a complex structure, poor flexibility, and poor applicability.
An aspect of the present disclosure provides a step apparatus for a vehicle.
Another aspect of the present disclosure also provides a vehicle.
The step apparatus for the vehicle, according to an embodiment of the first aspect of the present disclosure, includes a step; a lifting device connected to the step and configured to be unfolded and folded to adjust a level of the step; and a driver connected to the lifting device and configured to drive the lifting device to be unfolded and folded.
The vehicle, according to an embodiment of the second aspect of the present disclosure, includes a vehicle body and a step apparatus for a vehicle. The step apparatus for the vehicle includes a step; a lifting device connected to the step and configured to be unfolded and folded to adjust a level of the step; and a driver connected to the lifting device and configured to drive the lifting device to be unfolded and folded. The step apparatus for the vehicle is mounted to a bottom surface of the vehicle body.
Reference will be made in detail to embodiments of the present disclosure. The embodiments described herein with reference to drawings are explanatory, illustrative, and used to generally convey the present disclosure. The embodiments shall not be construed to limit the present disclosure. In the specification, it should be understood that terms such as “central,” “longitudinal,” “lateral,” “length,” “width,” “thickness,” “upper,” “lower,” “front,” “rear,” “left,” “right,” “vertical,” “horizontal,” “top,” “bottom,” “inner,” “outer,” “clockwise,” “counterclockwise,” “axial,” “radial,” and “circumferential,” etc., should be construed to refer to orientations or positions as illustrated in the drawings. These relative terms are for convenience of description and do not require that the present disclosure should be constructed or operated in a particular orientation, so they are not to be construed as a limit to the present disclosure.
A step apparatus for a vehicle and a vehicle according to an embodiment of the present disclosure will be described with reference to the accompanying drawings.
As illustrated in
As illustrated in
The step apparatus for the vehicle 1000 according to the embodiment of the present disclosure will be described below.
As illustrated in
The lifting device 2 is connected to the step 1, and the lifting device 2 can be unfolded and folded to adjust a level of the step 1. As illustrated in
The driver 3 is connected to the lifting device 2, and the driver 3 is configured to drive the lifting device 2 to be unfolded and folded. As illustrated in
In the step apparatus 100 for the vehicle 1000 according to the embodiment of the present disclosure, the lifting device 2 is connected to the step 1 and can be unfolded and folded under the drive of the driver 3, so as to facilitate adjustments of the level of the step 1, thus providing a simple structure, good stability, and good flexibility and improving applicability.
In some embodiments, the step 1 has a side bar position, a step position, and a jack position. In the side bar position, the step 1 is located at a lower edge of a side face of the vehicle body 200. In the step position, the step 1 is located between the side bar position and the ground. In the jack position, the step 1 abuts the ground to be configured to jack up the vehicle body 200.
As illustrated in
As illustrated in
As illustrated in
In some embodiments, the lifting device 2 includes a foldable arm assembly 23, which is pivotably connected to the step 1 and the bottom surface 210 of the vehicle body The driver 3 is connected to the arm assembly 23 to drive the arm assembly 23 to be unfolded and folded. The step 1 is driven to move among the side bar position, the step position, and the jack position by the arm assembly 23 under the drive of the driver 3.
In some embodiments, the lifting device 2 further includes a mounting base 21 adapted to be mounted to the bottom surface 210 of the vehicle body, and the arm assembly 23 is pivotably connected to the mounting base 21. In other words, the arm assembly 23 is not limited to being directly pivotably connected to the bottom surface 210 of the vehicle body; it can also be pivotably connected to the bottom surface 210 of the vehicle body through the mounting base 21. Specifically, as illustrated in
In some embodiments, the lifting device 2 further includes a step base 22; the step 1 is mounted to the step base 22, and the arm assembly 23 is pivotably connected to the step base 22. In other words, the arm assembly 23 is not limited to a manner in which the arm assembly 23 is directly pivotably connected to the step 1; it can also be pivotably connected to the step 1 through the step base 22. Specifically, as illustrated in
In some embodiments, the lifting device 2 further includes a mounting base 21 and a step base 22. The mounting base 21 is adapted to be mounted to the bottom surface 210 of the vehicle body. The step 1 is mounted to the step base 22. The arm assembly 23 is pivotably connected to the mounting base 21 and the step base 22. Specifically, an upper end of the arm assembly 23 is pivotably connected to the mounting base 21, a top surface of the mounting base 21 is fixedly connected to the bottom surface 210 of the vehicle body, a lower end of the arm assembly 23 is pivotably connected to the step base 22, and the step 1 is fixedly connected to the step base 22.
In some embodiments, the arm assembly 23 includes a plurality of pairs of arms, and each pair of arms includes a first arm 231 and a second arm 232. A first end of the first arm 231 (a lower end of the first arm 231 in
Specifically, when the linear driver is retracted, at least one of the first arm 231 and the second arm 232 rotates in a direction of being folded together towards each other, so that the step base 22 drives the step 1 to move closer to the mounting base 21 and the bottom surface 210 of the vehicle body to increase the height of the step 1. When the linear driver is extended, at least one of the first arm 231 and the second arm 232 can rotate in a direction of being unfolded relative to each other from being folded together, so that the step base 22 drives the step 1 to move away from the mounting base 21 and the bottom surface 210 of the vehicle body to reduce the height of the step 1.
Specifically, the mounting base 21 includes a first side wall 211 and a second side wall 212 spaced apart in the front-rear direction, and a first U-shaped groove 213 is formed between the first side wall 211 and the second side wall 212. The upper end of the first arm 231 is arranged in the first U-shaped groove 213, and a first pin shaft 233 passes through the upper end of the first arm 231 in the front-rear direction. A rear end of the first pin shaft 233 is pivotably connected to the first side wall 211, and a front end of the first pin shaft 233 is pivotably connected to the second side wall 212, so that the upper end of the first arm 231 is pivotably connected to the mounting base 21 through the first pin shaft 233.
The step base 22 includes a third side wall 221 and a fourth side wall 222 spaced apart in the front-rear direction, and a second U-shaped groove 223 is formed between the third side wall 221 and the fourth side wall 222. The lower end of the second arm 232 is arranged in the second U-shaped groove 223, and a second pin shaft 234 passes through the lower end of the second arm 232 in the front-rear direction. A rear end of the second pin shaft 234 is pivotably connected to the third side wall 221, and a front end of the second pin shaft 234 is pivotably connected to the fourth side wall 222, so that the lower end of the second arm 232 is pivotably connected to the step base 22 through the second pin shaft 234.
In some embodiments, the step apparatus 100 for the vehicle 1000 further includes a connecting assembly 5, and the connecting assembly 5 includes a first connecting plate 51 and a second connecting plate 52. The first connecting plate 51 and the second connecting plate 52 are connected to each other and arranged opposite to each other. The first end of the first arm 231 of each pair of arms is pivotably connected to the first connecting plate 51 and the second connecting plate 52, and the first end of the second arm 232 of each pair of arms is pivotably connected to the first connecting plate 51 and the second connecting plate 52. The driver 3 is connected to the first connecting plate 51 and the second connecting plate 52.
As illustrated in
In some embodiments, as illustrated in
In some specific embodiments, as illustrated in
As illustrated in
In some specific embodiments, at least two driving arm pairs 201 are provided, one of which is a first driving arm pair and the other of which is a second driving arm pair. At least two gear boxes 4 are provided, one of which is a first gear box and the other of which is a second gear box. The first gear box corresponds to the first driving arm pair, and the second gear box corresponds to the second driving arm pair. The connecting assembly 5 includes a first connecting assembly 501 and a second connecting assembly 502. The housing 41 of the first gear box is arranged between one end of the first connecting plate 51 of the first connecting assembly 501 and one end of the second connecting plate 52 of the first connecting assembly 501, and the other end of the first connecting plate 51 of the first connecting assembly 501 and the other end of the second connecting plate 52 of the first connecting assembly 501 are connected to a first end 31 of the driver 3. The housing 41 of the second gear box is arranged between one end of the first connecting plate 51 of the second connecting assembly 502 and one end of the second connecting plate 52 of the second connecting assembly 502, and the other end of the first connecting plate 51 of the second connecting assembly 502 and the other end of the second connecting plate 52 of the second connecting assembly 502 are connected to a second end 32 of the driver 3.
As illustrated in
A right end of the first connecting plate 51 of the first connecting assembly 501 and a right end of the second connecting plate 52 of the first connecting assembly 501 are connected to the first end 31 of the driver 3. The housing 41 of one gear box 4 is arranged between a left end of the first connecting plate 51 of the first connecting assembly 501 and a left end of the second connecting plate 52 of the first connecting assembly 501. The first gear 42 of the one gear box 4 is connected to the lower end of the first arm 231 of one driving arm pair 201, and the second gear 43 of the one gear box 4 is connected to the upper end of the second arm 232 of the one driving arm pair 201. A left end of the first connecting plate 51 of the second connecting assembly 502 and a left end of the second connecting plate 52 of the second connecting assembly 502 are connected to the second end 32 of the driver 3. The housing 41 of the other gear box 4 is arranged between a right end of the first connecting plate 51 of the second connecting assembly 502 and a right end of the second connecting plate 52 of the second connecting assembly 502. The first gear 42 of the other gear box 4 is connected to the lower end of the first arm 231 of the other driving arm pair 201, and the second gear 43 of the other gear box 4 is connected to the upper end of the second arm 232 of the other driving arm pair 201.
The gear transmission between the first arm 231 and the second arm 232 of the driving arm pair 201 is not limited to the form of the gear box 4 illustrated in
In some specific embodiments, as illustrated in
The lower end of the first side plate 2311 and the lower end of the second side plate 2312 of the first arm are each provided with a plurality of first gear teeth 2310, and the upper end of the first side plate 2321 and the upper end of the second side plate 2322 of the second arm are each provided with a plurality of second gear teeth 2320. The first gear teeth 2310 of the first side plate 2311 of the first arm mesh with the second gear teeth 2320 of the first side plate 2321 of the second arm, and the first gear teeth 2310 of the second side plate 2312 of the first arm mesh with the second gear teeth 2320 of the second side plate 2322 of the second arm.
As illustrated in
The first side plate 2321 and the second side plate 2322 of the second arm are pivotably connected to the first connecting plate 51 and the second connecting plate 52, respectively, through a sixth pin shaft 239. Specifically, the sixth pin shaft 239 extends in the front-rear direction and passes through the first connecting plate 51 and the second connecting plate 52, a rear end of the sixth pin shaft 239 extends out of the first connecting plate 51 and is pivotably connected to the upper end of the first side plate 2321 of the second arm, and a front end of the sixth pin shaft 239 extends out of the second connecting plate 52 and is pivotably connected to the upper end of the second side plate 2322 of the second arm.
Specifically, the fifth pin shaft 238 and the sixth pin shaft 239 are opposed to and spaced apart from each other in the up-down direction.
In some embodiments, the plurality of pairs of arms further include a driven arm pair 202, and the driven arm pair 202 and the driving arm pair 201 are spaced apart in the left-right direction. As illustrated in
The lower ends of the first arm 231 of the driven arm pair 202 straddle between the first connecting plate 51 and the second connecting plate 52. A third pin shaft 236 extends in the front-rear direction; a front end of the third pin shaft 236 is pivotably connected to one lower end of the first arm 231 of the driven arm pair 202 and the first connecting plate 51, and a rear end of the third pin shaft 236 is pivotably connected to the other lower end of the first arm 231 of the driven arm pair 202 and the second connecting plate 52, so that the lower ends of the first arm 231 of the driven arm pair 202 are pivotably connected to the first connecting plate 51 and the second connecting plate 52 through the third pin shaft 236. The upper ends of the second arm 232 of the driven arm pair 202 straddle between the first connecting plate 51 and the second connecting plate 52. A fourth pin shaft 237 extends in the front-rear direction; a front end of the fourth pin shaft 237 is pivotably connected to one upper end of the second arm 232 of the driven arm pair 202 and the first connecting plate 51, and a rear end of the fourth pin shaft 237 is pivotably connected to the other upper end of the second arm 232 of the driven arm pair 202 and the second connecting plate 52, so that the upper ends of the second arm 232 of the driven arm pair 202 are pivotably connected to the first connecting plate 51 and the second connecting plate 52 through the fourth pin shaft 237.
Specifically, the third pin shaft 236 and the fourth pin shaft 237 are arranged at intervals in the up-down direction, and the connecting shaft 235 is spaced apart from the third pin shaft 236 and the fourth pin shaft 237 in the left-right direction.
As illustrated in
The lower end of the first arm 231 of one of the driven arm pairs 202 is pivotably connected to the first connecting plate 51 and the second connecting plate 52 of the first connecting assembly 501 through the third pin shaft 236. The upper end of the second arm 232 of this driven arm pair 202 is pivotably connected to the first connecting plate 51 and the second connecting plate 52 of the first connecting assembly 501 through the fourth pin shaft 237. A left end of the driver 3 is connected to the first connecting plate 51 and the second connecting plate 52 of the first connecting assembly 501 through the connecting shaft 235. Specifically, the connecting shaft 235 is located on the right side of the third pin shaft 236 and the fourth pin shaft 237.
The lower end of the first arm 231 of the other driven arm pair 202 is pivotably connected to the first connecting plate 51 and the second connecting plate 52 of the second connecting assembly 502 through the other third pin shaft 236. The upper end of the second arm 232 of this driven arm pair 202 is pivotably connected to the first connecting plate 51 and the second connecting plate 52 of the second connecting assembly 502 through the other fourth pin shaft 237. A right end of the driver 3 is connected to the first connecting plate 51 and the second connecting plate 52 of the second connecting assembly 502 through the other connecting shaft 235. Specifically, the other connecting shaft 235 is located on the left side of the other third pin shaft 236 and the other fourth pin shaft 237.
In some embodiments, the first arm 231 and the second arm 232 of each pair of arms are arranged symmetrically. As illustrated in
In some embodiments, the first arm 231 and the second arm 232 of each pair of arms are inclined from the driver 3 to an inner side or an outer side of the arm assembly 23. As illustrated in
As illustrated in
Reference throughout this specification to “an embodiment,” “some embodiments,” “an example,” “a specific example,” or “some examples” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of phrases such as “in some embodiments,” “in one embodiment,” “in an example,” “in a specific example,” or “in some examples” in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples. In addition, those skilled in the related art may combine and incorporate different embodiments or examples and their features described in the specification, without mutual contradictions.
In the present disclosure, unless specified or limited otherwise, a structure in which a first feature is “on” or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature and may also include an embodiment in which the first feature is in indirect contact with the second feature through intermediaries. Furthermore, a first feature “on,” “above,” or “on top of” a second feature may include an embodiment in which the first feature is right “on,” “above,” or “on top of” the second feature and may also include an embodiment in which the first feature is diagonally “on,” “above,” or “on top of” the second feature, or such a phrase may just mean that the first feature is at a height higher than that of the second feature. A first feature “beneath,” “below,” or “on bottom of” a second feature may include an embodiment in which the first feature is right “beneath,” “below,” or “on bottom of” the second feature and may also include an embodiment in which the first feature is diagonally “beneath,” “below,” or “on bottom of” the second feature, or such a phrase may just mean that the first feature is at a height lower than that of the second feature.
In the descriptions, unless specified or limited otherwise, the terms “mounted,” “connected,” “coupled,” and “fixed” and variations thereof should be understood broadly. For example, these may be permanent connections, detachable connections, or integrated connections; mechanical connections, electrical connections, or communicated with each other; direct connections or indirect connections through intermediaries; or intercommunication or interaction relationships of two elements, unless specified or limited otherwise. Those skilled in the related art may understand specific meanings of the above terms in the present disclosure according to specific situations.
Although explanatory embodiments have been illustrated and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles, and scope of the present disclosure.
It is intended that the specification, together with the drawings, be considered exemplary only, where exemplary means an example. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Additionally, the use of “or” is intended to include “and/or”, unless the context clearly indicates otherwise.
While this patent document contains many specifics, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this patent document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.
Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.
Number | Date | Country | Kind |
---|---|---|---|
202010393602.3 | May 2020 | CN | national |
202020770820.X | May 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7591 | Burdett | Aug 1850 | A |
634385 | Wolfe et al. | Oct 1899 | A |
724155 | Besse | Mar 1903 | A |
752031 | Chadwick | Feb 1904 | A |
817224 | Clifford | Apr 1906 | A |
955658 | Mitchell et al. | Apr 1910 | A |
1063643 | Blake et al. | Jun 1913 | A |
1169140 | Fassett et al. | Jan 1916 | A |
1176538 | Warner | Mar 1916 | A |
1182169 | Hansen | May 1916 | A |
1222127 | Perri | Apr 1917 | A |
1239892 | Dunderdale | Sep 1917 | A |
1242828 | Lyle | Oct 1917 | A |
1250604 | Lorenc | Dec 1917 | A |
1268335 | Fairchild | Jun 1918 | A |
1364697 | Branch | Jan 1921 | A |
1437648 | Gore | Dec 1922 | A |
1449031 | Blake | Mar 1923 | A |
1471972 | Miller | Oct 1923 | A |
1509235 | Giuliani | Sep 1924 | A |
1621479 | Cleveland et al. | Mar 1927 | A |
1755942 | Woolson | Apr 1930 | A |
1800162 | Stroud | Apr 1931 | A |
2029745 | Stiner | Feb 1936 | A |
2041640 | Goss | May 1936 | A |
2118557 | Hamilton | May 1938 | A |
2122040 | Machovec | Jun 1938 | A |
2125085 | Pool | Jul 1938 | A |
2197266 | Fredell | Apr 1940 | A |
2209576 | McDonald | Jul 1940 | A |
2246986 | Pellegrini | Jun 1941 | A |
2436961 | Gabriel | Mar 1948 | A |
2487921 | Culver | Nov 1949 | A |
2492068 | Schofield et al. | Dec 1949 | A |
2566401 | Bustin | Sep 1951 | A |
2575615 | Crump | Nov 1951 | A |
2583894 | Shuck | Jan 1952 | A |
2645504 | Branstrator et al. | Jul 1953 | A |
2669613 | Despard | Feb 1954 | A |
2678832 | Wright | May 1954 | A |
2682671 | Faure | Jul 1954 | A |
2764422 | McDonald | Sep 1956 | A |
2774494 | Malmström | Dec 1956 | A |
2825582 | McDonald | Mar 1958 | A |
2921643 | Vanderveld | Jan 1960 | A |
2925876 | Wagner | Feb 1960 | A |
2998265 | Kozicki | Aug 1961 | A |
3008533 | Haberle | Nov 1961 | A |
3012633 | Magee | Dec 1961 | A |
3039562 | Wagner | Jun 1962 | A |
3095216 | Browne et al. | Jun 1963 | A |
3164394 | Husko | Jan 1965 | A |
3172499 | Stairs | Mar 1965 | A |
3266594 | Antosh et al. | Aug 1966 | A |
3329443 | Lowder et al. | Jul 1967 | A |
3392990 | Wolf | Jul 1968 | A |
3488066 | Hansen | Jan 1970 | A |
3494634 | De Paula | Feb 1970 | A |
3515406 | Endsley | Jun 1970 | A |
3517942 | Cuffe et al. | Jun 1970 | A |
3522396 | Norden | Jul 1970 | A |
3528574 | Denner et al. | Sep 1970 | A |
3572754 | Fowler | Mar 1971 | A |
3608957 | Maneck | Sep 1971 | A |
3650423 | O'Brien | Mar 1972 | A |
3671058 | Kent | Jun 1972 | A |
3745595 | Nagy | Jul 1973 | A |
3756622 | Pyle et al. | Sep 1973 | A |
3762742 | Bucklen | Oct 1973 | A |
3784227 | Rogge | Jan 1974 | A |
3799288 | Manuel | Mar 1974 | A |
3807757 | Carpenter et al. | Apr 1974 | A |
3833240 | Weiler | Sep 1974 | A |
3853369 | Holden | Dec 1974 | A |
3863890 | Ruffing | Feb 1975 | A |
3865399 | Way | Feb 1975 | A |
3869022 | Wallk | Mar 1975 | A |
3869169 | Johnson et al. | Mar 1975 | A |
3887217 | Thomas | Jun 1975 | A |
3889997 | Schoneck | Jun 1975 | A |
3891261 | Finneman | Jun 1975 | A |
3913497 | Maroshick | Oct 1975 | A |
3915475 | Casella et al. | Oct 1975 | A |
3957284 | Wright | May 1976 | A |
3961809 | Clugston | Jun 1976 | A |
3980319 | Kirkpatrick | Sep 1976 | A |
3981515 | Rosborough | Sep 1976 | A |
3986724 | Rivinius | Oct 1976 | A |
3997211 | Graves | Dec 1976 | A |
4020920 | Abbott | May 1977 | A |
4053172 | McClure | Oct 1977 | A |
4058228 | Hall | Nov 1977 | A |
4068542 | Brand et al. | Jan 1978 | A |
4073502 | Frank et al. | Feb 1978 | A |
4089538 | Eastridge | May 1978 | A |
4098346 | Stanfill | Jul 1978 | A |
4103872 | Hirasuka | Aug 1978 | A |
4106790 | Weiler | Aug 1978 | A |
4110673 | Nagy et al. | Aug 1978 | A |
4116457 | Nerem et al. | Sep 1978 | A |
4124099 | Dudynskyj | Nov 1978 | A |
4145066 | Shearin | Mar 1979 | A |
4164292 | Karkau | Aug 1979 | A |
4168764 | Walters | Sep 1979 | A |
4174021 | Barlock | Nov 1979 | A |
4180143 | Clugston | Dec 1979 | A |
4185849 | Jaeger | Jan 1980 | A |
4188889 | Favrel | Feb 1980 | A |
4194754 | Hightower | Mar 1980 | A |
4205862 | Tarvin | Jun 1980 | A |
4219104 | MacLeod | Aug 1980 | A |
4231583 | Learn | Nov 1980 | A |
4275664 | Reddy | Jun 1981 | A |
4325668 | Julian et al. | Apr 1982 | A |
4369984 | Hagen | Jan 1983 | A |
4424751 | Blochlinger | Jan 1984 | A |
4440364 | Cone et al. | Apr 1984 | A |
4462486 | Dignan | Jul 1984 | A |
4536004 | Brynielsson et al. | Aug 1985 | A |
4542805 | Hamlin et al. | Sep 1985 | A |
4570962 | Chavira | Feb 1986 | A |
4623160 | Trudell | Nov 1986 | A |
D287001 | Jarvie et al. | Dec 1986 | S |
4676013 | Endo | Jun 1987 | A |
4679810 | Kimball | Jul 1987 | A |
4696349 | Harwood et al. | Sep 1987 | A |
D292904 | Bielby | Nov 1987 | S |
4708355 | Tiede | Nov 1987 | A |
4711613 | Fretwell | Dec 1987 | A |
4720116 | Williams et al. | Jan 1988 | A |
4733752 | Sklar | Mar 1988 | A |
4757876 | Peacock | Jul 1988 | A |
4846487 | Criley | Jul 1989 | A |
4858888 | Cruz et al. | Aug 1989 | A |
4909700 | Fontecchio et al. | Mar 1990 | A |
4911264 | McCafferty | Mar 1990 | A |
4926965 | Fox | May 1990 | A |
4930973 | Robinson | Jun 1990 | A |
4958979 | Svensson | Sep 1990 | A |
4982974 | Guidry | Jan 1991 | A |
4991890 | Paulson | Feb 1991 | A |
D316394 | Carr | Apr 1991 | S |
5005667 | Anderson | Apr 1991 | A |
5005850 | Baughman | Apr 1991 | A |
5007654 | Sauber | Apr 1991 | A |
5028063 | Andrews | Jul 1991 | A |
5039119 | Baughman | Aug 1991 | A |
5085450 | DeHart, Sr. | Feb 1992 | A |
5137294 | Martin | Aug 1992 | A |
5154125 | Renner et al. | Oct 1992 | A |
5195609 | Ham et al. | Mar 1993 | A |
5199731 | Martin | Apr 1993 | A |
5228707 | Yoder | Jul 1993 | A |
5228761 | Huebschen et al. | Jul 1993 | A |
5238300 | Slivon et al. | Aug 1993 | A |
5253973 | Fretwell | Oct 1993 | A |
D340905 | Orth et al. | Nov 1993 | S |
5257767 | McConnell | Nov 1993 | A |
5257847 | Yonehara | Nov 1993 | A |
5261779 | Goodrich | Nov 1993 | A |
5280934 | Monte | Jan 1994 | A |
5284349 | Bruns et al. | Feb 1994 | A |
5286049 | Khan | Feb 1994 | A |
5342073 | Poole | Aug 1994 | A |
5358268 | Hawkins | Oct 1994 | A |
5375864 | McDaniel | Dec 1994 | A |
5423463 | Weeks | Jun 1995 | A |
5425615 | Hall et al. | Jun 1995 | A |
5439342 | Hall et al. | Aug 1995 | A |
5462302 | Leitner | Oct 1995 | A |
5478124 | Warrington | Dec 1995 | A |
5498012 | McDaniel et al. | Mar 1996 | A |
5501475 | Bundy | Mar 1996 | A |
5505476 | Maccabee | Apr 1996 | A |
5513866 | Sisson | May 1996 | A |
5538100 | Hedley | Jul 1996 | A |
5538265 | Chen et al. | Jul 1996 | A |
5538269 | McDaniel et al. | Jul 1996 | A |
5547040 | Hanser et al. | Aug 1996 | A |
5549312 | Garvert | Aug 1996 | A |
5584493 | Demski et al. | Dec 1996 | A |
5601300 | Fink et al. | Feb 1997 | A |
5624127 | Arreola et al. | Apr 1997 | A |
5697623 | Bermes et al. | Dec 1997 | A |
5697626 | McDaniel | Dec 1997 | A |
5727840 | Ochiai et al. | Mar 1998 | A |
5779208 | McGraw | Jul 1998 | A |
5842709 | Maccabee | Dec 1998 | A |
5876051 | Sage | Mar 1999 | A |
5897125 | Bundy | Apr 1999 | A |
5937468 | Wiedeck et al. | Aug 1999 | A |
5941342 | Lee | Aug 1999 | A |
5957237 | Tigner | Sep 1999 | A |
5980449 | Benson et al. | Nov 1999 | A |
5988970 | Holtom | Nov 1999 | A |
6012545 | Faleide | Jan 2000 | A |
6027090 | Liu | Feb 2000 | A |
6042052 | Smith et al. | Mar 2000 | A |
6055780 | Yamazaki | May 2000 | A |
6065924 | Budd | May 2000 | A |
6082693 | Benson et al. | Jul 2000 | A |
6082751 | Hanes et al. | Jul 2000 | A |
6112152 | Tuttle | Aug 2000 | A |
6135472 | Wilson et al. | Oct 2000 | A |
6149172 | Pascoe et al. | Nov 2000 | A |
6158756 | Hansen | Dec 2000 | A |
6168176 | Mueller | Jan 2001 | B1 |
6170842 | Mueller | Jan 2001 | B1 |
6179312 | Paschke et al. | Jan 2001 | B1 |
6179546 | Citrowske | Jan 2001 | B1 |
6203040 | Hutchins | Mar 2001 | B1 |
6213486 | Kunz et al. | Apr 2001 | B1 |
6224317 | Kann | May 2001 | B1 |
6264222 | Johnston et al. | Jul 2001 | B1 |
6270099 | Farkash | Aug 2001 | B1 |
6325397 | Pascoe | Dec 2001 | B1 |
6352295 | Leitner | Mar 2002 | B1 |
6357992 | Ringdahl et al. | Mar 2002 | B1 |
6375207 | Dean et al. | Apr 2002 | B1 |
6412799 | Schrempf | Jul 2002 | B1 |
6422342 | Armstrong et al. | Jul 2002 | B1 |
6425572 | Lehr | Jul 2002 | B1 |
6430164 | Jones et al. | Aug 2002 | B1 |
6435534 | Stone | Aug 2002 | B1 |
6439342 | Boykin | Aug 2002 | B1 |
6460915 | Bedi et al. | Oct 2002 | B1 |
6471002 | Weinermen | Oct 2002 | B1 |
6511086 | Schlicht | Jan 2003 | B2 |
6511402 | Shu | Jan 2003 | B2 |
6513821 | Heil | Feb 2003 | B1 |
6533303 | Watson | Mar 2003 | B1 |
6536790 | Ojanen | Mar 2003 | B1 |
6588783 | Fichter | Jul 2003 | B2 |
6612596 | Jeon et al. | Sep 2003 | B2 |
6641158 | Leitner | Nov 2003 | B2 |
6659484 | Knodle et al. | Dec 2003 | B2 |
6663125 | Cheng | Dec 2003 | B1 |
6746033 | McDaniel | Jun 2004 | B1 |
6769704 | Cipolla | Aug 2004 | B2 |
6810995 | Warford | Nov 2004 | B2 |
6812466 | O'Connor et al. | Nov 2004 | B2 |
6830257 | Leitner | Dec 2004 | B2 |
6834875 | Leitner | Dec 2004 | B2 |
6840526 | Anderson et al. | Jan 2005 | B2 |
6874801 | Fichter | Apr 2005 | B2 |
6880843 | Greer, Jr. | Apr 2005 | B1 |
6912912 | Reichinger et al. | Jul 2005 | B2 |
6918624 | Miller et al. | Jul 2005 | B2 |
6926295 | Berkebile et al. | Aug 2005 | B2 |
6938909 | Leitner | Sep 2005 | B2 |
6942233 | Leitner et al. | Sep 2005 | B2 |
6942272 | Livingston | Sep 2005 | B2 |
6948903 | Ablabutyan et al. | Sep 2005 | B2 |
6951357 | Armstrong et al. | Oct 2005 | B2 |
6955370 | Fabiano et al. | Oct 2005 | B2 |
6959937 | Schneider et al. | Nov 2005 | B2 |
6966597 | Tegtmeier | Nov 2005 | B2 |
6971652 | Bobbert et al. | Dec 2005 | B2 |
6997469 | Lanoue et al. | Feb 2006 | B2 |
7000932 | Heil et al. | Feb 2006 | B2 |
7007961 | Leitner | Mar 2006 | B2 |
7017927 | Henderson et al. | Mar 2006 | B2 |
7055839 | Leitner | Jun 2006 | B2 |
7090276 | Bruford et al. | Aug 2006 | B1 |
7111859 | Kim et al. | Sep 2006 | B2 |
7118120 | Lee et al. | Oct 2006 | B2 |
7163221 | Leitner | Jan 2007 | B2 |
7258386 | Leitner | Aug 2007 | B2 |
7287771 | Lee et al. | Oct 2007 | B2 |
7360779 | Crandall | Apr 2008 | B2 |
7367574 | Leitner | May 2008 | B2 |
7380807 | Leitner | Jun 2008 | B2 |
7398985 | Leitner et al. | Jul 2008 | B2 |
7413204 | Leitner | Aug 2008 | B2 |
7416202 | Fichter | Aug 2008 | B2 |
7487986 | Leither et al. | Feb 2009 | B2 |
7516703 | Tazreiter | Apr 2009 | B2 |
7566064 | Leitner et al. | Jul 2009 | B2 |
7584975 | Leitner | Sep 2009 | B2 |
7594672 | Piotrowski | Sep 2009 | B2 |
7621546 | Ross et al. | Nov 2009 | B2 |
7637519 | Leitner et al. | Dec 2009 | B2 |
7673892 | Kuntze et al. | Mar 2010 | B2 |
7717444 | Fichter | May 2010 | B2 |
7740261 | Leitner et al. | Jun 2010 | B2 |
7793596 | Hirtenlehner | Sep 2010 | B2 |
7823896 | VanBelle | Nov 2010 | B2 |
7874565 | Duncan | Jan 2011 | B2 |
D634687 | Vukel | Mar 2011 | S |
7900944 | Watson | Mar 2011 | B2 |
7909344 | Bundy | Mar 2011 | B1 |
7934737 | Okada | May 2011 | B2 |
7976042 | Watson et al. | Jul 2011 | B2 |
8038164 | Stahl et al. | Oct 2011 | B2 |
8042821 | Yang | Oct 2011 | B2 |
D649100 | Cheng | Nov 2011 | S |
8052162 | Yang et al. | Nov 2011 | B2 |
8056913 | Kuntze et al. | Nov 2011 | B2 |
8070173 | Watson | Dec 2011 | B2 |
8136826 | Watson | Mar 2012 | B2 |
8146935 | Adams | Apr 2012 | B1 |
8157277 | Leitner et al. | Apr 2012 | B2 |
8177247 | Carr | May 2012 | B1 |
8205901 | Yang et al. | Jun 2012 | B2 |
D665713 | Pochurek et al. | Aug 2012 | S |
8262113 | Chafey et al. | Sep 2012 | B1 |
8297635 | Agoncillo et al. | Oct 2012 | B2 |
D671874 | Kekich et al. | Dec 2012 | S |
8342550 | Stickles et al. | Jan 2013 | B2 |
8342551 | Watson et al. | Jan 2013 | B2 |
8360455 | Leitner et al. | Jan 2013 | B2 |
8408571 | Leitner et al. | Apr 2013 | B2 |
8419034 | Leitner et al. | Apr 2013 | B2 |
8469380 | Yang et al. | Jun 2013 | B2 |
8602431 | May | Dec 2013 | B1 |
8827294 | Leitner et al. | Sep 2014 | B1 |
8833782 | Huotari et al. | Sep 2014 | B2 |
8844957 | Leitner et al. | Sep 2014 | B2 |
D720674 | Stanesic et al. | Jan 2015 | S |
8936266 | Leitner et al. | Jan 2015 | B2 |
8944451 | Leitner et al. | Feb 2015 | B2 |
9156406 | Stanesic et al. | Oct 2015 | B2 |
9272667 | Smith | Mar 2016 | B2 |
9302626 | Leitner et al. | Apr 2016 | B2 |
9346404 | Bundy | May 2016 | B1 |
9346405 | Leitner et al. | May 2016 | B2 |
9511717 | Smith | Dec 2016 | B2 |
9522634 | Smith | Dec 2016 | B1 |
9527449 | Smith | Dec 2016 | B2 |
9550458 | Smith et al. | Jan 2017 | B2 |
9561751 | Leitner et al. | Feb 2017 | B2 |
9573467 | Chen et al. | Feb 2017 | B2 |
9656609 | Du et al. | May 2017 | B2 |
9669766 | Du et al. | Jun 2017 | B2 |
9669767 | Du et al. | Jun 2017 | B2 |
9688205 | Du et al. | Jun 2017 | B2 |
9701249 | Leitner et al. | Jul 2017 | B2 |
9764691 | Stickles et al. | Sep 2017 | B2 |
9809172 | Stanesic et al. | Nov 2017 | B2 |
9834147 | Smith | Dec 2017 | B2 |
9902328 | Mazur | Feb 2018 | B1 |
9944231 | Leitner et al. | Apr 2018 | B2 |
9975742 | Mason | May 2018 | B1 |
10010467 | Sato | Jul 2018 | B2 |
10049505 | Harvey | Aug 2018 | B1 |
10053017 | Leitner et al. | Aug 2018 | B2 |
10065486 | Smith et al. | Sep 2018 | B2 |
10077016 | Smith et al. | Sep 2018 | B2 |
10081302 | Frederick et al. | Sep 2018 | B1 |
10106069 | Rasekhi | Oct 2018 | B2 |
10106086 | Eckstein et al. | Oct 2018 | B1 |
10106087 | Stojkovic et al. | Oct 2018 | B2 |
10106088 | Smith | Oct 2018 | B2 |
10118557 | Pribisic | Nov 2018 | B2 |
10124735 | Du et al. | Nov 2018 | B2 |
10124839 | Povinelli et al. | Nov 2018 | B2 |
10140618 | Crawford | Nov 2018 | B2 |
10144345 | Stinson et al. | Dec 2018 | B2 |
10150419 | Derbis et al. | Dec 2018 | B2 |
10155474 | Salter et al. | Dec 2018 | B2 |
10173595 | Ulrich | Jan 2019 | B1 |
10183623 | Kirshnan et al. | Jan 2019 | B2 |
10183624 | Leitner et al. | Jan 2019 | B2 |
10189517 | Povinelli et al. | Jan 2019 | B2 |
10195997 | Smith | Feb 2019 | B2 |
10207598 | Reynolds et al. | Feb 2019 | B2 |
10214963 | Simula et al. | Feb 2019 | B2 |
10384614 | Du et al. | Aug 2019 | B1 |
10427607 | Otacioglu | Oct 2019 | B2 |
10539285 | Johnson | Jan 2020 | B1 |
10576879 | Salter | Mar 2020 | B1 |
10618472 | Du | Apr 2020 | B2 |
10649483 | Liu et al. | May 2020 | B2 |
10682960 | Du | Jun 2020 | B2 |
10821904 | Du | Nov 2020 | B2 |
10885759 | Lee | Jan 2021 | B1 |
11021108 | Du | Jun 2021 | B2 |
11198394 | Du et al. | Dec 2021 | B2 |
11208043 | Du et al. | Dec 2021 | B2 |
11208044 | Smith et al. | Dec 2021 | B2 |
11292390 | Du et al. | Apr 2022 | B2 |
11318889 | Du et al. | May 2022 | B2 |
11414017 | Qing et al. | Aug 2022 | B2 |
20030011164 | Cipolla | Jan 2003 | A1 |
20030038446 | Anderson et al. | Feb 2003 | A1 |
20030090081 | Oakley | May 2003 | A1 |
20030094781 | Jaramillo et al. | May 2003 | A1 |
20030132595 | Fabiano | Jul 2003 | A1 |
20030200700 | Leitner | Oct 2003 | A1 |
20040100063 | Henderson et al. | May 2004 | A1 |
20040108678 | Berkebile et al. | Jun 2004 | A1 |
20040135339 | Kim | Jul 2004 | A1 |
20050035568 | Lee et al. | Feb 2005 | A1 |
20050146157 | Leitner | Jul 2005 | A1 |
20050231149 | Numauchi | Oct 2005 | A1 |
20050280242 | Fabiano | Dec 2005 | A1 |
20060082096 | Sukonthapanich et al. | Apr 2006 | A1 |
20060214386 | Watson | Sep 2006 | A1 |
20060219484 | Ogura | Oct 2006 | A1 |
20060284440 | Leitner | Dec 2006 | A1 |
20070017743 | Yeh | Jan 2007 | A1 |
20080042396 | Watson | Feb 2008 | A1 |
20080100023 | Ross | May 2008 | A1 |
20080100025 | Leitner et al. | May 2008 | A1 |
20090250896 | Watson | Oct 2009 | A1 |
20090295114 | Yang et al. | Dec 2009 | A1 |
20090295115 | Yang et al. | Dec 2009 | A1 |
20100044993 | Watson | Feb 2010 | A1 |
20110115187 | Leitner et al. | May 2011 | A1 |
20110246021 | Prokhorov | Oct 2011 | A1 |
20120025485 | Yang et al. | Feb 2012 | A1 |
20120046846 | Dollens | Feb 2012 | A1 |
20130154230 | Ziaylek | Jun 2013 | A1 |
20150094898 | Tellis | Apr 2015 | A1 |
20150097353 | Rasmussen et al. | Apr 2015 | A1 |
20150137482 | Woolf | May 2015 | A1 |
20150197199 | Kuo | Jul 2015 | A1 |
20150321612 | Leitner et al. | Nov 2015 | A1 |
20150321613 | Leitner et al. | Nov 2015 | A1 |
20160039346 | Yang et al. | Feb 2016 | A1 |
20160193964 | Stanesic et al. | Jul 2016 | A1 |
20160280190 | Franz | Sep 2016 | A1 |
20170008459 | Leitner et al. | Jan 2017 | A1 |
20170021781 | Du | Jan 2017 | A1 |
20170036605 | Du | Feb 2017 | A1 |
20170036606 | Du | Feb 2017 | A1 |
20170036607 | Du et al. | Feb 2017 | A1 |
20170144606 | Smith | May 2017 | A1 |
20170190308 | Smith | Jun 2017 | A1 |
20170246993 | Smith | Aug 2017 | A1 |
20170267182 | Leitner | Sep 2017 | A1 |
20170355315 | Leitner | Dec 2017 | A1 |
20180095457 | Lee | Apr 2018 | A1 |
20180118530 | August | May 2018 | A1 |
20180141497 | Smith | May 2018 | A1 |
20180201194 | Stanesic | Jul 2018 | A1 |
20180257572 | Du et al. | Sep 2018 | A1 |
20180281687 | Derbis et al. | Oct 2018 | A1 |
20180293811 | Liu | Oct 2018 | A1 |
20180326911 | Leitner | Nov 2018 | A1 |
20190009725 | Stojkovic et al. | Jan 2019 | A1 |
20190047477 | Crandall | Feb 2019 | A1 |
20190054961 | Ngo | Feb 2019 | A1 |
20190071021 | Pribisic | Mar 2019 | A1 |
20190071042 | Smith | Mar 2019 | A1 |
20190084482 | Long et al. | Mar 2019 | A1 |
20190084628 | Povinelli et al. | Mar 2019 | A1 |
20190292026 | Felps | Sep 2019 | A1 |
20200023779 | Du et al. | Jan 2020 | A1 |
20200023780 | Du et al. | Jan 2020 | A1 |
20200047674 | Du et al. | Feb 2020 | A1 |
20200262354 | Du et al. | Aug 2020 | A1 |
20200265658 | Du et al. | Aug 2020 | A1 |
20200269763 | Du et al. | Aug 2020 | A1 |
20200277169 | Zhan | Sep 2020 | A1 |
20200282814 | Alban et al. | Sep 2020 | A1 |
20200282913 | Qing | Sep 2020 | A1 |
20200290424 | Zhan | Sep 2020 | A1 |
20200299116 | Fan | Sep 2020 | A1 |
20200282914 | Du et al. | Oct 2020 | A1 |
20200331396 | Du et al. | Oct 2020 | A1 |
20210078591 | Du et al. | Mar 2021 | A1 |
20210213885 | Du et al. | Jul 2021 | A1 |
20210347303 | Qing et al. | Nov 2021 | A1 |
20210347304 | Qing et al. | Nov 2021 | A1 |
20220194299 | Du et al. | Jun 2022 | A1 |
20220219612 | Du et al. | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
1021826 | Nov 1977 | CA |
2082177 | May 1994 | CA |
2218280 | Jun 1999 | CA |
2332193 | Sep 2001 | CA |
2370618 | Nov 2007 | CA |
2174368 | Aug 1994 | CN |
2806241 | Aug 2006 | CN |
1976833 | Jun 2007 | CN |
101279594 | Oct 2008 | CN |
102394918 | Mar 2012 | CN |
202806579 | Mar 2013 | CN |
103507719 | Jan 2014 | CN |
203728468 | Jul 2014 | CN |
104192070 | Dec 2014 | CN |
2044474223 | Jul 2015 | CN |
105083136 | Nov 2015 | CN |
105083137 | Nov 2015 | CN |
105128751 | Dec 2015 | CN |
105450762 | Mar 2016 | CN |
106249641 | Dec 2016 | CN |
106499293 | Mar 2017 | CN |
107601333 | Jan 2018 | CN |
207361653 | May 2018 | CN |
108263303 | Jul 2018 | CN |
108454518 | Aug 2018 | CN |
207758678 | Aug 2018 | CN |
108583446 | Sep 2018 | CN |
108632335 | Oct 2018 | CN |
108791086 | Nov 2018 | CN |
208037900 | Nov 2018 | CN |
108973868 | Dec 2018 | CN |
208232903 | Dec 2018 | CN |
109253888 | Jan 2019 | CN |
208325054 | Jan 2019 | CN |
208344082 | Jan 2019 | CN |
208532082 | Feb 2019 | CN |
1042403 | Oct 1958 | DE |
1220276 | Jun 1966 | DE |
2555468 | Jun 1977 | DE |
7922488 | Jul 1982 | DE |
3151621 | Jul 1983 | DE |
3932142 | Apr 1990 | DE |
8910933 | Oct 1990 | DE |
0066493 | Dec 1982 | EP |
373842 | Jun 1990 | EP |
0418615 | Mar 1991 | EP |
0559624 | Aug 1995 | EP |
0966367 | Sep 1998 | EP |
0901783 | Mar 1999 | EP |
1116840 | Jul 2001 | EP |
1213185 | Dec 2004 | EP |
3002157 | Apr 2016 | EP |
3176038 | Jan 2019 | EP |
3237254 | Feb 2019 | EP |
1271901 | Sep 1961 | FR |
1350593 | Dec 1963 | FR |
2225612 | Aug 1974 | FR |
2651739 | Mar 1991 | FR |
2764254 | Dec 1998 | FR |
191315077 | Aug 1913 | GB |
254426 | Jul 1926 | GB |
340162 | Dec 1930 | GB |
381672 | Oct 1932 | GB |
745918 | Mar 1956 | GB |
934387 | Aug 1963 | GB |
936846 | Sep 1963 | GB |
987846 | Mar 1965 | GB |
1430813 | Apr 1976 | GB |
1471256 | Apr 1977 | GB |
2045699 | Nov 1980 | GB |
2055705 | Mar 1981 | GB |
2129378 | May 1984 | GB |
2201511 | Sep 1988 | GB |
2288014 | Oct 1995 | GB |
201741011829 | Oct 2018 | IN |
63-255144 | Oct 1988 | JP |
H04138944 | May 1992 | JP |
H04339040 | Nov 1992 | JP |
H04342629 | Nov 1992 | JP |
H05310061 | Nov 1993 | JP |
H05310081 | Nov 1993 | JP |
H08132967 | May 1996 | JP |
H10287182 | Oct 1998 | JP |
2018-177089 | Nov 2018 | JP |
2019-001222 | Jan 2019 | JP |
2000-0003099 | Feb 2000 | KR |
101719102 | Mar 2017 | KR |
2017001699 | Aug 2018 | MX |
2017001700 | Aug 2018 | MX |
2017006328 | Aug 2018 | MX |
2017008032 | Sep 2018 | MX |
2017010183 | Sep 2018 | MX |
403594 | Nov 1973 | SU |
783097 | Nov 1980 | SU |
198805759 | Aug 1988 | WO |
199500359 | Jan 1995 | WO |
1997027139 | Jul 1997 | WO |
199843856 | Oct 1998 | WO |
2000047449 | Aug 2000 | WO |
2001000441 | Jan 2001 | WO |
2003039910 | May 2003 | WO |
2003039920 | May 2003 | WO |
2003066380 | Aug 2003 | WO |
2003069294 | Aug 2003 | WO |
2006050297 | May 2006 | WO |
2009103163 | Aug 2009 | WO |
2017176226 | Oct 2017 | WO |
2018148643 | Aug 2018 | WO |
2018197393 | Nov 2018 | WO |
2019009131 | Jan 2019 | WO |
2019034493 | Feb 2019 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2015/097930 dated May 10, 2016. |
U.S. Office Action dated Nov. 18, 2019 for U.S. Appl. No. 16/510,775, filed Jul. 12, 2019. (9 pages). |
U.S. Office Action dated Dec. 20, 2019 for U.S. Appl. No. 16/655,149, filed Oct. 16, 2019. (11 pages). |
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2019/075535 dated Nov. 11, 2019. (English translation, p. 1-21). |
International Search Report of the International Searching Authority for PCT International Application No. PCT/CN2019/077842 dated Oct. 12, 2019. (English Translation, p. 1-20). |
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2019/082919 dated Oct. 11, 2019. (English Translation, p. 1-20). |
U.S. Office Action dated Jun. 9, 2020 for U.S. Appl. No. 16/826,094, filed Mar. 20, 2020 (10 pages). |
U.S. Office Action dated Jun. 9, 2020 for U.S. Appl. No. 15/931,474, filed May 13, 2020 (12 pages). |
U.S. Notice of Allowance for U.S. Appl. No. 16/510,775 dated Feb. 3, 2020. |
U.S. Notice of Allowance for U.S. Appl. No. 16/655,149 dated Feb. 20, 2020. |
U.S. Notice of Allowance for U.S. Appl. No. 16/826,083 dated Oct. 9, 2020. |
Australian Application No. 2019250149 Office Action dated Oct. 6, 2020, pp. 1-4). |
Final Office Action dated Oct. 27, 2020 for U.S. Appl. No. 15/931,474, filed Oct. 27, 2020 (13 pages). |
Final Office Action dated Feb. 16, 2021 for U.S. Appl. No. 16/826,094, filed Mar. 20, 2020 (15 pages). |
Non-Final Office Action dated Jun. 10, 2021 for U.S. Appl. No. 16/517,527, filed Jul. 19, 2019 (6 pages). |
U.S. Appl. No. 16/742,632 Notice of Allowance dated Jun. 29, 2021, pp. 1-7. |
Chinese Application No. 201910125764.6 Office Action dated May 6, 2021, pp. 1-13. |
Number | Date | Country | |
---|---|---|---|
20210347304 A1 | Nov 2021 | US |