Claims
- 1. In a field-flow fractionation system including a flow channel formed between opposing surfaces of channel walls and a force field disposed across said channel with a field gradient in a direction of one of said wall surfaces which operates as a restraining wall, the improvement comprising a method for steric field-flow fractionation including the step of applying a force field in sufficient relative strength with respect to particles contained within said channel to cause migration of a given class of said particles toward and against said restraining wall such that the mean Brownian displacement of said particles from the restraining wall is approximately equal to or less than the mean radius of said class of particles.
- 2. In a field-flow fractionation system including a flow channel formed between opposing surfaces of channel walls and a force field disposed across said channel with a field gradient in a direction of one of said wall surfaces which operates as a restraining wall, the improvement comprising a method for steric field-flow fractionation including the step of applying said force field in sufficient relative strength with respect to particles contained within said channel to cause formation of a layer of a given class of said particles against said restraining wall, layer thickness being controlled by the steric exclusion of particles from the space occupied by said restraining wall.
- 3. In a field-flow fractionation system including a flow channel formed between opposing surfaces of channel walls and a force field disposed across said channel with a field gradient in a direction of one of said wall surfaces which operates as a restraining wall, the improvement comprising a method for steric field-flow fractionation including the step of applying a force field having sufficient strength relative to particle size to maintain substantially all particles of a given class in layers in contact or near contact with said restraining wall such that the distance of the particles from the restraining wall is a function of said particle radii.
- 4. A method for steric field-flow fractionation as defined in claims 1, 2, or 3, wherein values for channel width (w) representing the distance between the opposing channel walls are selected from values within the approximate range 120>w/r>12 in which (r) represents particle radius of a given class of particles to be subjected to fractionation therein.
- 5. A method for steric field-flow fractionation as defined in claims 1, 2, or 3, wherein the channel width (w) is selected from the approximate range 500 micrometers>w>50 micrometers.
- 6. A method for steric field-flow fractionation as defined in claims 1, 2, or 3, wherein channel width (w), field selection and stream flow rate are selected for fractionation of particles having radii within the approximate range of 1-100 micrometers.
- 7. A method for steric field-flow fractionation as defined in claims 1, 2, or 3, wherein the force field is selected from the group of forces consisting of gravitational, electrical, electromagnetic, photophoretic centrifugal, and fluid cross-flow.
- 8. A method for steric field-flow fractionation as defined in claims 1, 2, or 3, further comprising the step of elevating said channel at one end to form an angle .theta. with respect to horizontal, said channel having an inlet at a lower end thereof to permit upward flow of a carrier stream along the flow channel, thereby subjecting particles contained therein to a sedimentation force component opposing the upward force exerted by the flow of the carrier stream.
- 9. A method for steric field-flow fractionation as defined in claim 8 further comprising the step of varying the angle .theta. during a single fractionation procedure to thereby change the value of the opposing sedimentation force component with respect to the upward extended by the flow stream.
- 10. A method for steric field-flow fractionation as defined in claim 9, wherein the variation of angle .theta. is programmed to selectively control particle movement through the flow channel.
- 11. A method for steric field-flow fractionation as defined in claim 9, wherein the variation of mean flow velocity if programmed to selectively control particle movement through the flow channel.
- 12. A method for steric field-flow fractionation as defined in claim 8 further comprising the step of varying mean flow velocity during a single fractionation procedure to thereby change the value of the opposing sedimentation force component with respect to the upward force extended by the flow stream.
- 13. A method for steric field-flow fractionation as defined in claim 8 further comprising the step of forming a plurality of particle collection pockets extending laterally of the flow chanel such that particles entrained in the flow stream adjacent thereto would be captured when the channel is rotated about its longitudinal axis to cause sedimentation forces to draw the particles into the pockets.
- 14. A method as defined in claim 1 wherein the flow channel is annular in configuration, said force being applied radially with respect to a longitudinal axis of said annular channel.
- 15. A method as defined in claim 14, wherein the force extends radially outward.
Government Interests
This invention was funded in part by a grant from the National Institute of Health, Department of Health, Education and Welfare.
US Referenced Citations (5)