Not applicable.
Not applicable.
Not applicable.
The present invention relates to stepladders. More particularly, the present invention relates to the foldable stepladders. Additionally, the present invention relates to stepladders that can be folded so as to be utilized as a single ladder or as an extension ladder.
Ladders are commonly used as a means for elevating persons to a specified height in order to perform a specified function. The users of ladders will climb a series of steps, or rungs, in order to reach a desired height. Stepladders are ladders in which a first ladder section extends at an acute angle with respect to a second ladder section. The first ladder section will have the steps or rungs thereon. The second ladder section is intended to provide structural support for the leaning of the first ladder section. As such, stepladders can be used in locations where there is no support surface.
Single ladders require the use of an extrinsic support surface. A single ladder includes a pair of side rails and a plurality of steps, or rungs, extending between the pair of side rails. Typically, the bottom of the stepladder will be placed upon an underlying surface. The single ladder will lean at an acute angle with respect to the underlying surface so as to have an upper end resting against the extrinsic surface.
Extension ladders typically consist of a base section and one or more fly sections with each fly section extendable from the preceding section. The term “base section” is used to refer to the lower of two adjacent sections of an extension ladder, from which a fly section is extended upward. The base section may be the section of the ladder onto which the user first climbs. Typically, with extension ladders, the bottom of the extension ladder will reside on an underlying surface while the fly section extends upwardly and outwardly from the base section so as to have an upper end that rests against an extrinsic surface, such as the side of a building. Extension ladders, in the past, extend linearly and do not have outwardly extending supports therefor.
In the United States and most other countries, it is prohibited lean a closed stepladder against a wall or extrinsic surface for use as a single ladder. The reason is twofold. First, a stepladder is designed to be self-supported on four legs so as to distribute the user's weight across four legs instead of two legs. Secondly, when the closed stepladder would lean against the wall, the other ladder section of the ladder can possibly unfold so as to contact the underlying surfaces and possibly upset the first ladder section. This could potentially cause a slip-out event to occur.
Unfortunately, under those circumstances where different ladders are required, the users are required to purchase a stepladder for one set of purposes and a single or extension ladder for other purposes. Often, the proper type of ladder will not be available when the need for such a ladder occurs. As such, a need has developed whereby a stepladder can be adapted for use as a single ladder or as an extension ladder while still being able to handle all ANSI performance standards as both a four-legged stepladder and also the more stringent loading conditions required of a single ladder. In the past, various patents have issued with respect to such stepladders.
An early patent for a folding stepladder is described in U.S. Pat. No. 341,284, issued on May 4, 1886 to T. P. Sharp. This folding ladder has rungs arranged in pairs. The rungs of each pair are arranged one back of the other end near the upper end of the ladder. A pair of ladder sections are hingedly connected together at the upper end thereof so that one ladder section can fold downwardly so as to extend into a generally inverted V-shape configuration with respect to the other ladder section.
U.S. Pat. No. 1,772,213, issued on Aug. 5, 1930 to B. F. Francois, describes a folding stepladder that includes a bridge member, spaced-apart guides mounted on the bridge member, a ladder unit slidably connected to one of the guides and having foldable steps, and a prop unit slidably connected to the other of the guides. The ladder and the prop units include sections hingedly connected to be folded upwardly. The ladder and prop sections are collapsible respectively at diagonally opposite portions of the guides. As such, the folded sections may be folded laterally of each other.
U.S. Pat. No. 2,088,878, issued on Aug. 3, 1937 to G. H. Stogner, describes a foldable stepladder that includes spaced side members and steps. Each of the side members includes pivotally connected sections pivoted at their outer ends to the side members and adapted to be folded in parallel between the side members. A bar connects all of the steps for folding the steps in unison. Hinges connect the supporting legs to the side members at the upper ends of the side members. Braces are pivoted at one end to the supporting legs and of a second end of the sections of the uppermost step so as to transmit movement of the sections of the step to the supporting legs.
U.S. Pat. No. 2,167,157, issued on Jul. 25, 1939 the K. O. Muehlberg, describes a stepladder that includes a ladder member having side rails and a top platform. Supporting legs are foldably connected to the platform. An elongated arm is slidably mounted through a tapered slot in the top platform and normally disposed in an angle to vertical against the side of the supporting leg. The arm is movable in the slot of the platform to a selected position of the projection extending vertically above the platform.
U.S. Pat. No. 2,255,756, issued on Sep. 16, 1940 to J. M. Bigen, shows a folding stepladder that comprises a primary ladder, an auxiliary ladder positioned to move parallel to the primary ladder, and a means that slidably connects the primary and auxiliary ladders together. A brace is provided for the primary ladder. A pivotally mounted transverse bar connects the lower ends of the brace bars. A platform is secured to the upper end of the auxiliary ladder.
U.S. Pat. No. 3,084,760, issued on Apr. 9, 1963 to B. Lamberti, shows a stepladder with folding elements. The stepladder includes a pair of side rails that are fixed together at the upper ends thereof. Foldable rungs extend between each of the side rails. The foldable run can fold so that the side rails can be position in a folded configuration.
U.S. Pat. No. 3,208,553, issued on Sep. 28, 1965 O. Gray, describes a folding ladder in which a first ladder section is hingedly connected at an upper end thereof to a second ladder section. The first and second ladder sections can extend outwardly so as to be aligned longitudinally in end-to-end relationship. The ladders can be fixed in this end-to-end relationship.
U.S. Pat. No. 3,447,632, issued on Jun. 3, 1969 to C. R. Boyd, discloses a folding tripod-type of ladder in which each of the legs can be folded in a compact configuration so as to support a platform at an upper end thereof.
U.S. Pat. No. 3,744,591, issued on Jul. 10, 1963 to R. Lucci et al., discloses a portable stepladder that has a row of steps supported by side posts and a rear post with an upper end that is pivotally connected to the upper end of the stepladder along a horizontal axis. The stepladder and the rear support are longitudinally split into two sections hinged to one another. Each of the hinged connections lies in a common plane so as to allow the stepladder to be folded up to a closed configuration.
U.S. Pat. No. 4,483,415, issued on Nov. 20, 1984 Disston et al., shows a folding stepladder that includes a lower step section and a strut pivotally connected at the upper ends for swinging movement between a collapsed position, one within the other, and a downwardly divergent erected position. The upper section is pivoted to the upper end of the lower step section for swinging movement between a folded position closely overlying the lower step section and an erected position inclining as an extension of the lower step section.
U.S. Pat. No. 7,849,967, issued on Dec. 14, 2010 to Gibson et al., provides a stepladder that includes a longer inclined frame provided with steps coupled to a shorter stabilizer frame provided with rungs for movement relative to the longer inclined frame between an expanded use position and a collapsed storage position. The stepladder also includes a top-step lock-to-lock for in a fixed position relative to the two frames.
It is an object of the present invention to provide a stepladder apparatus that can function both as a stepladder and a single or extension ladder.
It is another object of the present invention provide a stepladder apparatus in which the stepladder apparatus is able to meet all ANSI performance tests as both a four-legged stepladder and as a two-legged single or extension ladder.
It is another object of the present invention to provide a stepladder apparatus which can be folded into a compact configuration.
It is another object the present invention provide a stepladder apparatus in which one ladder section can be locked to the other ladder section when the ladder sections are closed together.
It is a further object of the present invention to provide a stepladder apparatus in which the second ladder section will lock against the first ladder section when in a single ladder or extension ladder configuration.
It is still another object of the present invention to provide a stepladder apparatus that has a ladder top that facilitates the use of the stepladder apparatus against flat surfaces, wall corners, or against round surfaces.
It is still a further object of the present invention provide a stepladder apparatus that avoids the cost for the user associated with purchasing a single ladder, an extension ladder and a stepladder as separate items.
It is still further object of the present invention to provide a stepladder apparatus that automatically locks when the second ladder section is brought against the first ladder section and which requires manual operation in order to release the ladder sections from their locked configuration.
These and other objects and advantages of the present invention will become apparent from a reading of the attached specification and appended claims.
The present invention is a ladder apparatus that comprises a first ladder section having a pair of side rails and a plurality of rungs extending between the pair of side rails, a second ladder section hingedly connected to the first ladder section adjacent an upper end of the first ladder section, and a latch mechanism affixed to one of the first and second ladder sections and engageable with the other of the first and second latching ladder sections. The second ladder section is movable between an extended position and a retracted position. The latch mechanism is adapted to secure the second ladder section in the retracted position. The first ladder section can be a single ladder or an extension ladder.
The second ladder section is in generally parallel relation with the first ladder section when in the retracted position. A hinge bar is affixed adjacent the upper end of the first ladder section. This hinge bar has an end extending outwardly transverse to the longitudinal axis of the pair of side rails. The second ladder section is pivotally connected to the end of the hinge bar. The first ladder section has a length that is greater than a length of the second ladder section. The second ladder section has a bottom that is positioned at a level above the bottom of the first ladder section when the first and second ladder sections are in the retracted position. A first strut is pivotally connected to the first ladder section in a location between the upper end and the lower end of the first ladder section. A second strut is pivotally connected to the second ladder section in a location between an upper end and a lower end of the second ladder section. The first strut is pivotally connected to the second strut. The first and second struts define the spreader bar between the ladder sections
The latch mechanism is a mechanism which automatically locks the second ladder section to the first ladder section when the second ladder section is pivoted so as to be in proximity to the first ladder section. Manual intervention is required so as to release the latch mechanism in order to allow the second ladder section to pivot outwardly with respect to the first ladder section.
In one embodiment of the latch mechanism, the latch mechanism includes a latch bar that is pivotally connected the first ladder section and extends in a direction toward the second ladder section, and a receptacle affixed to the second ladder section. The latch bar is engaged with the receptacle when the second ladder section is in the retracted position. The latch bar has a finger at an end thereof opposite the first ladder section. The finger extends into the receptacle when the second ladder section is in the retracted position. The finger has a tapered surface at the end of the latch bar. The tapered surface rides along a surface of the receptacle as the second ladder section moves toward the retracted position. The latch bar also includes an inset area formed therein on a side of the finger opposite the end of the latch bar. The receptacle has a portion that resides in the inset area when the second ladder section is in the retracted position. The latch bar includes an arm extending outwardly of the first ladder section and in a direction away from the second ladder section. The latch bar is resiliently mounted to the first ladder section such that the latch bar is resiliently urged downwardly. A stop is mounted to the first ladder section adjacent to the latch bar so as to limit a downward movement of the latch bar.
Each of the plurality of side rails of the first ladder section includes a longitudinal channel therein. The second ladder section has another pair of side rails each including a channel therein. The latch bar is pivotally positioned on a support affixed within the longitudinal channel of the first ladder section so as to extend beyond the longitudinal channel and above the sides of the longitudinal channel. The receptacle is affixed within the channel of the second ladder section. The receptacle includes a portion extending outwardly at a level above the sides of the channel of the second ladder section. The latch bar is supported by the outer edges of the sides of the longitudinal channel of the first ladder section.
Within the concept of the present invention, the latch mechanism can be reversed whereby the latch bar is pivotally connected to the second ladder section and extends in a direction toward the first ladder section when the receptacle is affixed within the first ladder section. The latch bar is engaged with receptacle when the second ladder section is in the retracted position.
In another embodiment of the latch mechanism of the present invention, the latch mechanism includes a latch bar that has a first portion attached to one of the first and second ladder sections and a second portion that engages the second ladder section when the first and second ladder sections are brought into proximity. The second portion of the latch bar includes an outwardly extending portion which will allow the user to utilize a hand or a finger so as to manually release the connection between the latch bar and the ladder section such that the ladder sections are free to pivot with respect to each other. Specifically, one embodiment of this latch bar includes a first portion that is mounted upon a support. The support is affixed to within a channel of one of the ladder sections. The support has a square C-shaped structure. The ends of this structure are fastened to the channel. The first portion of the latch bar is affixed to the outwardly extending surface of the structure. This outwardly extending structure is generally flush with the outer ends of the sides of the channel or extends beyond the sides of the channel. The second portion of this embodiment of the latch bar has a hook surface that is received within the channel of the ladder section. Specifically, this hook surface has a V-shaped configuration with an end of the V-shaped configuration facing a side of the channel of the other of the first and second ladder sections. A space is defined between the hook surface and the other side of the channel so as to allow a finger or a hand to extend into the space.
In another embodiment of this latch bar, the first portion is affixed to the channel so as to extend outwardly beyond the sides of the channel. The second portion has a V-shaped configuration with an end facing a side of the channel of the other of the ladder sections. A space is defined between the hook surface and the other side of the channel so as to allow a hand or a finger to extend into the space in order to manually release the second portion from the channel of the other ladder section.
In another embodiment of the latch bar of the present invention, the first portion can either be affixed to the channel of the ladder section or affixed to a support within this channel. The second portion has a hook surface that has a V-shape with a vertex of the V-shape bearing against a side of the channel when the ladder sections are juxtaposed together. An end of the V-shape extends outwardly beyond the side of the channel so as to allow a hand or a finger of the user to separate the vertex of the V-shape from the side of the channel of the other ladder section. When the latch bar is lifted upwardly and away from the other ladder section, the latch bar can be free the connection between the ladder sections so as to allow the ladder sections to pivot with respect to each other.
In any of these embodiments of the latch bar, the latch bar can be of a unitary construction and formed of a strip of steel or aluminum material. This unitary construction significantly reduces the cost associated with the latch mechanism while, the same time, ensuring the integrity of the connection between the ladder sections.
A ladder top is affixed to the upper end of the first ladder section. The ladder top extends outwardly at an obtuse angle with respect to the longitudinal axis of the pair of side rails. This portion of the ladder top has an end surface formed of a rubber or elastomeric material. This portion has a notch formed therein so as to extend inwardly of this end surface. The ladder top is affixed only the upper end of the first ladder section and not to the upper end of the second ladder section.
The present invention is also a method of converting the step ladder into a single or extension ladder, the method includes pivoting the second ladder section relative to the first ladder section such that the second ladder section is juxtaposed against the first ladder section, automatically latching the second ladder section to the first ladder section following the step of pivoting, and leaning the first and second ladder sections against an extrinsic surface such that the first and second ladder sections can act as a single ladder or an extension ladder.
This foregoing Section is intended to describe, with particularity, the preferred embodiments of the present invention. It is understood that modifications to these preferred embodiments can be made within the scope of the present invention. As such, this Section should not to be construed, in any way, as limiting of the broad scope of the present invention. The present invention should only be limited by the following claims and their legal equivalents.
Referring to
A hinge bar 22 is affixed to the upper end of the first ladder section 12. The hinge bar 22 includes an end 24 that extends outwardly generally transverse to a longitudinal axis of the side rails 14. The second ladder section 18 is pivotally connected to the end 24 of the hinge bar 22.
In
A first strut 32 is pivotally connected to the first ladder section 12 in a location between the upper end and the lower end of the first ladder section 12. A second strut 34 is pivotally connected to the second ladder section 18 in a location between the upper end and the lower end of the second ladder section. It can be seen that the first strut 32 is pivotally connected at 36 to the second strut 34. This pivotal connection will facilitate a scissors-like movement of the struts 32 and 34 so as to maintain the struts 32 and 34 in a linear orientation when the ladder apparatus 10 is in the stepladder configuration while facilitating the ability to fold the second ladder section 18 with respect to the first ladder section 12 when the ladder apparatus 10 assumes the single or extension ladder configuration (as shown in
So as to enhance the structural integrity of the ladder apparatus 10 and to avoid those problems caused by the swinging or releasing of the second ladder section 18, the lock mechanism 20 is engaged with the second ladder section 18 so as to maintain the second ladder section 18 adjacent to the first ladder section 12 in a generally parallel relationship with the first ladder section 12. As such, this will prevent the lower end 48 of the second ladder section 18 from swinging outwardly so as to contact the floor 42 and cause a possible dislodgment of the bottom 40 of the first ladder section 12.
The first ladder section 12 of the ladder apparatus 10 of the present invention is formed of an extremely strong structural material such that the first ladder section, individually, can meet ANSI performance tests as two-legged single or extension ladder. This will serve to satisfy all require all ANSI performance requirements for use of the ladder apparatus 10 has a four-legged stepladder. This in inherently satisfies the ANSI performance tests since the user's weight would be distributed across all four legs when the apparatus 10 functions as a stepladder (as shown in
The latch mechanism 22 includes a latch bar 66 that is pivotally mounted to the side rail 54 of the first ladder section 12. The latch bar 66 includes an arm 68 that extends outwardly beyond the side 58 of the channel 54. The latch bar 66 includes a portion 70 that extends outwardly beyond the side 56 of the channel 54 and in a direction toward the side rail 52 of the second ladder section 18. A finger 72 is formed at the end of the latch bar 66. The side rail 52 of the second ladder section 18 has a receptacle 74 formed therein. The receptacle 74, as will be described hereinafter, is an inverted U-shape member that has its free ends affixed to the side rail 52 within the channel 60.
A stop 76 is positioned below the latch bar 66 within the channel 54 of side rail 50. Stop 76 serves to limit a downward movement of the latch bar 66. The latch bar 66 is resiliently mounted so as to be urged in a downward direction. The arm 68 allows the user to overcome this downward urging by pressing downwardly of the arm 68. As will be described hereinafter, a downward pressing of the arm 68 will allow the finger 72 to be freed from receipt within the receptacle 74.
According to
As was described hereinbefore, the end surface 30 will extend outwardly for a significant distance away from the upper end of the first ladder section 12. The end surface 30 includes several ridges, longitudinal channels in vertical channels so as to enhance the ability to retain the ladder top 26 against the extrinsic surface.
Referring to
In either of the embodiments of
Within the concept of the present invention, it can be seen from the previous figures that the latch mechanism is actually applied to the ladder sections. Within the concept of the present invention, it is possible that the latch mechanism can be utilized in association with the spreader bar so as to secure the ladder sections together.
The foregoing disclosure and description of the invention is illustrative and explanatory thereof. Various changes in the details of the illustrated construction can be made within the scope of the present claims without departing from the true spirit of the invention. The present invention should only be limited by the following claims and their legal equivalents.
The present application is a continuation of U.S. patent application Ser. No. 16/212,272, filed on Dec. 6, 2018, presently pending. U.S. patent application Ser. No. 16/212,272 is a continuation of U.S. patent application Ser. No. 14/935,637, filed on Nov. 9, 2015, presently pending.
Number | Date | Country | |
---|---|---|---|
Parent | 16212272 | Dec 2018 | US |
Child | 16777332 | US | |
Parent | 14935637 | Nov 2015 | US |
Child | 16212272 | US |