Embodiments described herein relate generally to the parenteral procurement of bodily-fluid samples, and more particularly to devices and methods for parenterally-procuring bodily-fluid samples with reduced contamination from microbes or other contaminants exterior to the bodily-fluid source, such as dermally-residing microbes.
Health care practitioners routinely perform various types of microbial tests on patients using parenterally-obtained bodily-fluids. In some instances, patient samples (e.g., bodily-fluids) are tested for the presence of one or more potentially undesirable microbes, such as bacteria, fungi, or yeast (e.g., Candida). Microbial testing may include incubating patient samples in one or more sterile vessels containing culture media that is conducive to microbial growth, real-time diagnostics, and/or molecular PCR-based approaches. Generally, when such microbes are present in the patient sample, the microbes flourish over time in the culture medium. After a variable amount of time (e.g., a few hours to several days), organism growth can be detected by automated, continuous monitoring. Such automated monitoring can detect carbon dioxide produced by organism growth. The culture medium can then be tested for the presence of the microbes. The presence of microbes in the culture medium suggests the presence of the same microbes in the patient sample which, in turn, suggests the presence of the same microbes in the bodily-fluid of the patient from which the sample was obtained. Accordingly, when microbes are determined to be present in the culture medium, the patient may be prescribed one or more antibiotics or other treatments specifically designed to treat or otherwise remove the undesired microbes from the patient.
Patient samples, however, can become contaminated during procurement and/or can be otherwise susceptible to false positive results. One way in which contamination of a patient sample may occur is by the transfer of microbes from a bodily surface (e.g., dermally-residing microbes) dislodged during needle insertion into a patient and subsequently transferred to a culture medium with the patient sample. The bodily surface and/or other undesirable external microbes may be dislodged either directly or via dislodged tissue fragments, hair follicles, sweat glands and other skin adnexal structures. Another possible source of contamination is from the person drawing the patient sample. For example, a doctor, phlebotomist, nurse, etc. can transfer contaminants from their body (e.g., finger, arms, etc.) to the patient sample and/or to the equipment containing the patient sample. Expanding further, equipment and/or devices used during a patient sample procurement process (e.g., patient to needle, needle/tubing to sample vessels, etc.) often include multiple fluidic interfaces that can each introduce points of potential contamination. The use of such equipment and/or devices typically includes manual intervention to connect and/or fluidically couple various interfaces. Since these interfaces are not preassembled and sterilized as a single fluidically coupled system, external contaminants can be introduced to the patient sample via the user (e.g., doctor, phlebotomist, etc.) and/or other sources (e.g. ambient air, contaminants on surfaces of tables and counters in patient room, microbes transferred from linens or clothing, etc.). In some instances, such contaminants may thrive in a culture medium and eventually yield a positive microbial test result, thereby falsely indicating the presence of such microbes in vivo.
In some instances, false positive results and/or false negative results can be attributed to a specific volume of the patient sample. For example, overfilling of volume-sensitive blood culture bottles can lead to false positive results as noted in the instructions for use and/or warning labeling from manufacturers of such culture bottles, as well as associated automated continuous monitoring microbial detection systems. On the other hand, as another example, insufficient patient sample volume within a culture medium can result in false negative results. By way of example, in a study performed by the Mayo Clinic entitled, “Optimized Pathogen Detection with 30—Compared to 20-Milliliter Blood Culture Draws,” published in the December 2011 issue of Journal of Clinical Microbiology, a patient sample volume of 20 milliliters (mL) can result in detection of about 80% of bacteremias present in a patient sample, a patient sample volume of 40 mL can result in detection of about 88% of the bacteremias, and a patient sample volume of 60 mL can result in detection of about 99% of the bacteremias.
Such inaccurate results as a result of contamination, insufficient patient sample volume, and/or the like are a concern when attempting to diagnose or treat a suspected illness or condition. For example, false negative results from microbial tests may result in a misdiagnosis and/or delayed treatment of a patient illness which, in some cases, could result in the death of the patient. Conversely, false positive results from microbial tests may result in the patient being unnecessarily subjected to one or more anti-microbial therapies, which may cause serious side effects to the patient including, for example, death, as well as produce an unnecessary burden and expense to the health care system due to extended length of patient stay and/or other complications associated with erroneous treatments. Additionally, the use of diagnostic imaging equipment attributable to these false positive results is also a concern from both a cost as well as patient safety perspective as unnecessary exposure to concentrated radiation associated with a variety of imaging procedures (e.g., CT scans) has many known adverse impacts on long-term patient health.
As such, a need exists for sterile “all-in-one” bodily-fluid collection devices and methods that reduce microbial contamination in bodily-fluid test samples by, for example, minimizing exposure of the patient sample and/or fluidic interfaces to ambient non-sterile conditions and/or other sources of external contamination. Additionally, a need exists for such bodily-fluid collection devices to include a means for accurately metering, measuring, and/or otherwise assessing and confirming a volume of bodily-fluid transferred from a patient to a sample reservoir or culture medium that can be visually, tactically, or otherwise communicated to a healthcare practitioner procuring the patient sample in substantially real-time (e.g. at the patient bedside).
Devices for parenterally-procuring bodily-fluid samples with reduced contamination from microbes exterior to the bodily-fluid source, such as dermally-residing microbes and/or other undesirable external contaminants, are described herein. In some embodiments, an apparatus for obtaining a bodily fluid sample from a patient includes a pre-sample reservoir, a diversion mechanism, and a flow metering mechanism. The pre-sample reservoir is configured to receive a first volume of bodily-fluid withdrawn from the patient. The diversion mechanism includes an inlet port, a first outlet port, and a second outlet port, and defines a first fluid flow path and a second fluid flow path. The inlet port can be coupled to a lumen-defining device for receiving bodily-fluids from the patient. The first outlet port and the second outlet port are configured to fluidically couple the pre-sample reservoir and a sample reservoir, respectively, to the diversion mechanism. The first fluid flow path is configured to place the first outlet port in fluid communication with the inlet port and a second fluid flow path configured to place the second outlet port in fluid communication with the inlet port. The flow metering mechanism is in fluid communication with the first fluid flow path and the second fluid flow path. The flow metering mechanism is configured to meter a flow of the first volume of bodily-fluid through the first fluid flow path into the pre-sample reservoir and to meter a flow of a second volume of bodily-fluid through the second fluid flow path into the sample reservoir. The flow metering mechanism is configured to display a volumetric indicator associated with the first volume and the second volume.
Devices for parenterally-procuring bodily-fluid samples with reduced contamination from microbes exterior to the bodily-fluid source, such as dermally-residing microbes and/or other undesirable external contaminants, are described herein. In some embodiments, an apparatus for obtaining a bodily fluid sample from a patient includes a pre-sample reservoir, a diversion mechanism, and a flow metering mechanism. The pre-sample reservoir is configured to receive a first volume of bodily-fluid withdrawn from the patient. The diversion mechanism includes an inlet port, a first outlet port, and a second outlet port, and defines a first fluid flow path and a second fluid flow path. The inlet port can be coupled to a lumen-defining device for receiving bodily-fluids from the patient. The first outlet port and the second outlet port are configured to fluidically couple the pre-sample reservoir and a sample reservoir, respectively, to the diversion mechanism. The first fluid flow path is configured to place the first outlet port in fluid communication with the inlet port and a second fluid flow path configured to place the second outlet port in fluid communication with the inlet port. The flow metering mechanism is in fluid communication with the first fluid flow path and the second fluid flow path. The flow metering mechanism is configured to meter a flow of the first volume of bodily-fluid through the first fluid flow path into the pre-sample reservoir and to meter a flow of a second volume of bodily-fluid through the second fluid flow path into the sample reservoir. The flow metering mechanism is configured to display a volumetric indicator associated with the first volume and the second volume.
In some embodiments, an apparatus for obtaining a bodily-fluid sample from a patient includes a pre-sample reservoir, a diversion mechanism, a flow controller, and a movable member. The pre-sample reservoir is configured to receive a first volume of bodily-fluid withdrawn from the patient. The diversion mechanism includes an inlet port, a first outlet port, and a second outlet port. The inlet port is couplable to a lumen-defining device for receiving bodily-fluids from the patient. The first outlet port fluidically couples the pre-sample reservoir to the diversion mechanism and the second outlet port fluidically couples a sample reservoir to the diversion mechanism. The flow controller is at least partially disposed within the diversion mechanism and can be moved between a first configuration, in which the flow controller defines at least a portion of a fluid flow path between the inlet port and the first outlet port, and a second configuration, in which the flow controller defines at least a portion of a fluid flow path between the inlet port and the second outlet port. The movable member movably coupled to the diversion mechanism and movable through the second outlet port between a first configuration, in which the sample reservoir is fluidically isolated from the fluid flow path between the inlet port and the second outlet port, and a second configuration, in which the sample reservoir is in fluid communication with the fluid flow path between the inlet port and the second outlet port. The sample reservoir is configured to receive a second volume of bodily-fluid withdrawn from the patient when the flow controller is in its second configuration and the movable member is in its second configuration.
In some embodiments, an apparatus for obtaining a bodily-fluid sample from a patient includes a pre-sample reservoir, a diversion mechanism, and a flow controller. The pre-sample reservoir is configured to receive a first volume of bodily-fluid withdrawn from the patient. The diversion mechanism includes a housing and a distribution member. The housing defines a first aperture in fluid communication with the pre-sample reservoir and a second aperture. The distribution member is at least partially disposed within the housing and defines a fluid flow channel in fluid communication with the second aperture. The distribution member includes a coupling portion that is in fluid communication with the flow channel and is configured to be physically and fluidically coupled to a sample reservoir. The flow controller includes an inlet port couplable to a lumen-defining device for receiving bodily-fluids from the patient. The flow controller is rotatably coupled to the diversion mechanism and movable between a first configuration, in which the inlet port is in fluid communication with the first aperture, and a second configuration, in which the inlet port is in fluid communication with the second aperture.
In some embodiments, a method of using a flow-metering transfer device having a diversion mechanism with an inlet port configured to be selectively placed in fluid communication with a pre-sample reservoir and a sample reservoir, and a flow-metering mechanism configured to meter a flow of bodily-fluid from the patient to the pre-sample reservoir and to the sample reservoir includes establishing fluid communication between the patient and the inlet port of the flow-metering transfer device. Fluid communication is then established between the port and the pre-sample reservoir. A flow of bodily-fluid transferred from the patient to the pre-sample reservoir is metered. The method includes verifying a pre-sample volume of bodily-fluid disposed in the pre-sample reservoir is a first pre-sample volume of bodily-fluid via the flow-metering mechanism of the flow-metering transfer device. With the pre-sample volume disposed in the pre-sample reservoir, the pre-sample reservoir is fluidically isolated from the port to sequester the pre-sample volume of bodily-fluid in the pre-sample reservoir. With the pre-sample reservoir fluidically isolated, the method includes establishing fluid communication between the port and the sample reservoir. A flow of bodily-fluid transferred from the patient to the sample reservoir is metered. The method includes verifying a sample volume of bodily-fluid disposed in the sample reservoir is a first sample volume of bodily-fluid via the flow-metering mechanism of the flow-metering transfer device.
In some embodiments, an apparatus includes a diversion mechanism and a flow controller. The diversion mechanism can define an inlet port, a first outlet port, a second outlet port, and a third outlet port. The first outlet port is fluidically coupled to a pre-sample reservoir, the second outlet port is fluidically coupled to a first sample reservoir, and the third outlet port is fluidically coupled to a second sample reservoir, and so forth. All of the fluid reservoirs can be fluidically isolated from each other. The flow controller includes various fluidic channels that can allow fluidic movement in specified directions and can be configured to be operably coupled to the diversion mechanism. In use, when the diversion mechanism is at a first configuration, the flow controller can allow a flow of bodily-fluid to enter the pre-sample reservoir. The diversion mechanism can be moved to a second configuration, where the flow controller can allow a flow of bodily-fluid to enter the first sample reservoir. Additionally, the diversion mechanism can then be moved to a third configuration, whereby the flow controller can allow a flow of bodily-fluid to enter the second sample reservoir.
In some embodiments, a bodily-fluid collection device can be configured to selectively divert a first, predetermined volume of a bodily-fluid to a pre-sample reservoir before permitting the flow of a second volume of the bodily-fluid into a first sample reservoir and/or a third volume of the bodily-fluid into a second sample reservoir. In this manner, the second and/or third volumes of bodily-fluid can be used for diagnostic or other testing, while the first volume of bodily-fluid, which may contain microbes from a bodily surface or other source external to the patient from which the sample is procured, is isolated. In some embodiments, the bodily-fluid collection device can include additional sample reservoirs (e.g., 3, 4, 5, 6 or more) depending on the analysis and/or testing protocols to be performed.
In some embodiments, a bodily-fluid collection device can include flow metering to ensure the proper volume of bodily-fluid is collected from a patient and/or transferred into a specific pre-sample and/or sample reservoir. The bodily-fluid collection device can be configured to automatically divert and/or control the fluid flow after metered volumes of bodily-fluid are collected. For example, after a first metered pre-sample volume is collected, a diversion mechanism can be configured to divert the bodily-fluid flow to a first sample reservoir and then after a first metered sample volume is collected, the diversion mechanism can be configured to divert the bodily-fluid flow to a second sample reservoir and so on. In some embodiments, the bodily-fluid collection device can include a metered volume display such as, for example, a liquid crystal display (LCD), to provide a visual indication to the user of how much bodily-fluid has been collected into each specific, individual sample reservoir. In some embodiments, multiple displays can be provided to allow for customized pre-sample and/or sample volume collection.
As used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is intended to mean a single member or a combination of members, “a material” is intended to mean one or more materials, or a combination thereof.
As used herein, “bodily-fluid” can include any fluid obtained from a body of a patient, including, but not limited to, blood, cerebrospinal fluid, urine, bile, lymph, saliva, synovial fluid, serous fluid, pleural fluid, amniotic fluid, and the like, or any combination thereof.
As used herein, the terms “first, predetermined amount,” “first amount,” and “first volume” describe an amount of bodily-fluid configured to be received or contained by a first reservoir or a pre-sample reservoir. While the terms “first amount” and “first volume” do not explicitly describe a predetermined amount, it should be understood that the first amount is the first, predetermined amount unless explicitly described differently.
As used herein, the terms “second amount” and “second volume” describe an amount of bodily-fluid configured to be received or contained by a second reservoir or sample reservoir. The second amount can be any suitable amount of bodily-fluid and need not be predetermined. Conversely, when explicitly described as such, the second amount received and contained by the second reservoir or sample reservoir can be a second, predetermined amount.
As used herein, the term “set” can refer to multiple features or a singular feature with multiple parts. For example, when referring to set of walls, the set of walls can be considered as one wall with distinct portions, or the set of walls can be considered as multiple walls. Similarly stated, a monolithically constructed item can include a set of walls. Such a set of walls can include, for example, multiple portions that are in discontinuous from each other. A set of walls can also be fabricated from multiple items that are produced separately and are later joined together (e.g., via a weld, an adhesive or any suitable method).
As used herein, the terms “proximal” and “distal” refer to the direction closer to and away from, respectively, a user who would place the device into contact with a patient. Thus, for example, the end of a device first touching the body of the patient would be the distal end, while the opposite end of the device (e.g., the end of the device being manipulated by the user) would be the proximal end of the device.
As used herein, the terms “about,” “approximately,” and “substantially” when used in connection with a numerical value is intended to convey that the value so defined is nominally the value stated. Said another way, the terms about, approximately, and substantially when used in connection with a numerical value generally include the value stated plus or minus a given tolerance. For example, in some instances, a suitable tolerance can be plus or minus 10% of the value stated; thus, about 0.5 would include 0.45 and 0.55, about 10 would include 9 to 11, about 1000 would include 900 to 1100. In other instances, a suitable tolerance can be plus or minus an acceptable percentage of the last significant figure in the value stated. For example, a suitable tolerance can be plus or minus 10% of the last significant figure; thus, about 10.1 would include 10.09 and 10.11, approximately 25 would include 24.5 and 25.5. Such variance can result from manufacturing tolerances or other practical considerations (such as, for example, tolerances associated with a measuring instrument, acceptable human error, or the like).
When describing a relationship between a predetermined volume of bodily-fluid and a collected volume of bodily-fluid it is to be understood that the values include a suitable tolerance such as those described above. For example, when stating that a collected volume of bodily-fluid is substantially equal to a predetermined volume of bodily-fluid, the collected volume and the predetermined volume are nominally equal within a suitable tolerance. In some instances, the tolerances can be determined by the intended use of the collected volume of bodily-fluid. For example, in some instances, an assay of a blood culture can be about 99% accurate when the collected volume of blood is within 1.0% to 5.0% of the manufacturer's (or evidence-based best practices) recommended volume. By way of an example, a manufacturer's recommended volume for an assay of a bodily-fluid can be 10 milliliters (mL) per sample collection bottle, with a total of four or six collection bottles used (i.e., an aggregate volume of 40 ml to 60 ml) plus or minus 5% for about 99% confidence. Thus, a collected volume of 10.5 mL would provide results with over about 99% confidence, while a collected volume of 11 mL would provide results with less than about 99% confidence. In other instances, a suitable tolerance can be 0.1%, 0.5%, 1.0%, 2.0%, 3.0%, 4.0%, 5.0%, 6.0%, 7.0%, 8.0%, 9.0%, 10.0%, or any fraction of a percent therebetween. In still other instances, a tolerance can be greater than 10.0%. Thus, any of the embodiments described herein can include and/or can be used in conjunction with any suitable flow-metering mechanism and/or device that is configured to meter a flow and/or otherwise measure a volume of bodily-fluid within a suitable tolerance. Moreover, the flow-metering mechanism and/or device can be arranged such as to minimize or eliminate tolerance stacking that can result from a combination of inaccurate measurement, human error, and/or the like.
The collection device 100 includes a diversion mechanism 120, a flow controller 140, a pre-sample reservoir 170, a first sample reservoir 180, and a second sample reservoir 190, different than the first sample reservoir 180. The diversion mechanism 120 includes an inlet port 121 and at least two outlet ports, such as a first outlet port 125, and a second outlet port 126 as shown in
The first outlet port 125 of the diversion mechanism 120 can be fluidically coupled to the pre-sample reservoir 170. In some embodiments, the pre-sample reservoir 170 is monolithically formed with the first outlet port 125 and/or a portion of the diversion mechanism 120. In other embodiments, the pre-sample reservoir 170 can be mechanically and/or fluidically coupled to the diversion mechanism 120 via an adhesive, a resistance fit, a mechanical fastener, any number of mating recesses, a threaded coupling, and/or any other suitable coupling or combination thereof. Similarly stated, the pre-sample reservoir 170 can be physically (e.g., mechanically) coupled to the diversion mechanism 120 such that an interior volume defined by the pre-sample reservoir 170 is in fluid communication with the first outlet port 125 of the diversion mechanism 120. In still other embodiments, the pre-sample reservoir 170 can be operably coupled to the first outlet port 125 of the diversion mechanism 120 via an intervening structure (not shown in
The pre-sample reservoir 170 is configured to receive and contain the first, predetermined volume of the bodily-fluid. In some embodiments, the pre-sample reservoir 170 is configured to contain the first volume of the bodily-fluid such that the first volume is fluidically isolated from a second and/or third volume of the bodily-fluid (which can be the same or different than the first volume of bodily-fluid) that is subsequently withdrawn from the patient. The pre-sample reservoir 170 can be any suitable reservoir for containing a bodily-fluid, such as a pre-sample reservoir described in detail in U.S. Pat. No. 8,197,420 entitled, “Systems and Methods for Parenterally Procuring Bodily-Fluid Samples with Reduced Contamination,” issued Jun. 12, 2012 (referred to henceforth as the “'420 patent”), the disclosure of which is incorporated herein by reference in its entirety.
In some embodiments, the second outlet port 126 of the diversion mechanism 120 is configured to be fluidically coupled to a lumen-defining device that can be coupled to the first sample reservoir 180 and the second sample reservoir 190. Optionally, in other embodiments, the second outlet port 126 of the diversion mechanism 120 can be coupled to the first sample reservoir 180 and the diversion mechanism 120 can have a third outlet port (not shown) coupled to the second sample reservoir 190. In some embodiments, the first sample reservoir 180 can be monolithically formed with the second outlet port 126 and/or a portion of the diversion mechanism 120. In other embodiments, the first sample reservoir 180 can be mechanically coupled to the second outlet port 126 or operably coupled to the second outlet port 126 via an intervening structure, such as described above with reference to the pre-sample reservoir 170. The first sample reservoir 180 is configured to receive and contain the second volume of the bodily-fluid. For example, the second volume of bodily-fluid can be an amount withdrawn from the patient subsequent to withdrawal of the first pre-sample volume. In some embodiments, the first sample reservoir 180 is configured to contain the second volume of the bodily-fluid in such a manner that the second volume is fluidically isolated from the first volume of the pre-sample bodily-fluid.
The first sample reservoir 180 and the second sample reservoir 190 can be any suitable sterile reservoir for containing a bodily-fluid including, for example, a sample reservoir as described in the '420 patent incorporated by reference above. In some embodiments, the second volume can be any suitable volume of bodily-fluid and need not be predetermined. In other embodiments, the transfer of the bodily-fluid to the first sample reservoir 180 and/or the second sample reservoir 190 can be metered or the like such that the second volume is a second predetermined volume.
The second sample reservoir 190 can be any suitable sample reservoir. In some embodiments, the second sample reservoir 190 can be substantially similar to the first sample reservoir 180 described above. The second sample reservoir 190 can be fluidically coupled to the second output port 126 as described above. The fluidic coupling of the second outlet port 126 to the second sample reservoir 190 can be substantially similar to the fluidic coupling of the second outlet port 126 to the first sample reservoir 180, as described in detail above. Therefore, such portions are not described in further detail herein and should be considered substantially similar unless explicitly described differently. Furthermore, additional outlet ports of the diversion mechanism 120 and sample reservoirs (not shown in
In some embodiments, the pre-sample reservoir 170, the first sample reservoir 180, and the second sample reservoir 190 can be coupled to (or formed with) the diversion mechanism 120 in a similar manner. In other embodiments, the pre-sample reservoir 170, the first sample reservoir 180, and the second sample reservoir 190 need not be similarly coupled to the diversion mechanism 120. For example, in some embodiments, the pre-sample reservoir 170 can be monolithically formed with the diversion mechanism 120 (e.g., the first outlet port 124) and the first sample reservoir 180 and/or the second sample reservoir 190 can be operably coupled to the diversion mechanism 120 (e.g., the second outlet port 126) via an intervening structure, such as a flexible sterile tubing or any combination thereof.
In some embodiments, the collection device 100 can further include an actuator (not shown in
The flow controller 140 is configured such that when in the first configuration, the first fluid flow path 142 fluidically couples the inlet port 121 to the first outlet port 125, and when in the second configuration, the second fluid flow path 144 fluidically couples the inlet port 121 to the second outlet port 126. In some embodiments, an actuator as described above can be configured to move the flow controller 140 in a translational motion between the first configuration, and the second configuration, and optionally a third or fourth configuration. For example, in some embodiments, the flow controller 140 can be in the first configuration when the flow controller 140 is in a distal position relative to the collection device 100. In such embodiments, the actuator can be actuated to move the flow controller 140 in the proximal direction to a proximal position relative to the collection device 100, thereby placing the flow controller 130 in the second configuration. In other embodiments, the actuator can also be actuated to move the flow controller 140 in a rotational motion between the first configuration and the second configuration or optionally a third or fourth configuration.
Accordingly, when the flow controller 140 is in the first configuration, the second outlet port 126 (and optionally additional outlet ports coupled to sample reservoirs) is fluidically isolated from the inlet port 121. Similarly, when the flow controller 140 is in the second configuration, the first outlet port 125 is fluidically isolated from the inlet port 121. And optionally, if the flow controller 140 is in a third configuration (not shown in
In some embodiments, at least a portion of the actuator can be operably coupled to the pre-sample fluid reservoir 170. In this manner, the actuator (or at least the portion of the actuator) can be configured to introduce or otherwise facilitate the development of a vacuum within the “pre-sample” fluid reservoir 170, thereby initiating flow of the bodily-fluid through the collection device 100 and into the pre-sample fluid reservoir 170 when the diversion mechanism 120 is in its first configuration. The actuator can include any suitable mechanism for actuating the flow of bodily-fluid into the collection device 100, such as, for example, a rotating disc, a plunger, a slide, a dial, a button, a handle, a lever, and/or any other suitable mechanism or combination thereof. Examples of suitable actuators are described in more detail herein with reference to specific embodiments.
In some embodiments, the diversion mechanism 120 can be configured such that the first amount of bodily-fluid need to be conveyed to the pre-sample fluid reservoir 170 before the diversion mechanism 120 will permit the flow of the second amount of bodily-fluid to be conveyed through the diversion mechanism 120 to the first sample fluid reservoir 180 and/or to the second sample fluid reservoir 190. In this manner, the diversion mechanism 120 can be characterized as requiring compliance by a health care practitioner regarding the collection of the first, predetermined amount (e.g., a pre-sample) prior to a collection of the second and/or third amount (e.g., a sample) of bodily-fluid. Similarly stated, the diversion mechanism 120 can be configured to prevent a health care practitioner from collecting the second amount, or the sample, of bodily-fluid into the first sample fluid reservoir 180 without first diverting the first amount, or pre-sample, of bodily-fluid to the pre-sample reservoir 170. In this manner, the health care practitioner is prevented from including (whether intentionally or unintentionally) the first amount of bodily-fluid, which is more likely to contain bodily surface microbes and/or other undesirable external contaminants, in the bodily-fluid sample to be used for analysis. In other embodiments, the fluid collection device 100 need not include a forced-compliance feature or component.
In some embodiments, the diversion mechanism 120 can have a fourth configuration (not shown in
In some embodiments, one or more portions of the collection device 100 are disposed within a housing (not shown in
In some embodiments, the collection device 100 can optionally include one or more flow metering devices that can meter a flow of bodily-fluid through the collection device. For example, a flow metering device can be in fluid communication with the first fluid flow path 142 and/or the second fluid flow path 144 to meter a flow of bodily-fluid therethrough. In other embodiments, a flow metering device can be in fluid communication with and/or otherwise disposed in the first port 125 and/or the second port 126. The flow metering device can include an indicator or the like (e.g., a dial, a display, color, a haptic output device, an electrical signal output device such as a wireless radio signal, Bluetooth radio signal, etc.) that can be configured to provide an indication to a user that is associated with a predetermined volume being transferred to the pre-sample reservoir 170, the first sample reservoir 180, and/or the second sample reservoir 190. In some embodiments, the flow metering device can be operably coupled to, for example, an actuator or the like such as those described above. In such embodiments, the flow metering device can be operable in actuating the actuator to move the flow controller 140 between its first configuration and its second configuration based on a desired volume of bodily-fluid having flown through the flow metering device. Thus, the flow metering device can be used to ensure a desired volume of bodily-fluid is transferred to the pre-sample reservoir 170, the first sample reservoir 180, and/or the second sample reservoir 190, which in turn, can prevent insufficient, inaccurate and/or false results in, for example, microbial testing to the patient sample or the like.
Referring now to
The diversion mechanism 220 includes a housing 201 and movable members 250 and 250′. As shown in
The inner flow channel 235 defined by the housing 201 is a central lumen that extends along a length of the housing 201 and that can be placed in fluid communication with the bodily-fluid of the patient following venipuncture (other method employed to gain access to bodily-fluid) as described herein. The inner flow channel 235 forms a fluid flow pathway for transferring bodily-fluid between the inlet port 221 and the first outlet port 230, the second outlet port 231, and the third outlet port 232. More specifically, when the inner flow channel 235 is placed in fluid communication with the patient (e.g., via the medical device coupled to the inlet port 221), the first outlet port 230, the second outlet port 231, and the third outlet port 232 can be selectively placed in fluid communication with the inner flow channel 235 to allow bodily-fluid to flow into at least one of the pre-sample reservoir 270, the first sample reservoir 280, or the second sample reservoir 290. In some embodiments, the bodily-fluid is prevented from flowing to the second outlet port 231 and the third outlet port 232 prior to a predetermined volume of bodily-fluid being collected in the pre-sample reservoir 270. In some embodiments, the second outlet port 231 and the third outlet port 232 can be placed in fluid communication with the inner flow channel 235 simultaneously. In some embodiments, the second outlet port 231 and the third outlet port 232 can be placed in fluid communication with the inner flow channel 235 sequentially.
The movable members 250, 250′ are configured to be actuated (e.g., moved) by the user from a first position and a second position relative to the housing 201 to direct fluid flow into the first sample reservoir 280 and the second sample reservoir 290. The movable members 250 and 250′ are substantially the same and therefore are described with reference to a single movable member 250. As shown in
As described herein, in the first configuration, the movable member 250 is disposed in a manner such that the movable member 250 is spaced apart from the inner flow channel 235. In such a configuration, no fluid flow path can be established between a part of the body of a patient (e.g., a vein, spinal cavity, etc.) and the sample reservoirs 280 and/or 290. Said another way, when in the movable member 250 is in its first configuration, the first sample reservoir 280 and the second sample reservoir 290 are fluidically isolated from the inner flow channel 235 defined by the housing 201. The movable member 250 can be actuated by the user to move the movable member 250 from the first configuration to the second configuration and into alignment with the inner flow channel 235. The force exerted by the user can be sufficient to deform (e.g., compress) the bias member 259, thereby allowing the piercing member 255 to be inserted into the sample reservoir 280 and/or 290. In the second configuration, the inlet port 253 and the outlet port 254 are substantially aligned with the inner flow channel 235 placing the inner cavity 252 in fluid communication with the inner flow channel 235. Thus, with the movable member 250 in the second configuration, a fluid flow pathway is established between the inner flow channel 235, the inner cavity 252, the lumen 256 of the piercing member 255, and the sample reservoir 280. Said another way, in such a configuration, bodily-fluid can flow from the patient (e.g., a vein, spinal cavity, etc.), through the diversion mechanism 220, and into the first sample reservoir 280 and/or the second sample reservoir 290 as described in greater detail herein.
The pre-sample reservoir 270 can be any suitable reservoir for containing a bodily-fluid such as, for example, single use disposable collection tubes, vacuum based collection tubes, and/or the like. The pre-sample reservoir 270 is configured to be fluidically coupled to the first outlet port 230 of the collection device 200 (either directly or via an intervening structure such as sterile flexible tubing) in any suitable manner. For example, in some embodiments, a portion of the pre-sample reservoir 270 can form a friction fit within a portion of the first outlet port 230. In other embodiments, the pre-sample reservoir 270 can be coupled to the first outlet port 230 via a threaded coupling, an adhesive, a snap fit, a mechanical fastener and/or any other suitable coupling method. In some embodiments, the pre-sample reservoir 270 can be monolithically formed with the housing 201. The pre-sample reservoir 270 can be configured to maintain negative pressure conditions (vacuum conditions) inside (the pre-sample reservoir 270) that can allow drawing of bodily-fluid from the inlet port 221 to the pre-sample reservoir 270 through outlet port 230 via vacuum suction. The pre-sample reservoir 270 is configured to contain the first amount of the bodily-fluid, where the first amount of bodily-fluid can be a predetermined or undetermined amount, such that the first amount of bodily-fluid is fluidically isolated from a second and/or third amount of the bodily-fluid that is subsequently withdrawn from the patient.
The sample reservoirs 280 and/or 290 can be any suitable reservoirs for containing a bodily-fluid, including, for example, single use disposable collection tubes, vacuum based collection tubes, a sample reservoir as described in the '420 patent incorporated by reference above, and/or the like. In some embodiments, sample reservoirs 280 and/or 290 can be substantially similar to or the same as known sample containers such as, for example, a Vacutainer®, or the like. The sample reservoir 280 and 290 include a sample container 282 and 292, respectively, and a vacuum seal 284 and 294, respectively. The vacuum seal 284 or 294 maintains negative pressure conditions (vacuum conditions) inside the sample container 282 or 292, respectively, that can allow drawing of bodily-fluid from the inner flow channel 235 to the sample container 282 or 292, respectively via vacuum suction. The sample reservoirs 280 and/or 290 can be configured to be fluidically coupled to the second outlet port 231 and third outlet port 232, respectively, of the collection device 200 (either directly or via an intervening structure such as sterile flexible tubing) in any suitable manner. The sample reservoirs 280 and/or 290 can be moved relative to the outlet ports 231 and/or 232 to place the sample reservoirs 280 and/or 290 in fluid communication with the outlet ports 231 and/or 232. The sample reservoirs 280 and 290 can be configured to contain a second or third amount of the bodily-fluid. The second or third amount of bodily-fluid can be a predetermined or undetermined amount, such that the second or third amount of bodily-fluid is fluidically isolated from the first amount of the bodily-fluid that is withdrawn from the patient. In some configurations, the sample reservoirs 280 and/or 290 can be coupled to the collection device 200 by being monolithically formed with the housing 201 in a manner similar to the pre-sample reservoir 270, thus, they are not described in detail herein. In some instances, the sample reservoirs 280 and/or 290 can be transparent such that the user can have visual feedback to confirm bodily-fluid flow into the sample reservoirs 280 and/or 290.
In some embodiments, the sample reservoirs 280 and 290 and the diversion mechanism 220 (and/or the portions of the collection device 200 other than the sample reservoirs 280 and 290) are independently formed (e.g., not monolithically formed) and coupled together during, for example, a manufacturing process. In some instances, the sample reservoirs 280 and 290 can be coupled to the diversion mechanism 220 in a substantially sterile or hermetic environment (e.g., an environment filled with ethylene oxide or the like). Thus, the interface between the sample reservoirs 280 and 290 and the diversion mechanism 220 is substantially sterilized prior to use. Moreover, the collection device 200 can be shipped and/or stored in a pre-assembled manner such as to maintain the substantially sterile interface between the sample reservoirs 280 and 290 and the diversion mechanism 220.
As shown in
The first member 241 can include multiple channels for directing fluid flow following a venipuncture (and/or other method of accessing a patient's bodily-fluid). For example, as shown in
In operation, the collection device 200 can be used to collect bodily-fluids (e.g., blood) from a patient with reduced contamination from dermally-residing microbes and/or other undesirable external contaminants. For example, the inlet port 221 of the collection device 200 is fluidically coupled to a needle or other lumen-defining device (e.g., flexible sterile tubing) via the adapter 204. Following venipuncture (or other bodily-fluid access method), the second member 245 is rotated until it reaches the first position as shown in
As described above, when the second member 245 is in the first position, the flow controller 240 is placed in the first configuration and the first flow channel 242 of the first member 241 establishes fluid communication between the inlet port 221 and the first outlet port 230 while fluidically isolating the inlet port 221 from the inner flow channel 235. Additionally, the first and second sample reservoirs 280 and 290 are fluidically isolated from the inlet port 221 in the first configuration and a fluid flow path is defined between a portion of the body of a patient (e.g. a vein) and the pre-sample reservoir 270 as indicated by the arrow AA in
Following collection of the volume of bodily-fluid pre-sample in the pre-sample reservoir 270, the second member 245 can be rotated until it reaches the second position as shown in
With the flow controller 240 in the second configuration, the movable members 250 and/or 250′ can be actuated (i.e., depressed) from the first position to the second position by the user to establish fluid communication between a part of the body of a patient (e.g., a vein) and the first sample reservoir 280 and/or the second sample reservoir 290. More specifically, the movable member 250 is moved from its first position to its second configuration to pass the piercing member 255 through the outlet port 231 in such a manner that the piercing member 255 can puncture the vacuum seal 284 of the first sample reservoir 280 to be disposed inside the sample container 282, as indicated by the arrow CC in
In a similar manner, while the flow controller 240 is in the second configuration, the movable member 250′ can be actuated (depressed) from its first position to its second position by the user, as indicated by the arrow EE in
Although not shown in
Although the collection device 200 is shown and described as including a first sample reservoir 280 and a second sample reservoir 290, in other embodiments, a collection device can include any number of pre-sample and/or sample reservoirs. For example,
As shown in
The diversion mechanism 320 includes a housing 301 and a set of movable members 350, 350′, 350″, and 350′″. The movable members 350, 350′, 350″, and 350′″ are, for example, substantially similar to the movable member 250 described above with reference to
The flow controller 340 is, for example, substantially similar to the flow controller 240 described above with reference to
The sample reservoirs 480, 480′, 490 and 490′ are substantially similar or the same in form and function to the sample reservoirs 280 and/or 290 of the collection device 200 and thus, are not described in detail herein. As discussed above, the sample reservoirs 480, 480′, 490 and 490′ maintain negative pressure conditions (vacuum conditions) that can allow drawing of bodily-fluid from a patient to the sample reservoirs 480, 480′, 490 and 490′ via suction. In some embodiments, sample reservoirs 480 and 480′ can be aerobic culture bottles and sample reservoirs 490 and 490′ can be anaerobic culture bottles and the collection device 400 can be used to collect multiple aerobic and multiple anaerobic blood culture samples from a single venipuncture. As described in further detail herein, the sample reservoirs 480, 480′, 490 and 490′ can each be placed in fluid communication with at least a portion of the diversion mechanism 420 to receive a volume of a bodily-fluid sample. The volume of the bodily-fluid samples can be a predetermined or undetermined amount. Moreover, once a desired volume of bodily-fluid is disposed in the sample reservoirs 480, 480′, 490, 490′, each sample reservoir 480, 480′, 490, and 490′ can be fluidically isolated from at least a portion of the diversion mechanism 420, as described in further detail herein.
The diversion mechanism 420 includes a housing 401 and a distribution member 429. The housing 401 of the diversion mechanism 420 is physically and fluidically coupled to the distribution member 429, and provides and/or defines a set of fluid flow pathways for collecting bodily-fluids from the patient. The housing 401 defines a recess 466 and a set of outlet apertures 403. The recess 466 is configured to receive a seal member 441 included in the flow controller 440, as described in further detail herein. The set of outlet apertures 403 includes a first outlet aperture 403a, a second outlet aperture 403b, a third outlet aperture 403c, a fourth outlet aperture 403d, and a fifth outlet aperture 403e that are each configured to define a different fluid flow path in fluid communication with different portions of the distribution member 429. More specifically, the distribution member 429 defines and/or forms at least a portion of a pre-sample reservoir 470 in fluid communication with the first outlet aperture 403a, and a first flow channel 435a in fluid communication with the second outlet aperture 403b, second flow channel 435b in fluid communication with the third outlet aperture 403b, a third flow channel 435c in fluid communication with the fourth outlet aperture 403d, and a fourth flow channel 435 in fluid communication with the fifth outlet aperture 403e.
As shown in
The flow channels 435a-435d extend radially from a center of the distribution member 429 and are arranged such that each flow channel 435a, 435b, 435c, and 435d is fluidically isolated from the pre-sample reservoir 470 and the other flow channels. In this manner, the flow channels 435a, 435b, 435c, and 435d can direct and/or otherwise define a fluid flow path between a first end portion that is substantially aligned with the outlet apertures 403b, 403c, 403d, and 403e, respectively, and a second end portion. As shown in
The flow controller 440 includes a dial 445 and a seal member 441. The seal member 441 is disposed in the recess 466 of the housing 401 (see e.g.,
As shown in
The dial 445 of the flow controller 440 is rotatably coupled to the housing 401 and movable between a first position, a second position, a third position, a fourth position, and a fifth position relative to the housing 401. The dial 445 includes an inlet port 421 that defines a lumen 402. The inlet port 421 can be fluidically coupled to a medical device (not shown) that defines a fluid flow pathway for withdrawing and/or conveying bodily-fluid from a patient to the collection device 400. For example, the inlet port 421 can be fluidically coupled to a needle or other lumen-defining device (e.g., flexible sterile tubing) either directly or indirectly via an adapter 404. Similarly stated, the inlet lumen 402 defined by the inlet port 421 is placed in fluid communication with a lumen defined by a lumen-defining device, when the lumen-defining device is coupled to the inlet port 421. In this manner, the inlet port 421 can be configured to selectively place the pre-sample reservoir 470, the first sample reservoir 480, the second sample reservoir 480′, the third sample reservoir 490, and the fourth sample reservoir 490′ in fluid communication with the patient, as described in further detail herein.
As described above, the dial 445 is movable between the first, the second, the third, the fourth, and the fifth positions. When the dial 445 is in the first position, the flow controller 440 is placed in a first configuration and the inlet port 421 can be substantially aligned with the first aperture 444a of the seal member 441 and the first outlet aperture 403a of the housing 401. In this manner, first aperture 444a of the seal member 441 establishes fluid communication between the inlet port 421 and the first outlet aperture 403a while fluidically isolating the inlet port 421 from the outlet apertures 403b, 403c, 403d, and 403e which in turn, fluidically isolates the inlet port 421 from the flow channels 435a-335d. With the first outlet port 403a aligned with an open portion of the pre-sample reservoir 470, the first aperture 444a and the first outlet aperture 403a establish fluid communication between the inlet port 421 and the pre-sample reservoir 470. When the dial 445 is rotated (or actuated) to the second position, the flow controller 440 is placed in a second configuration and the second outlet aperture 444b establishes fluid communication between the inlet port 421 and the second outlet aperture 403b while fluidically isolating the inlet port 421 from the outlet apertures 403a, 403c, 403d, and 403e. With the second outlet aperture 403b aligned with the first end portion of the first flow channel 435a, the second aperture 444b and the second outlet aperture 403b establish fluid communication between the inlet port 421 and the first flow channel 435a.
The collection device 400 works in a similar manner when the dial 445 is rotated to the third, fourth and fifth positions. Thus, when the inlet lumen 402 is placed in fluid communication with the patient (e.g., via the medical device coupled to the inlet port 421), the first outlet port 430, the second outlet port 431, the third outlet port 432, the fourth outlet port 433, and the fifth outlet port 434 can be selectively placed in fluid communication with the inlet lumen 402 to allow all the bodily-fluid to flow into at least one of the pre-sample reservoir 470, or one or more of the sample reservoirs 480, 480′, 490 and 490′. In some embodiments, additional dial 445 positions corresponding to additional seal outlet apertures and/or flow controller 440 configurations can be included to further direct/isolate fluid flow between the patient and the collection device 400. For example, the dial 445 can have a sixth position corresponding to a sixth configuration of the flow controller 440 that substantially prevents fluid flow between the patient and the collection device 400 altogether. Said another way, in some embodiments, the dial 445 can be moved to a sixth position after all bodily-fluid samples are taken from the patient to substantially seal the samples in the collection device 400 from the external environment.
In some embodiments, the bodily-fluid is prevented from flowing to the outlet ports associated with the sample reservoirs (e.g., outlet ports 431-434) until after a predetermined volume of bodily-fluid is collected in the pre-sample reservoir 470. In some embodiments, the outlet ports associated with the sample reservoirs (e.g., outlet ports 431-434) can only be placed in fluid communication with the inlet lumen 402 sequentially (e.g., outlet port 431 must be in fluid communication with the inlet lumen 402 before outlet port 432, and so on). In some embodiments, the outlet ports associated with subsequent sample reservoirs (e.g., outlet ports 432-434) can only be placed in fluid communication with the inlet lumen 402 after a confirmed volume of bodily-fluid has been collected. In some embodiments, the outlet ports associated with the sample reservoirs (e.g., outlet ports 431-434) can be placed in fluid communication with the inlet lumen 402 in any random manner without any preference for order (e.g., outlet port 434 can be in fluid communication with the inlet lumen 402 before outlet port 431, outlet port 432 can be in fluid communication with the inlet lumen 402 before outlet port 433, and so on).
In some embodiments, the housing 401 can selectively limit movement of the dial 445 from its first position to its second, third, fourth, and fifth positions. In some embodiments, the housing 401 can be configured to prevent movement of the dial 445 once it has been moved to the fifth position. Said another way, the housing 401 can include a locking mechanism that prevents the dial 445 from being moved from the fifth position back to the first position. The dial 445 and/or the housing 401 can also include mechanical detents and/or other indicators that provide visual or tactile feedback to ensure precise positioning of the dial 445 with respect to the outlet apertures 403a-403e of the housing 401.
In operation, the collection device 400 can be used to collect bodily-fluids (e.g., blood, plasma, urine, and/or the like) from a patient with reduced contamination. For example, the inlet port 421 of the collection device 400 can be fluidically coupled to a needle or other lumen-defining device (e.g., flexible sterile tubing). Following venipuncture (or other method of accessing bodily-fluid), the dial 445 is actuated (or rotated) until it reaches the first position, as shown in
As described above, when the dial 445 is in the first position, the flow controller 440 is placed in the first configuration and the first aperture 444a of the seal member 441 establishes fluid communication between the inlet port 421 and the first outlet port 430 (contained within the housing 401) while fluidically isolating the inlet port 421 from the four flow channels 435a-335d. Additionally, the sample reservoirs 480, 480′, 490 and 490′ are fluidically isolated from the inlet port 421 in the first configuration and a fluid flow path is defined between a portion of the body of a patient (e.g. a vein) and the pre-sample reservoir 470 as indicated by the arrow GG in
Following collection of the bodily-fluid pre-sample in the pre-sample reservoir 470, the dial 445 can be actuated (or rotated) until it reaches the second position as shown in
As described above, moving the sample reservoir 480 to the second configuration results in the piercing member 455a puncturing the vacuum seal of the sample reservoir 480 to be disposed inside the sample reservoir 480. In this second configuration, the part of the body of a patient (e.g., a vein) is exposed to vacuum suction force from the sample reservoir 480 due to the negative pressure conditions (vacuum) therein. The pressure differential between the sample reservoir 480 (e.g., vacuum or negative pressure) and the part of the body of the patient draws the bodily-fluid into the sample reservoir 480. The bodily-fluid flows from the part of the body of a patient through the inlet lumen 402 of the inlet port 421, the second aperture 444b of the seal member 441, the second outlet aperture 403b of the housing 401, and into the first flow channel 435a. The vacuum suction draws the flow of bodily-fluid through the first flow channel 435a into the sample reservoir 480 via the second outlet port 431 and the piercing member 455a. Said another way, in the second configuration, the flow controller 440 establishes a fluid flow path between the inlet port 421 and the sample reservoir 480. Once a desired volume of bodily-fluid (e.g., the second amount) is collected in the sample reservoir 480, the user can actuate (rotate) the flow controller 440 to the third position and/or move the sample reservoir 480 back to its first configuration to isolate the first sample reservoir 480 from the flow channel 435a. When the sample reservoir 480 is back in the first configuration, the piercing member 455a is removed from the sample reservoir 480 and the seal of the sample reservoir 480 (e.g., a self sealing septum) fluidically isolates the first sample reservoir 480 from the flow channel 435a. Filling the other sample reservoirs is done in a similar manner with the flow controller 440 being placed in the third, fourth and fifth configurations respectively.
Note that the order of fill and/or sequencing is not necessarily required (i.e., sample reservoir 480 does not necessarily have to be filled before sample reservoir 490, etc.). Said another way, the first sample reservoir 480 and the second sample reservoir 490 (and any additional sample reservoirs) can be filled in any order. For example, the user can begin to fill the first sample reservoir 480 and then after the first sample reservoir 480 is partially filled, the user can fill the second sample reservoir 490. Additionally, adjustments in the volume of the bodily-fluid collected in the sample reservoirs 480 and/or 490 can be made possible by repeated filling of the sample reservoirs 480 and/or 490. However, in other embodiments, the order of fill can be mechanically manipulated such that the second sample reservoir cannot be accessed until a specified amount of bodily-fluid is confirmed to have been placed into the first reservoir and so on. As described above, the dial 445 can have a sixth position corresponding to a sixth configuration of the flow controller 440 that can substantially prevent fluid flow between the patient and the collection device 400 altogether to substantially seal the samples in the collection device 400 from the external environment.
Although the collection device 400 is shown and described above as including and/or otherwise coupling to a set of four sample reservoirs (e.g., the first sample reservoir 480, the second sample reservoir 480′, the third reservoir 490, and the fourth reservoir 490′), in other embodiments, a collection device can include and/or can be coupled to any suitable number of sample reservoirs. For example
The collection device 500 includes a diversion mechanism 520, a flow controller 540, a first sample reservoir 580, and a second sample reservoir 590. The sample reservoirs 580 and 590 can be substantially similar to the sample reservoirs described in detail above. In some embodiments, the sample reservoirs 580 and 590 can have substantially the same shape and size and can include substantially the same culture medium. In other embodiments, the sample reservoirs 580 and 590 can have substantially the same shape and size and can include one of an aerobic culture medium or an anaerobic culture medium. In still other embodiments, the first sample reservoir 580 can have a first size that is substantially larger than a size of the second sample reservoir 590.
As shown in
The flow controller 540 includes a dial 545 and a seal member 541. The seal member 541 is disposed in the recess of the housing 501, as described above. In this manner, when the flow controller 540 is coupled to the housing 501, the seal member 541 forms a substantially fluid tight seal with a surface of the dial 545 and the surface of the housing 501 that defines the recess. As shown in
The dial 545 of the flow controller 540 can be substantially similar in form and function as the dial 445, while having a size that is suitable for coupling to the housing 501. As such, the dial 545 can be rotatably coupled to the housing 501 and movable between a first position, a second position, and a third position relative to the housing 501. The dial 545 includes an inlet port 521 that defines a lumen 502 and that can be fluidically coupled to a medical device (not shown) that defines a fluid flow pathway for withdrawing and/or conveying bodily-fluid from a patient to the collection device 500. In this manner, the inlet port 521 can be configured to selectively place the pre-sample reservoir 570, the first sample reservoir 580, and the second sample reservoir 590. More particularly, when the dial 545 is in the first position, the flow controller 540 is placed in a first configuration and the inlet port 521 is substantially aligned with the first aperture 544a of the seal member 541 and the first outlet aperture 503a of the housing 501. In this manner, the first aperture 544a of the seal member 541 establishes fluid communication between the inlet port 521 and the first outlet aperture 503a and hence, places the inlet port 521 in fluid communication with the pre-sample reservoir 570, as described in detail above with reference to the collection device 400. Similarly, when the dial 545 is rotated (or actuated) to the second position, the flow controller 540 is placed in a second configuration and the second outlet aperture 544b establishes fluid communication between the inlet port 521 and the second outlet aperture 503b and hence, the first flow channel 535a; and when the dial 545 is rotated to the third position, the flow controller 540 is placed in a third configuration and the third outlet aperture 544c establishes fluid communication between the inlet port 521 and the third outlet aperture 503c and hence, the second flow channel 535a. In this manner, the collection device 500 can be used to transfer a first volume of a bodily-fluid to the pre-sample 570 and subsequently used to transfer a second volume and a third volume of the bodily-fluid to the first sample reservoir 580 and the second sample reservoir 590, respectively, as described in detail above with reference to the collection device 400.
The diversion mechanism 620 includes a distribution member 629 and a set of coupling members 637a, 637b, 637c, and 637d (see e.g.,
As shown in
As shown in
As shown in
At least a portion of the seal member 641 of the flow controller 640 is rotatably disposed in the inner volume 646 of the dial 645 and movable between a first position and a second position. Moreover, the seal member 641 can have a size and a shape such that an outer surface of the seal member 641 forms a substantially fluid tight seal with an inner surface of the dial 645 that defines at least a portion of the inner volume 646. As shown in
In operation, the collection device 600 can be used to collect bodily-fluids (e.g., blood, plasma, urine, and/or the like) from a patient with reduced contamination. For example, the inlet port 621 of the collection device 600 can be fluidically coupled to a needle or other lumen-defining device (e.g., flexible sterile tubing). Following venipuncture (or other method of accessing bodily-fluid), the seal member 641 can be actuated (or rotated) until in its first position, as shown in
Following collection of the bodily-fluid pre-sample in the pre-sample reservoir 670, the seal member 641 can be actuated (e.g., rotated) from its first position to its second position relative to the dial 645. Similarly, the dial 645 can be actuated (or rotated) until it reaches the second position relative to the distribution member 629, as shown in
Once a desired volume of bodily-fluid (e.g., the second amount) is collected in the sample reservoir 680, the user can actuate (rotate) the flow controller 640 to the third position and/or move the sample reservoir 680 back to its first configuration to isolate the first sample reservoir 680 from the second flow channel 644. When the sample reservoir 680 is back in the first configuration, the piercing member 655a is removed from the sample reservoir 680 and the seal of the sample reservoir 680 (e.g., a self sealing septum) fluidically isolates the first sample reservoir 680 from the flow channel 635a. Filling the other sample reservoirs is done in a similar manner with the flow controller 640 being placed in the third, fourth and fifth configurations respectively.
The diversion mechanism 720 includes a housing 701, a distribution member 729, and a base plate 771. As described above with reference to the collection device 400, the housing 701 defines a first outlet aperture 703a, a second outlet aperture 703b, a third outlet aperture 703c, a fourth outlet aperture 703d, and a fifth outlet aperture 703e that are each configured to be in fluid communication with a different portion of the distribution member 729. More specifically, the distribution member 729 defines and/or forms at least a portion of a pre-sample reservoir 770 in fluid communication with the first outlet aperture 703a, and a first fluid chamber 735a in fluid communication with the second outlet aperture 703b, a second fluid chamber 735b in fluid communication with the third outlet aperture 703b, a third fluid chamber 735c in fluid communication with the fourth outlet aperture 703d, and a fourth fluid chamber 735d in fluid communication with the fifth outlet aperture 703e. Furthermore, the housing 701 defines a recess 766 that is configured to movably receive at least a portion of the flow controller 740, as described in further detail herein.
As shown in
The distribution member 729 further includes a first piercing member 755a, a second piercing member 755b, a third piercing member 755c, and a fourth piercing member 755d that are in fluid communication with the first fluid chamber 735a, the second fluid chamber 735b, the third fluid chamber 735c, and the fourth fluid chamber 735d, respectively. As such, the piercing members 755a-355d can be used to puncture a vacuum seal of the sample reservoirs 780 and 790 (and corresponding sample reservoirs not shown in
The flow controller 740 of the collection device 700 includes a dial 745 and a seal member 741. The seal member 741 is disposed in the recess 766 of the housing 701 (see e.g.,
The dial 745 of the flow controller 740 is rotatably coupled to the housing 701 and movable between a first position, a second position, a third position, a fourth position, and a fifth position relative to the housing 701. The dial 745 includes an inlet port 721 that can be fluidically coupled to a medical device (either directly or indirectly via an adapter 704) that defines a fluid flow pathway for withdrawing and/or conveying bodily-fluid from a patient to the collection device 700. In this manner, the inlet port 721 can be configured to selectively place the pre-sample reservoir 770, the first sample reservoir 780, the second sample reservoir 780′, the third sample reservoir 790, and the fourth sample reservoir 790′ in fluid communication with the patient, as described in further detail herein. When the dial 745 is in the first position, the flow controller 740 is placed in a first configuration and the inlet port 721 can be substantially aligned with the first aperture 744a of the seal member 741 and the first outlet aperture 703a of the housing 701. In this manner, first aperture 744a of the seal member 741 establishes fluid communication between the inlet port 721 and the first outlet aperture 703a while fluidically isolating the inlet port 721 from the outlet apertures 703b, 703c, 703d, and 703e which in turn, fluidically isolates the inlet port 721 from the fluid chambers 735a-335d. When the dial 745 is rotated (or actuated) to the second position, the flow controller 740 is placed in a second configuration and the second outlet aperture 744b establishes fluid communication between the inlet port 721 and the second outlet aperture 703b while fluidically isolating the inlet port 721 from the pre-sample reservoir 770 and the fluid chambers 735b-735d. The collection device 700 works in a similar manner when the dial 745 is rotated to the third, fourth and fifth positions. Thus, when the inlet port 721 is placed in fluid communication with the patient (e.g., via the medical device coupled to the inlet port 721), the first outlet aperture 703a, the second outlet aperture 703b, the third outlet aperture 703c, the fourth outlet aperture 703d, and the fifth outlet aperture 703e can be selectively placed in fluid communication with the inlet port 721 to allow all the bodily-fluid to flow into at least one of the pre-sample reservoir 770, first sample reservoir 780, or the second sample reservoir 790 (or any other fluid reservoir coupled thereto).
In some embodiments, the housing 701 can selectively limit movement of the dial 745 from its first position to its second, third, fourth, and fifth positions. In some other embodiments, the housing 701 can be configured to prevent movement of the dial once it has been moved to the fifth position. Said another way, the housing 701 can include a locking mechanism to that prevents the dial 745 from being moved from the fifth position back to the first position. This feature can reduce the risk of contaminating the bodily-fluid collected in the flow chambers 735a-735d and/or sample reservoirs 780 and 790 from the bodily-fluid contained in the pre-sample reservoir 770 (which has a high risk of containing surface bound microbes and/or other undesirable external contaminants). This locking mechanism can also protect health care practitioners from exposure to blood-borne pathogens in patient samples which can include HIV, Hepatitis C, etc. The dial 745 and/or the housing 701 can also include mechanical detents and/or other indicators that provide visual or tactile feedback to ensure precise positioning of the dial 745 with respect to the outlet port 703a and outlet apertures 703a-703d in the housing 701.
Similar to the embodiments of the collection device 400 presented in
In operation, the collection device 700 can be used to collect bodily-fluids (e.g., blood, plasma, urine, etc.) from a patient with reduced contamination. For example, the inlet port 721 of the collection device 700 can be fluidically coupled to a needle or other lumen-defining device (e.g., flexible sterile tubing). Following venipuncture, the dial 745 is rotated until it reaches the first position, as shown in
Following collection of the bodily-fluid pre-sample in the pre-sample reservoir 770, the dial 745 can be actuated (or rotated) until it reaches the second position as shown in
Once a desired volume of bodily-fluid (e.g., the second amount) is collected in the sample reservoir 780, the user can actuate (rotate) the flow controller 740 to the third position and/or move the sample reservoir 780 back to its first configuration to isolate the first sample reservoir 780 from the inlet port 721. When the sample reservoir 780 is back in the first configuration, the piercing member 755a is removed from the sample reservoir 780 and the seal of the sample reservoir 780 (e.g., a self sealing septum) fluidically isolates the first sample reservoir 780 from the second fluid chamber 735b and the external environment. Filling the other sample reservoirs is done in an identical manner with the flow controller 740 in the third, fourth and fifth configurations respectively.
In some embodiments, the collection device 700 can be constructed such that the set of walls 736 separating the different fluid chambers 735a-735d in the distribution member 729 are not present (see detailed cross-sectional view in
Any of the embodiments described herein can be used with, for example, a metering device that can be used to meter (e.g., quantify) a flow of bodily-fluid into a pre-sample reservoir and/or a sample reservoir. In some instances, laboratory standard practices do not ensure consistent compliance with accurate inoculation volumes of bodily-fluids (e.g., blood specimens) due to the fact that the fill volume is visually determined by the clinician and/or phlebotomist and is thus subject to human error. The fact that the volume indicators on the blood collection bottle are difficult to read when being held and that often the collection bottle is not held upright during the draw procedure can contribute to inaccurate volumes of a bodily-fluid sample received from a patient. Insufficient sample volumes (e.g., below the manufacturer's recommendation) can decrease the sensitivity of culture tests, leading to false-negative results. Additionally, fill volumes above manufacturer's recommendations can cause false-positivity as is indicated in overview materials and instructions for use for specific types of testing supplies and apparatuses (e.g., blood culture bottles designed for use with automated microbial detection systems produced by manufacturers such as Becton Dickinson, Franklin Lakes, NJ). Thus, flow metering and volume display features can allow a lab technician and/or a health care practitioner (e.g. phlebotomist) to confirm the volume of bodily-fluid that is collected into each individual sample reservoir before placing the sample reservoirs in an incubator or into other laboratory test equipment depending on how the sample needs to be processed. The lab technician and/or phlebotomist can also record (e.g., in a medical record, database, spreadsheet, etc.) the precise volume information for a clinician to evaluate when results are received, thereby helping reduce the possibility of misinterpretation of false-negative and/or false-positive results.
By way of example,
As shown in
The outlet port 831 of the actuator portion 822 can selectively place a portion of the inner volume 806 of the actuator portion 822 in fluid communication with an inner volume 807 defined by the medial portion 823. As shown in
The coupling portion 824 can be physically and fluidically coupled to the medial portion 823. For example, in some embodiments, the coupling portion 824 can be partially disposed in the inner volume 807 of the medial portion 823 and at least temporarily coupled thereto via a friction fit, a press fit, a snap fit, a threaded coupling, an adhesive, and/or the like. The coupling portion 824 is configured to receive a portion of the sample reservoir 880 and includes a piercing member 855 that can be used to puncture a vacuum seal of the sample reservoir 880 which can initiate a flow of bodily-fluid, as described in detail above.
The flow controller 840 of the collection device 800 is at least partially disposed in the inner volume 806 defined by the actuator portion 822 and is movable between a first configuration, a second configuration, and a third configuration. As shown in
The movable member 850 is movable within the inner volume 806 between a first position, a second position, and a third position. The arrangement of the movable member 850 can be such that as the movable member 850 is moved between its first, second, and third positions, the seal members 861, 862, and 863 are selectively moved within the inner volume 806. More specifically, the first seal member 861 can be moved concurrently with the movable member 850 as the movable member 850 is moved between its first position, second position, and third position. The second seal member 862 and the third seal member 863 can be fixedly coupled to each other (e.g., disposed at a fixed distance from each other) and slidably disposed about a portion of the movable member 850 which can allow the movable member 850 to move from its first position (see e.g.,
The arrangement of the flow controller 840 can be such that the first seal member 861 is moved relative to the second seal member 862 and the third seal member 863 when the movable member 850 is moved from its first position to its second position. The movement of the first seal member 861 relative to the second seal member 862 can be such that a space defined therebetween is increased, which can form and/or otherwise define a pre-sample reservoir 870. Moreover, with the seal members 861 and 862 forming substantially fluid tight seals with the inner surface of the actuator portion 822, the pre-sample reservoir 870 defined between the first seal member 861 and the second seal member 862 is fluidically isolated from other portions of the inner volume 806. Thus, the inlet port 821 can be in fluid communication with the pre-sample reservoir 870 when the movable member 850 is moved from its first position to its second position. When the movable member 850 is moved from its second position (see e.g.,
In operation, the collection device 800 can be used to collect bodily-fluids (e.g., blood, plasma, urine, etc.) from a patient with reduced contamination. For example, the inlet port 821 of the collection device 800 can be fluidically coupled to a needle or other lumen-defining device (e.g., flexible sterile tubing). With the inlet port 821 coupled to the lumen-defining device, the flow controller 840 can be moved from its first configuration to its second configuration. In this manner, a user can exert a force to move the movable member 850 from its first position to its second position, as indicated by the arrow MM in
Following collection of the volume of bodily-fluid pre-sample in the pre-sample reservoir 870, the movable member 850 can be moved from its second position to its third position to place the flow controller in its third configuration, as indicated by the arrow OO in
The sample reservoir 880 can be positioned relative to the collection device 800 such that the piercing member 855 punctures the vacuum seal of the sample reservoir 880 to be disposed inside the sample reservoir, as described in detail above. The pressure differential between the sample reservoir 880 (e.g., vacuum or negative pressure) and the portion of the body draws the bodily-fluid into the sample reservoir 880. Said another way, in the second configuration, the flow controller 840 and the diversion mechanism 820 establish a fluid flow path such that bodily-fluid can drawn from the patient, through the inlet port 821, the portion of the inner volume 806 defined between the second seal member 862 and the third seal member 863, and the outlet port 831 of the actuator portion 822, through the medial portion 823 and the piercing member 855 of the coupling portion 824 and into the sample reservoir 880 as indicated by the arrow PP in
Once a desired volume of bodily-fluid (e.g., the second amount) is collected in the sample reservoir 880, the user can remove and/or decrease the force exerted on the movable member 850, thereby allowing the bias member 859 to move the first seal member 861 and the movable member 850 from their third positions towards their second positions. Moreover, with the bodily-fluid disposed in the pre-sample reservoir 870 being substantially incompressible, the movement of the first seal member 861 transfers a force through the volume of bodily-fluid to move the second seal member 862 and the third seal member 863 from their third positions towards their second positions. In some embodiments, the bias member 859 can exert a force on the first seal member 861 that can be operable in moving the second seal member 862 to a fourth position relative to the actuator portion 822 that can, for example, substantially obstruct the inlet port 821. Thus, the inlet port 821 can be fluidically isolated from the inner volume 806 of the actuator portion 822. Furthermore, the piercing member 855 can be removed from the sample reservoir 880 and a seal (e.g., a self sealing septum) can fluidically isolate the bodily-fluid sample from a volume outside of the sample reservoir 880. Filling subsequent sample reservoirs can be similarly performed by disposing the piercing member 855 into a sample reservoir and moving the flow controller 840 to the third configuration to allow a flow of bodily-fluid from the patient to the sample reservoir.
The diversion mechanism 920 includes a housing 901, a distribution member 929, and movable members 950a, 950b, 950c, and 950d. The housing 901 is physically and fluidically coupled to the distribution member 929, and provides and/or defines a set of fluid flow pathways for collecting bodily-fluids from the patient. The housing 901 includes a set of displays 975′ (e.g., liquid crystal displays (LCDs) or the like) that can be included in and/or otherwise coupled (e.g., electrically and/or mechanically) to a flow metering device, as described in further detail herein. The housing 901 defines a recess 966, outlet apertures 903a, 903b, 903c, 903d, 903e, and movable member openings 950a, 950b, 950c, 950d (also referred to herein as “openings”). The recess 966 is configured to receive a seal member 941 included in the flow controller 940, as described in further detail herein. The first outlet aperture 903a, the second outlet aperture 903b, the third outlet aperture 903c, the fourth outlet aperture 903d, and the fifth outlet aperture 903e are each configured to define a different fluid flow path in fluid communication with different portions of the distribution member 929. More specifically, the distribution member 929 defines and/or forms at least a portion of a pre-sample reservoir 970 in fluid communication with the first outlet aperture 903a, and a first flow channel 935a in fluid communication with the second outlet aperture 903b, second flow channel 935b in fluid communication with the third outlet aperture 903b, a third flow channel 935c in fluid communication with the fourth outlet aperture 903d, and a fourth flow channel 935 in fluid communication with the fifth outlet aperture 903e.
As shown in
The movable members 950a, 950b, 950c, and 950d are movably disposed in the openings 905a, 905b, 905c, and 905d, respectively, of the housing 901 and the corresponding openings defined by the second end portion of the distribution member 929. Although not shown in
As shown in
The flow controller 940 of the collection device 900 includes a dial 945 and a seal member 941. The seal member 941 is disposed in the recess 966 of the housing 901. More particularly, the flow controller 940 can be coupled to the housing 901 such that the seal member 941 is disposed between and in contact with a surface of the housing 901 defining the recess 966 and a surface of the dial 945. The seal member 941 can be configured to form a substantially fluid tight seal with the surface of the dial 945 and the surface of the housing 901 that defines the recess 966, as described in detail above. As shown in
The dial 945 of the flow controller 940 is rotatably coupled to the housing 901 and movable between a first position, a second position, a third position, a fourth position, and a fifth position relative to the housing 901. The dial 945 includes an inlet port 921 that can be fluidically coupled to a medical device (either directly or indirectly via an adapter 904) that defines a fluid flow pathway for withdrawing and/or conveying bodily-fluid from a patient to the collection device 900. In this manner, the inlet port 921 can be configured to selectively place the pre-sample reservoir 970, the first sample reservoir 980, the second sample reservoir 980′, the third sample reservoir 990, and the fourth sample reservoir 990′ in fluid communication with the patient, as described in further detail herein. The dial 945 can be configured to rotate through the first position, the second position, the third position, the fourth position, and the fifth position in a substantially similar manner as described above with reference to the dial 445 of the collection device 400 and is therefore, not described in further detail herein.
As shown, the dial 945 can further include a display 975 that can be configured to present volumetric information associated with a flow of bodily-fluid. For example, although not shown in
In operation, the collection device 900 can be used to collect bodily-fluids (e.g., blood, plasma, urine, and/or the like) from a patient with reduced contamination. For example, the inlet port 921 of the collection device 900 can be fluidically coupled to a needle or other lumen-defining device (e.g., flexible sterile tubing). Following venipuncture (or other method of accessing bodily-fluid), the dial 945 is actuated (or rotated) until it reaches the first position, as shown in
As described above, when the dial 945 is in the first position, the flow controller 940 is placed in the first configuration and the first aperture 944a of the seal member 941 establishes fluid communication between the inlet port 921 and the first outlet port 930 (contained within the housing 901) while fluidically isolating the inlet port 921 from the four flow channels 935a-335d. Additionally, the sample reservoirs 980, 980′, 990 and 990′ are fluidically isolated from the inlet port 921 in the first configuration and a fluid flow path is defined between a portion of the body of a patient (e.g. a vein) and the pre-sample reservoir 970 as indicated by the arrow QQ in
Following collection of the bodily-fluid pre-sample in the pre-sample reservoir 970, the dial 945 can be actuated (or rotated) until it reaches the second position as shown in
While in the second position, the inlet port 953 of the movable member 950 is substantially aligned with, and in fluid communication with, the first flow channel 935a, which allows the bodily-fluid to flow from the first flow channel 935a, into the inner cavity 952 of the movable member 950, and out of the piercing member 955 into the first sample reservoir 980. The pressure differential between the sample reservoir 980 (e.g., vacuum or negative pressure) and the first flow channel 935a draws the bodily-fluid into the sample reservoir 980. Said another way, in the second configuration, the flow controller 940 and the movable member 950a establish a fluid flow path between the inlet port 921 of the dial 945 and the first sample reservoir 980, as indicated by the arrow SS in
Once a desired volume of bodily-fluid (e.g., the second amount) is collected in the first sample reservoir 980, the user can release the movable member 950 allowing the bias member (not shown) to move the back to its first position. With the movable member 950 back in its first position, the piercing member 955 is removed from the first sample reservoir 980 and the seal (e.g., a self sealing septum) fluidically isolates the first sample reservoir 980 from the inner flow channel 935. The collection device 900 can be used to transfer a second sample volume to the second sample reservoir 980′, a third sample volume to the third sample reservoir 990, and a fourth sample volume to the fourth sample reservoir 990′ in the same manner by rotating the dial 945 to its third position, fourth position, and fifth position, respectively.
In some instances, the bodily-fluid collection device 900 can allow a clinician and/or a phlebotomist to open the package containing the bodily-fluid collection device 900 and remove only the housing 901 (that contains the distribution member 929) and take the housing 901 to a patient's bedside. The clinician and/or a phlebotomist can perform venipuncture (or employ any other method of accessing patient's bodily-fluid) on the portion of the body of a patient (e.g. a vein) using any standardized technique. Following venipuncture, the clinician and/or a phlebotomist can collect the total blood volume required for all samples. For example, the clinician and/or a phlebotomist can collect a 2.5 mL pre-sample diversion volume and a 10 mL sample volume for each of the four sample reservoirs that amounts to a total of 42.5 mL of collected bodily-fluid (e.g., blood). Following collection of the desired amount of bodily-fluid, the hypodermic needle can be removed from the portion of the body of a patient (e.g. a vein) and the clinician and/or a phlebotomist can place the housing 901 (that contains the bodily-fluid) on top of a 4-pack (or 2-pack) of pre-sterilized sample reservoirs with septum tops that are pre-positioned in a custom tray that matches the geometry of housing 901. By using such a pre-sterilized pack of sample reservoirs, the clinician does not need to perform the process step of “wiping” the top of the sample reservoirs with a sterilizing agent, thereby reducing the likelihood of contamination if, for example, the reservoir tops are improperly and/or insufficiently sterilized. The clinician and/or a phlebotomist can then activate the automated inoculation of the sample reservoirs with the bodily-fluid with precise volume control. In certain embodiments, after the inoculation of the sample reservoirs is complete, the entire device 900 with volume information displayed for each individual sample reservoir can be sent to the laboratory for analysis. It other embodiments, sample reservoirs 980 and/or 990 can be removed individually and sent to the laboratory for analysis.
Although, the collection device 900 is shown and described with reference to
In other embodiments, the movable members 1050a, 1050b, 1050c, and 1050d can be moved from a first position to a second, third, or fourth position, relative to the housing 1001. In such embodiments, the positions can be associated with, for example, an intended volume of bodily-fluid to be transferred to a sample reservoir. For example, in some embodiments, a user can actuate (e.g., move) the movable member 1050a from its first position to its second position. In such embodiments, the second position can be associated with, for example, a low volume of bodily-fluid (e.g., 10 mL) to be transferred to a sample reservoir. In some embodiments, the housing 1001 and/or the movable member 1050a can include a detent, lock, catch, protrusion, recess, and/or the like that can temporarily retain the movable member 1050a in the second position until the low volume amount of sample has been transferred to the sample reservoir. Moreover, once placed in the second position, the display 1075 can be configured to illuminate the first light associated with the low volume to indicate to the user the preset volume of bodily-fluid to be transferred to the sample reservoir. Once the desired volume of bodily fluid is transferred to and fluidically isolated in the sample reservoir, the diversion mechanism 1020 can be configured to automatically return the movable member 1050a back to its first position. In this manner, the diversion mechanism 1020 and the flow controller 1040 can be physically and fluidically coupled to any number of sample reservoirs and used to transferred a precise volume of bodily-fluid to each sample reservoir.
With the port in fluid communication with the patient, fluid communication between the port and the pre-sample reservoir is established, at 1192. In some embodiments, the flow-metering transfer device can include a flow controller or the like (e.g., such as the flow controller 940 included in the collection device 900) that can be actuated and/or manipulated (e.g., rotated) to a position that establishes fluid communication between the port and the pre-sample reservoir (e.g., a first position). In some embodiments, the actuating of the flow controller can be such that the flow controller and the diversion mechanism collectively define at least a portion of a fluid flow path between the port and the pre-sample reservoir. In some embodiments, the pre-sample reservoir can include a negative pressure or the like that can, for example, initiate a flow of bodily-fluid from the patient to the pre-sample reservoir. In other embodiments the flow of bodily-fluid can be initiated in any other suitable manner (e.g., gravity or the like).
The flow of bodily-fluid transferred from the patient to the pre-sample reservoir is metered, at 1193. For example, in some embodiments, the port can include the flow control mechanism which can be meter a flow of bodily-fluid that passes through the port (e.g., in a similar manner as described above with reference to the flow control mechanism 967 of the collection device 900). Thus, a pre-sample volume of bodily-fluid is transferred to the pre-sample reservoir. The method 1190 includes verifying the pre-sample volume of bodily-fluid disposed in the pre-sample reservoir is a predetermined pre-sample volume of bodily-fluid via the flow metering mechanism of the flow-metering transfer device, at 1194. For example, the flow metering mechanism can include and/or can be operably coupled to a display of the like (e.g., the display 975 and/or 975′ of the collection device 900). The flow metering mechanism can be configured to present on the display volumetric information, as described above.
Once the pre-sample volume of bodily-fluid is disposed in the pre-sample reservoir, the pre-sample reservoir is fluidically isolated from the port to sequester the pre-sample volume of bodily-fluid in the pre-sample reservoir, at 1195. For example, in some instances, the flow controller and/or the diversion mechanism can be actuated (or rotated) from the first position and/or configuration to a second position and/or configuration. With the flow controller and/or diversion mechanism in the second configuration, the pre-sample reservoir is fluidically isolated from a volume outside of the pre-sample reservoir. In some embodiments, when the flow controller and/or diversion mechanism is actuated to its second position and/or configuration, fluid communication is established between the port and a sample reservoir, at 1196. For example, in some embodiments, the flow-metering transfer device can include a movable member (e.g., the movable member 950) or the like that can include a piercing member configured to pierce a portion of the sample reservoir (e.g., a septum or the like). Therefore, with the flow controller and/or diversion mechanism in its second position and/or configuration, the piercing of the portion of the sample reservoir places the sample reservoir in fluid communication with the port. As described above, the sample reservoir can include a negative pressure or the like that can, for example, initiate a flow of bodily-fluid from the patient to the sample reservoir.
The flow of bodily-fluid transferred from the patient to the pre-sample reservoir is metered, at 1197. For example, as described above, the port can include the flow control mechanism which can be meter a flow of bodily-fluid that passes through the port (e.g., in a similar manner as described above with reference to the flow control mechanism 967 of the collection device 900). In some embodiments, the flow control mechanism can be included in, for example, a movable member or the like such as the movable member 950 of
In this manner, the predetermined pre-sample volume of bodily-fluid is collected that can contain, for example, externally residing microbes. For example, in some embodiments, the predetermined pre-sample volume can be about 0.1 mL, about 0.3 mL, about 0.5 mL, about 1.0 mL, about 2.0 mL, about 3.0 mL, about 4.0 mL, about 5.0 mL, about 10.0 mL, about 20 mL, about 50 mL, and/or any volume or fraction of a volume therebetween. In other embodiments, the pre-sample volume can be greater than 50 mL or less than 0.1 mL. In other embodiments, the predetermined pre-sample volume can be between about 2 mL and about 5 mL. In one embodiment, the predetermined pre-sample volume can be about 3 mL. Furthermore, by collecting the predetermined pre-sample volume, the predetermined sample volume disposed in one or more sample reservoirs can be substantially free-from externally residing microbes. In some embodiments, the predetermined sample volume can be between 10 mL and 60 mL. In other embodiments, the predetermined sample volume can be between 30 mL and 60 mL. In still other embodiments, the predetermined sample volume can be 60 mL. Although described above as transferring the sample volume of the bodily-fluid to a single sample reservoir, in other embodiments, the flow-metering transfer device can be used to transfer a predetermined sample volume to more than one sample reservoir. For example, in some embodiments, a pre-determined pre-sample volume of bodily-fluid can be collected and fluidically isolated in a pre-sample reservoir, as described above. With the pre-sample volume fluidically isolated, the flow-metering transfer device can be used to transfer a predetermined sample volume to a first sample reservoir, the predetermined sample volume to a second sample reservoir, and the predetermined sample volume to a third sample reservoir. In such instances, the predetermined sample volume can be, for example, 20 mL such that a total sample volume disposed in the first, second, and third sample reservoirs is 60 mL.
The various embodiments of the bodily-fluid collection devices described herein can allow the collection of two (or more) sets of bodily-fluids (e.g., blood) samples from a single venipuncture. The current standard of care dictates that certain tests (e.g. blood cultures) be conducted with samples procured from distinct, separate bodily-fluid access points (e.g. via two separate venipunctures, via a catheter+a venipuncture and/or any combination thereof). Embodiments described herein can facilitate the procurement of multiple samples for specific diagnostic testing (e.g. blood culture test) from a single bodily-fluid access point (e.g. venipuncture), which can reduce the annual number of venipunctures required for procurement of these samples by a factor of 2. This benefits both patients and health care practitioners alike. A reduction in the number of venipunctures (and/or other bodily-fluid access procedures) can significantly reduce the risk of needle stick injury to heath care practitioners and reduce patient associated complications which result from these procedures (e.g. hematoma, thrombosis, phlebitis, infection, etc.). Additionally, reducing the number of bodily-fluid access procedures (e.g. venipunctures) reduces the utilization of supplies, labor and waste associated with these procedures. The decreased costs realized by the healthcare system are material and represent an opportunity to drive more efficient consumption of resources as well as enhanced patient outcomes due to improved sample integrity which results in more accurate patient diagnoses which inform development and implementation of treatment plan(s). The bodily-fluid collection devices also significantly reduce the occurrence of false-positives from post-collection analysis. The bodily-fluid collection devices described herein can also streamline the bodily-fluid collection process and reduce the number of manual steps and “touch points”, thereby decreasing opportunities for external contamination. The devices described herein can also minimize the risk for needle stick injuries and infection for the lab technicians and/or phlebotomists.
In some embodiments, the bodily-fluid collection devices described herein (e.g., 100, 200, 300, 400, 500, 600, 700, 800, and 900) can include and/or be partially formed from antisepsis saturated materials (e.g., housing 401). Current standards rely on health care practitioners placing individual antisepsis materials (e.g. isopropyl alcohol swabs) on the top of individual sample reservoirs (e.g., 480, 480′, 490, and 490′). To ensure compliance with this protocol, the device 400 (for example) can include antisepsis materials positioned in the device 400 such that when the housing 401 is placed on top of the 4-pack (or 2-pack) of bottles as illustrated in
While various embodiments have been particularly shown and described, various changes in form and details may be made. For example, while the dial 445 (actuator) is shown and described with respect to
While embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having any combination or sub-combination of any features and/or components from any of the embodiments described herein. For example, while the collection device 700 is shown and described with respect to
The specific configurations of the various components can also be varied. For example, the size and specific shape of the various components can be different than the embodiments shown, while still providing the functions as described herein. More specifically, the size and shape of the various components can be specifically selected for a desired rate of bodily-fluid flow into a fluid reservoir. Furthermore, while the flow metering mechanism 967 is particularly shown in
This application is a continuation of U.S. patent application Ser. No. 16/934,975, filed Jul. 21, 2020, entitled “Sterile Bodily-Fluid Collection Device and Methods,” which is a continuation of U.S. patent application Ser. No. 14/728,318 now U.S. Pat. No. 10,772,548), filed Jun. 2, 2015, entitled, “Sterile Bodily-Fluid Collection Device and Methods,” which is a continuation of International Patent Application Serial No. PCT/US2013/073080, filed Dec. 4, 2013, entitled, “Sterile Bodily-Fluid Collection Device and Methods,” and a continuation-in-part of U.S. patent application Ser. No. 14/096,826 (now U.S. Pat. No. 10,251,590), filed Dec. 4, 2013, entitled, “Sterile Bodily-Fluid Collection Device and Methods,” each of which claims priority to and the benefit of U.S. Provisional Application Ser. No. 61/733,199, filed Dec. 4, 2012, entitled, “Sterile Bodily-Fluid Collection Device and Methods,” the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2697435 | Benjamin | Dec 1954 | A |
2707953 | Ryan | May 1955 | A |
2876769 | Juan | Mar 1959 | A |
2952258 | Chandler | Sep 1960 | A |
2992974 | Belcove et al. | Jul 1961 | A |
3013557 | Pallotta | Dec 1961 | A |
3098016 | Sam et al. | Jul 1963 | A |
3382865 | Worrall, Jr. et al. | May 1968 | A |
3405706 | Paul et al. | Oct 1968 | A |
3467021 | Green, Jr. et al. | Sep 1969 | A |
3467095 | Ross et al. | Sep 1969 | A |
3494351 | Horn et al. | Feb 1970 | A |
3494352 | Russo et al. | Feb 1970 | A |
3577980 | Cohen | May 1971 | A |
3604410 | Whitacre | Sep 1971 | A |
3635798 | Kirkham et al. | Jan 1972 | A |
3640267 | Hurtig et al. | Feb 1972 | A |
3648684 | Barnwell et al. | Mar 1972 | A |
3680558 | Kapelowitz | Aug 1972 | A |
3696806 | Sausse et al. | Oct 1972 | A |
3741197 | Sanz et al. | Jun 1973 | A |
3777773 | Tolbert | Dec 1973 | A |
3779383 | Ayres | Dec 1973 | A |
3817240 | Ayres | Jun 1974 | A |
3831602 | Broadwin | Aug 1974 | A |
3834372 | Turney | Sep 1974 | A |
3835835 | Thompson et al. | Sep 1974 | A |
3848579 | Villa-Real | Nov 1974 | A |
3848581 | Cinqualbre et al. | Nov 1974 | A |
3859998 | Thomas et al. | Jan 1975 | A |
3874367 | Ayres | Apr 1975 | A |
3886930 | Ryan | Jun 1975 | A |
3890203 | Mehl | Jun 1975 | A |
3890968 | Pierce et al. | Jun 1975 | A |
3937211 | Merten | Feb 1976 | A |
3943917 | Johansen | Mar 1976 | A |
3945380 | Dabney et al. | Mar 1976 | A |
3960139 | Bailey | Jun 1976 | A |
3978846 | Bailey | Sep 1976 | A |
3996923 | Guerra | Dec 1976 | A |
4056101 | Geissler et al. | Nov 1977 | A |
4057050 | Sarstedt | Nov 1977 | A |
4062360 | Bentley | Dec 1977 | A |
4063460 | Svensson | Dec 1977 | A |
4077395 | Woolner | Mar 1978 | A |
4106491 | Guerra | Aug 1978 | A |
4106497 | Percarpio | Aug 1978 | A |
4133863 | Koenig | Jan 1979 | A |
4150089 | Linet | Apr 1979 | A |
4154229 | Nugent | May 1979 | A |
4166450 | Abramson | Sep 1979 | A |
4193400 | Loveless et al. | Mar 1980 | A |
4202764 | Afflerbaugh et al. | May 1980 | A |
4207870 | Eldridge | Jun 1980 | A |
4210173 | Choksi et al. | Jul 1980 | A |
4212308 | Percarpio | Jul 1980 | A |
4226236 | Genese | Oct 1980 | A |
4257416 | Prager | Mar 1981 | A |
4275730 | Hussein | Jun 1981 | A |
4312362 | Kaufman | Jan 1982 | A |
4317456 | Percarpio | Mar 1982 | A |
4327746 | Feaster | May 1982 | A |
4340067 | Rattenborg | Jul 1982 | A |
4340068 | Kaufman | Jul 1982 | A |
4349035 | Thomas et al. | Sep 1982 | A |
4370987 | Bazell et al. | Feb 1983 | A |
4373535 | Martell | Feb 1983 | A |
4398544 | Nugent et al. | Aug 1983 | A |
4411275 | Raitto | Oct 1983 | A |
4412548 | Hoch | Nov 1983 | A |
4416290 | Lutkowski | Nov 1983 | A |
4416291 | Kaufman | Nov 1983 | A |
4425235 | Cornell et al. | Jan 1984 | A |
4436098 | Kaufman | Mar 1984 | A |
4444203 | Engelman | Apr 1984 | A |
4459997 | Sarstedt | Jul 1984 | A |
4496458 | Lee | Jan 1985 | A |
4509534 | Tassin, Jr. | Apr 1985 | A |
4581014 | Millerd et al. | Apr 1986 | A |
4608996 | Brown | Sep 1986 | A |
4654027 | Dragan et al. | Mar 1987 | A |
4657027 | Paulsen | Apr 1987 | A |
4657160 | Woods et al. | Apr 1987 | A |
4673386 | Gordon | Jun 1987 | A |
4676256 | Golden | Jun 1987 | A |
4679571 | Frankel et al. | Jul 1987 | A |
4690154 | Woodford et al. | Sep 1987 | A |
4699612 | Hamacher | Oct 1987 | A |
4703763 | McAlister et al. | Nov 1987 | A |
4705497 | Shitaokoshi et al. | Nov 1987 | A |
4714461 | Gabel | Dec 1987 | A |
4715854 | Vaillancourt | Dec 1987 | A |
4772273 | Alchas | Sep 1988 | A |
4838855 | Lynn | Jun 1989 | A |
4865583 | Tu | Sep 1989 | A |
4886072 | Percarpio et al. | Dec 1989 | A |
4890627 | Haber et al. | Jan 1990 | A |
4904240 | Hoover | Feb 1990 | A |
4936315 | Lineback | Jun 1990 | A |
4988339 | Vadher | Jan 1991 | A |
5027827 | Cody et al. | Jul 1991 | A |
5032116 | Peterson et al. | Jul 1991 | A |
5032288 | Columbus et al. | Jul 1991 | A |
5035688 | Inui | Jul 1991 | A |
5045185 | Ohnaka et al. | Sep 1991 | A |
5052403 | Haber et al. | Oct 1991 | A |
5054498 | Melet | Oct 1991 | A |
5066284 | Mersch et al. | Nov 1991 | A |
5084034 | Zanotti | Jan 1992 | A |
5097842 | Bonn | Mar 1992 | A |
5100394 | Dudar et al. | Mar 1992 | A |
5108927 | Dorn | Apr 1992 | A |
5116323 | Kreuzer et al. | May 1992 | A |
5122129 | Olson et al. | Jun 1992 | A |
5126054 | Matkovich | Jun 1992 | A |
5135489 | Jepson et al. | Aug 1992 | A |
5147329 | Brannon | Sep 1992 | A |
5222502 | Kurose | Jun 1993 | A |
5269317 | Bennett | Dec 1993 | A |
5330464 | Mathias et al. | Jul 1994 | A |
5334162 | Harris | Aug 1994 | A |
5360011 | McCallister | Nov 1994 | A |
5372143 | Bernes et al. | Dec 1994 | A |
5395339 | Talonn et al. | Mar 1995 | A |
5417673 | Gordon | May 1995 | A |
5429610 | Vaillancourt | Jul 1995 | A |
5431811 | Tusini et al. | Jul 1995 | A |
5439022 | Summers et al. | Aug 1995 | A |
5439450 | Haedt | Aug 1995 | A |
5450856 | Norris | Sep 1995 | A |
5451321 | Matkovich | Sep 1995 | A |
5454786 | Harris | Oct 1995 | A |
5466228 | Evans | Nov 1995 | A |
5485854 | Hollister | Jan 1996 | A |
5507299 | Roland | Apr 1996 | A |
5520193 | Suzuki et al. | May 1996 | A |
5522804 | Lynn | Jun 1996 | A |
5573510 | Isaacson | Nov 1996 | A |
5573951 | Gombrich et al. | Nov 1996 | A |
5575777 | Cover et al. | Nov 1996 | A |
5577513 | Van Vlasselaer | Nov 1996 | A |
5603700 | Daneshvar | Feb 1997 | A |
5632906 | Ishida et al. | May 1997 | A |
5634893 | Rishton | Jun 1997 | A |
5649912 | Peterson | Jul 1997 | A |
5658271 | Loubser | Aug 1997 | A |
5685846 | Michaels, Jr. | Nov 1997 | A |
5691486 | Behringer et al. | Nov 1997 | A |
5749857 | Cuppy | May 1998 | A |
5759160 | Neese et al. | Jun 1998 | A |
5762633 | Whisson | Jun 1998 | A |
5772608 | Dhas | Jun 1998 | A |
5785682 | Grabenkort | Jul 1998 | A |
5811658 | Van Driel et al. | Sep 1998 | A |
5824001 | Erskine | Oct 1998 | A |
5857983 | Douglas et al. | Jan 1999 | A |
5865803 | Major | Feb 1999 | A |
5865812 | Correia | Feb 1999 | A |
5871699 | Ruggeri | Feb 1999 | A |
5873841 | Brannon | Feb 1999 | A |
5876926 | Beecham | Mar 1999 | A |
5882318 | Boyde | Mar 1999 | A |
5911705 | Howell | Jun 1999 | A |
5922551 | Durbin et al. | Jul 1999 | A |
RE36273 | Brannon | Aug 1999 | E |
5947932 | Desecki et al. | Sep 1999 | A |
5961472 | Swendson et al. | Oct 1999 | A |
5971956 | Epstein | Oct 1999 | A |
5980830 | Savage et al. | Nov 1999 | A |
6013037 | Brannon | Jan 2000 | A |
6016712 | Warden et al. | Jan 2000 | A |
6050957 | Desch | Apr 2000 | A |
6106509 | Loubser | Aug 2000 | A |
6126643 | Vaillancouert | Oct 2000 | A |
6159164 | Neese et al. | Dec 2000 | A |
6171493 | Zia et al. | Jan 2001 | B1 |
6190855 | Herman et al. | Feb 2001 | B1 |
6210909 | Guirguis | Apr 2001 | B1 |
6224561 | Swendson et al. | May 2001 | B1 |
6254581 | Scott | Jul 2001 | B1 |
6296020 | McNeely et al. | Oct 2001 | B1 |
6306614 | Romaschin et al. | Oct 2001 | B1 |
6328726 | Ishida et al. | Dec 2001 | B1 |
6355023 | Roth et al. | Mar 2002 | B1 |
6364847 | Shulze et al. | Apr 2002 | B1 |
6364890 | Lum et al. | Apr 2002 | B1 |
6368306 | Koska | Apr 2002 | B1 |
6387086 | Mathias et al. | May 2002 | B2 |
6403381 | Mann et al. | Jun 2002 | B1 |
6440725 | Pourahmadi et al. | Aug 2002 | B1 |
6478775 | Galt et al. | Nov 2002 | B1 |
6506182 | Estabrook et al. | Jan 2003 | B2 |
6511439 | Tabata et al. | Jan 2003 | B1 |
6520948 | Mathias et al. | Feb 2003 | B1 |
6569117 | Ziv et al. | May 2003 | B1 |
6592555 | Wen-Pi et al. | Jul 2003 | B1 |
6592613 | Ishida et al. | Jul 2003 | B1 |
6626884 | Dillon et al. | Sep 2003 | B1 |
6629959 | Kuracina et al. | Oct 2003 | B2 |
6638252 | Moulton et al. | Oct 2003 | B2 |
6638263 | Theeuwes et al. | Oct 2003 | B1 |
6648835 | Shemesh | Nov 2003 | B1 |
6692479 | Kraus et al. | Feb 2004 | B2 |
6695004 | Raybuck | Feb 2004 | B1 |
6712963 | Schick | Mar 2004 | B2 |
6716187 | Jorgensen et al. | Apr 2004 | B1 |
6716396 | Anderson et al. | Apr 2004 | B1 |
6733433 | Fell | May 2004 | B1 |
6736783 | Blake et al. | May 2004 | B2 |
6746420 | Prestidge et al. | Jun 2004 | B1 |
6772513 | Frye-Mason et al. | Aug 2004 | B1 |
6843775 | Hyun | Jan 2005 | B2 |
6860871 | Kuracina et al. | Mar 2005 | B2 |
6905483 | Newby et al. | Jun 2005 | B2 |
6913580 | Stone | Jul 2005 | B2 |
6945948 | Bainbridge et al. | Sep 2005 | B2 |
7044941 | Mathias et al. | May 2006 | B2 |
7052603 | Schick | May 2006 | B2 |
7055401 | Prybella et al. | Jun 2006 | B2 |
7087047 | Kraus et al. | Aug 2006 | B2 |
7241281 | Coelho et al. | Jul 2007 | B2 |
7264608 | Bischof et al. | Sep 2007 | B2 |
7306736 | Collins et al. | Dec 2007 | B2 |
7314452 | Madonia | Jan 2008 | B2 |
7335188 | Graf | Feb 2008 | B2 |
7351228 | Keane et al. | Apr 2008 | B2 |
7384416 | Goudaliez et al. | Jun 2008 | B2 |
7435231 | Mathias et al. | Oct 2008 | B2 |
7461671 | Ehwald et al. | Dec 2008 | B2 |
7479131 | Mathias et al. | Jan 2009 | B2 |
7544324 | Tung et al. | Jun 2009 | B2 |
7614857 | Fuechslin et al. | Nov 2009 | B2 |
7615033 | Leong | Nov 2009 | B2 |
7666166 | Emmert et al. | Feb 2010 | B1 |
7744573 | Gordon et al. | Jun 2010 | B2 |
7766879 | Tan et al. | Aug 2010 | B2 |
7896817 | Garrison | Mar 2011 | B2 |
7914508 | Engstrom | Mar 2011 | B2 |
7963950 | Madonia | Jun 2011 | B2 |
8070725 | Christensen | Dec 2011 | B2 |
8109157 | Kanayama et al. | Feb 2012 | B2 |
RE43283 | Ishida et al. | Mar 2012 | E |
8197420 | Patton | Jun 2012 | B2 |
8206318 | Uchiyama et al. | Jun 2012 | B2 |
8231546 | Patton | Jul 2012 | B2 |
8282605 | Tan et al. | Oct 2012 | B2 |
8287499 | Miyasaka | Oct 2012 | B2 |
8337418 | Patton | Dec 2012 | B2 |
8349254 | Hoshino et al. | Jan 2013 | B2 |
8356644 | Chong et al. | Jan 2013 | B2 |
8377040 | Burkholz et al. | Feb 2013 | B2 |
8382712 | Kim | Feb 2013 | B2 |
8383044 | Davis et al. | Feb 2013 | B2 |
8412300 | Sonderegger | Apr 2013 | B2 |
8523826 | Layton, Jr. | Sep 2013 | B2 |
8535241 | Bullington et al. | Sep 2013 | B2 |
8540663 | Davey et al. | Sep 2013 | B2 |
8568371 | Siopes et al. | Oct 2013 | B2 |
8574203 | Stout et al. | Nov 2013 | B2 |
8603009 | Tan et al. | Dec 2013 | B2 |
8647286 | Patton | Feb 2014 | B2 |
8679063 | Stout et al. | Mar 2014 | B2 |
8747779 | Sprague et al. | Jun 2014 | B2 |
8772046 | Fraden et al. | Jul 2014 | B2 |
8795198 | Tan et al. | Aug 2014 | B2 |
8827958 | Bierman et al. | Sep 2014 | B2 |
8864684 | Bullington et al. | Oct 2014 | B2 |
8876734 | Patton | Nov 2014 | B2 |
8992505 | Thorne, Jr. et al. | Mar 2015 | B2 |
9022950 | Bullington et al. | May 2015 | B2 |
9022951 | Bullington et al. | May 2015 | B2 |
9060724 | Bullington et al. | Jun 2015 | B2 |
9060725 | Bullington et al. | Jun 2015 | B2 |
9138572 | Zeytoonian et al. | Sep 2015 | B2 |
9149576 | Bullington et al. | Oct 2015 | B2 |
9155495 | Bullington et al. | Oct 2015 | B2 |
9204864 | Bullington et al. | Dec 2015 | B2 |
9233208 | Tekeste | Jan 2016 | B2 |
RE45896 | Stout et al. | Feb 2016 | E |
9314201 | Burkholz et al. | Apr 2016 | B2 |
9320459 | Chin et al. | Apr 2016 | B2 |
9855001 | Patton | Jan 2018 | B2 |
9855002 | Patton | Jan 2018 | B2 |
9855386 | Close et al. | Jan 2018 | B2 |
9861306 | Patton | Jan 2018 | B2 |
9872645 | Patton | Jan 2018 | B2 |
9877674 | Holmes et al. | Jan 2018 | B2 |
9877675 | Baid | Jan 2018 | B2 |
9895092 | Burkholz | Feb 2018 | B2 |
9931466 | Bullington et al. | Apr 2018 | B2 |
9950084 | Bullington et al. | Apr 2018 | B2 |
9999383 | Bullington et al. | Jun 2018 | B2 |
10022530 | Tekeste | Jul 2018 | B2 |
10028687 | Patton | Jul 2018 | B2 |
10028688 | Patton | Jul 2018 | B2 |
10028689 | Patton | Jul 2018 | B2 |
10039483 | Bullington et al. | Aug 2018 | B2 |
10045724 | Patton | Aug 2018 | B2 |
10052053 | Patton | Aug 2018 | B2 |
10080516 | Ellis et al. | Sep 2018 | B2 |
10206613 | Bullington et al. | Feb 2019 | B2 |
10220139 | Bullington et al. | Mar 2019 | B2 |
10251590 | Bullington et al. | Apr 2019 | B2 |
10265007 | Bullington et al. | Apr 2019 | B2 |
10292633 | Bullington et al. | May 2019 | B2 |
10299713 | Patton | May 2019 | B2 |
10433779 | Bullington et al. | Oct 2019 | B2 |
10596315 | Bullington et al. | Mar 2020 | B2 |
10624977 | Bullington et al. | Apr 2020 | B2 |
10736554 | Bullington et al. | Aug 2020 | B2 |
10772548 | Bullington et al. | Sep 2020 | B2 |
10827964 | Rogers et al. | Nov 2020 | B2 |
10856791 | McHale et al. | Dec 2020 | B2 |
10881343 | Bullington et al. | Jan 2021 | B2 |
10888262 | Russ et al. | Jan 2021 | B2 |
10912506 | Bullington et al. | Feb 2021 | B2 |
11076787 | Bullington et al. | Aug 2021 | B2 |
11234626 | Bullington et al. | Feb 2022 | B2 |
11259727 | Bullington et al. | Mar 2022 | B2 |
11311218 | Bullington et al. | Apr 2022 | B2 |
11317838 | Bullington et al. | May 2022 | B2 |
11318459 | Shi et al. | May 2022 | B2 |
11395611 | Bullington et al. | Jul 2022 | B2 |
11395612 | Bullington et al. | Jul 2022 | B2 |
11419531 | Bullington et al. | Aug 2022 | B2 |
11529081 | Bullington et al. | Dec 2022 | B2 |
11589786 | Bullington et al. | Feb 2023 | B2 |
11607159 | Bullington et al. | Mar 2023 | B2 |
11653863 | Bullington et al. | May 2023 | B2 |
11660030 | Bullington et al. | May 2023 | B2 |
11737693 | Bullington et al. | Aug 2023 | B2 |
11786155 | Bullington et al. | Oct 2023 | B2 |
11819329 | Bullington et al. | Nov 2023 | B2 |
11857321 | Bullington et al. | Jan 2024 | B2 |
11903709 | Bullington et al. | Feb 2024 | B2 |
11903710 | Bullington et al. | Feb 2024 | B2 |
11998332 | Bullington et al. | Jun 2024 | B2 |
20020002349 | Flaherty et al. | Jan 2002 | A1 |
20020004647 | Leong | Jan 2002 | A1 |
20020107469 | Bolan et al. | Aug 2002 | A1 |
20020183651 | Hyun | Dec 2002 | A1 |
20020193751 | Theeuwes et al. | Dec 2002 | A1 |
20030013991 | Stone | Jan 2003 | A1 |
20030055381 | Wilkinson | Mar 2003 | A1 |
20030069543 | Carpenter et al. | Apr 2003 | A1 |
20030105414 | Leong | Jun 2003 | A1 |
20030139752 | Pasricha et al. | Jul 2003 | A1 |
20030208151 | Kraus et al. | Nov 2003 | A1 |
20040000309 | Alston | Jan 2004 | A1 |
20040009542 | Dumont et al. | Jan 2004 | A1 |
20040010228 | Swenson et al. | Jan 2004 | A1 |
20040054283 | Corey et al. | Mar 2004 | A1 |
20040054333 | Theeuwes et al. | Mar 2004 | A1 |
20040127816 | Galvao | Jul 2004 | A1 |
20040147855 | Marsden | Jul 2004 | A1 |
20050004524 | Newby et al. | Jan 2005 | A1 |
20050054949 | McKinnon et al. | Mar 2005 | A1 |
20050148993 | Mathias et al. | Jul 2005 | A1 |
20050154368 | Lim et al. | Jul 2005 | A1 |
20050161112 | Ehwald et al. | Jul 2005 | A1 |
20050199077 | Prybella et al. | Sep 2005 | A1 |
20050240161 | Crawford | Oct 2005 | A1 |
20050245885 | Brown | Nov 2005 | A1 |
20050273019 | Conway et al. | Dec 2005 | A1 |
20050277848 | Graf | Dec 2005 | A1 |
20050281713 | Hampsch et al. | Dec 2005 | A1 |
20060018790 | Naka et al. | Jan 2006 | A1 |
20060111667 | Matsuura et al. | May 2006 | A1 |
20060155212 | Madonia | Jul 2006 | A1 |
20060251622 | Suzuki et al. | Nov 2006 | A1 |
20060287639 | Sharp | Dec 2006 | A1 |
20070083162 | O'Reagan et al. | Apr 2007 | A1 |
20070088279 | Shue et al. | Apr 2007 | A1 |
20070100250 | Kline | May 2007 | A1 |
20070119508 | West et al. | May 2007 | A1 |
20070191716 | Goldberger et al. | Aug 2007 | A1 |
20070287948 | Sakiewicz | Dec 2007 | A1 |
20080086085 | Brown | Apr 2008 | A1 |
20080108954 | Mathias et al. | May 2008 | A1 |
20080114304 | Nalesso et al. | May 2008 | A1 |
20080145933 | Patton | Jun 2008 | A1 |
20080167577 | Weilbacher et al. | Jul 2008 | A1 |
20080185056 | Diodati et al. | Aug 2008 | A1 |
20080200837 | Frazier et al. | Aug 2008 | A1 |
20080254471 | Bordano | Oct 2008 | A1 |
20080255523 | Grinberg | Oct 2008 | A1 |
20080319346 | Crawford et al. | Dec 2008 | A1 |
20090076441 | Sebban | Mar 2009 | A1 |
20090173685 | Imai et al. | Jul 2009 | A1 |
20090177117 | Amano et al. | Jul 2009 | A1 |
20090192447 | Andersen et al. | Jul 2009 | A1 |
20090227896 | Alvin Tan et al. | Sep 2009 | A1 |
20090301317 | Andrews | Dec 2009 | A1 |
20090306601 | Shaw et al. | Dec 2009 | A1 |
20100010372 | Brown et al. | Jan 2010 | A1 |
20100042048 | Christensen | Feb 2010 | A1 |
20100057004 | Christensen et al. | Mar 2010 | A1 |
20100094171 | Conway et al. | Apr 2010 | A1 |
20100152681 | Mathias | Jun 2010 | A1 |
20100185134 | Houwen et al. | Jul 2010 | A1 |
20100234768 | Uchiyama et al. | Sep 2010 | A1 |
20100240964 | Sterling et al. | Sep 2010 | A1 |
20100252118 | Fraden et al. | Oct 2010 | A1 |
20100255589 | Saiki et al. | Oct 2010 | A1 |
20100268118 | Schweiger | Oct 2010 | A1 |
20100286513 | Pollard, Jr. et al. | Nov 2010 | A1 |
20100298671 | Asakura et al. | Nov 2010 | A1 |
20110009717 | Davis et al. | Jan 2011 | A1 |
20110046602 | Grimm et al. | Feb 2011 | A1 |
20110092856 | Freeman et al. | Apr 2011 | A1 |
20110125058 | Levinson et al. | May 2011 | A1 |
20110306856 | Rule et al. | Dec 2011 | A1 |
20110306899 | Brown et al. | Dec 2011 | A1 |
20110313318 | Rule et al. | Dec 2011 | A1 |
20120004619 | Stephens et al. | Jan 2012 | A1 |
20120016266 | Burkholz | Jan 2012 | A1 |
20120017999 | Velschow | Jan 2012 | A1 |
20120035540 | Ferren et al. | Feb 2012 | A1 |
20120226239 | Green | Sep 2012 | A1 |
20120265099 | Goodnow, II et al. | Oct 2012 | A1 |
20120265128 | Kolln | Oct 2012 | A1 |
20120277697 | Haghgooie et al. | Nov 2012 | A1 |
20120323142 | Allen et al. | Dec 2012 | A1 |
20130023792 | Markey et al. | Jan 2013 | A1 |
20130085514 | Lee et al. | Apr 2013 | A1 |
20130289420 | Pfeiffer et al. | Oct 2013 | A1 |
20130295602 | Fowler et al. | Nov 2013 | A1 |
20140008366 | Genosar | Jan 2014 | A1 |
20140051062 | Vanapalli et al. | Feb 2014 | A1 |
20140066880 | Prince et al. | Mar 2014 | A1 |
20140128775 | Andreae et al. | May 2014 | A1 |
20140155782 | Bullington et al. | Jun 2014 | A1 |
20140188002 | Close et al. | Jul 2014 | A1 |
20140276039 | Cowan et al. | Sep 2014 | A1 |
20140305196 | Ellis et al. | Oct 2014 | A1 |
20150018715 | Walterspiel | Jan 2015 | A1 |
20150025454 | Wetzel et al. | Jan 2015 | A1 |
20150025455 | Shetty et al. | Jan 2015 | A1 |
20150025456 | Shetty et al. | Jan 2015 | A1 |
20150073304 | Millerd | Mar 2015 | A1 |
20150314105 | Gasparyan et al. | Nov 2015 | A1 |
20160008579 | Burkholz et al. | Jan 2016 | A1 |
20160038684 | Lum et al. | Feb 2016 | A1 |
20160081606 | Russ et al. | Mar 2016 | A1 |
20160174888 | Berthier et al. | Jun 2016 | A1 |
20160213294 | Patton | Jul 2016 | A1 |
20160367177 | Edelhauser et al. | Dec 2016 | A1 |
20170059552 | Campton et al. | Mar 2017 | A1 |
20170153165 | Nwadigo | Jun 2017 | A1 |
20170276679 | Chapman et al. | Sep 2017 | A1 |
20170327867 | Dohale et al. | Nov 2017 | A1 |
20180160958 | Baid | Jun 2018 | A1 |
20180242890 | Chickering, III et al. | Aug 2018 | A1 |
20180353117 | Bullington et al. | Dec 2018 | A1 |
20190000367 | Lundquist et al. | Jan 2019 | A1 |
20190049442 | Guirguis | Feb 2019 | A1 |
20190150818 | Bullington et al. | May 2019 | A1 |
20190209066 | Bullington et al. | Jul 2019 | A1 |
20190365303 | Bullington et al. | Dec 2019 | A1 |
20200060595 | Bullington et al. | Feb 2020 | A1 |
20200060596 | Patton | Feb 2020 | A1 |
20200215211 | Bullington et al. | Jul 2020 | A1 |
20200253524 | Bullington et al. | Aug 2020 | A1 |
20200289039 | Bullington et al. | Sep 2020 | A1 |
20210008280 | Bullington et al. | Jan 2021 | A1 |
20210169387 | Bullington et al. | Jun 2021 | A1 |
20210186392 | Bullington et al. | Jun 2021 | A1 |
20210361206 | Bullington et al. | Nov 2021 | A1 |
20210361207 | Rogers et al. | Nov 2021 | A1 |
20220151525 | Bullington et al. | May 2022 | A1 |
20220151526 | Bullington et al. | May 2022 | A1 |
20220151527 | Bullington et al. | May 2022 | A1 |
20220175284 | Bullington et al. | Jun 2022 | A1 |
20220183600 | Bullington et al. | Jun 2022 | A1 |
20220218250 | Bullington et al. | Jul 2022 | A1 |
20220304600 | Hammer | Sep 2022 | A1 |
20220304601 | Bullington et al. | Sep 2022 | A1 |
20220304664 | Hammer | Sep 2022 | A1 |
20220361786 | Bullington et al. | Nov 2022 | A1 |
20220369971 | Bullington et al. | Nov 2022 | A1 |
20230172502 | Bullington et al. | Jun 2023 | A1 |
20230190157 | Bullington et al. | Jun 2023 | A1 |
20230240571 | Bullington et al. | Aug 2023 | A1 |
20230248281 | Bullington et al. | Aug 2023 | A1 |
20230363674 | Bullington et al. | Nov 2023 | A1 |
20240041369 | Bullington et al. | Feb 2024 | A1 |
20240041370 | Bullington et al. | Feb 2024 | A1 |
20240065590 | Bullington et al. | Feb 2024 | A1 |
20240131258 | Bullington et al. | Apr 2024 | A1 |
20240138734 | Bullington et al. | May 2024 | A1 |
20240164670 | Patton | May 2024 | A1 |
Number | Date | Country |
---|---|---|
310345 | Sep 1973 | AT |
736156 | Jul 2001 | AU |
112012025546 | Jun 2016 | BR |
86103696 | Jan 1987 | CN |
2115767 | Sep 1992 | CN |
1713928 | Dec 2005 | CN |
1784186 | Jun 2006 | CN |
1901955 | Jan 2007 | CN |
2907683 | Jun 2007 | CN |
101060871 | Oct 2007 | CN |
101309641 | Nov 2008 | CN |
101437450 | May 2009 | CN |
101564301 | Oct 2009 | CN |
101631498 | Jan 2010 | CN |
201617841 | Nov 2010 | CN |
102548524 | Jul 2012 | CN |
102971040 | Mar 2013 | CN |
101626803 | Aug 2013 | CN |
103477201 | Dec 2013 | CN |
104981203 | Oct 2015 | CN |
105090005 | Nov 2015 | CN |
105612346 | May 2016 | CN |
7203008 | May 1972 | DE |
2203858 | May 1973 | DE |
2541494 | Mar 1977 | DE |
2203858 | Oct 1977 | DE |
2946660 | May 1981 | DE |
3403957 | Aug 1985 | DE |
29913417 | Dec 2000 | DE |
10038026 | Feb 2001 | DE |
10134913 | Feb 2003 | DE |
10134913 | Jun 2003 | DE |
10243129 | Apr 2004 | DE |
102009057792 | Aug 2016 | DE |
0207304 | Jan 1987 | EP |
0448795 | Oct 1991 | EP |
0208053 | Dec 1991 | EP |
0329786 | Jan 1993 | EP |
0486059 | Jan 1997 | EP |
1144026 | Jul 2004 | EP |
1980204 | Oct 2008 | EP |
2254472 | Dec 2010 | EP |
1381438 | May 2012 | EP |
1487369 | May 2017 | EP |
2986218 | Dec 2017 | EP |
2178585 | Apr 2021 | EP |
2110516 | Jun 1972 | FR |
2691364 | Aug 1999 | FR |
2833175 | May 2004 | FR |
2851167 | Oct 2005 | FR |
1506449 | Apr 1978 | GB |
1562686 | Mar 1980 | GB |
904353 | Oct 1991 | IE |
128709 | Sep 2004 | IL |
S4846180 | Jul 1973 | JP |
S5397289 | Aug 1978 | JP |
S5789869 | Jun 1982 | JP |
S6458241 | Mar 1989 | JP |
H0363570 | Mar 1991 | JP |
H06500403 | Jan 1994 | JP |
H0716219 | Jan 1995 | JP |
H0910302 | Jan 1997 | JP |
H10211274 | Aug 1998 | JP |
H1156821 | Mar 1999 | JP |
2001159630 | Jun 2001 | JP |
2001276181 | Oct 2001 | JP |
3231086 | Nov 2001 | JP |
3498201 | Feb 2004 | JP |
2005237617 | Sep 2005 | JP |
2006026327 | Feb 2006 | JP |
3813974 | Aug 2006 | JP |
2007175534 | Jul 2007 | JP |
2008149076 | Jul 2008 | JP |
2008206734 | Sep 2008 | JP |
4382322 | Dec 2009 | JP |
2010514501 | May 2010 | JP |
2010189415 | Sep 2010 | JP |
4573538 | Nov 2010 | JP |
4861649 | Jan 2012 | JP |
4869910 | Feb 2012 | JP |
5620541 | Nov 2014 | JP |
2015014552 | Jan 2015 | JP |
2016504075 | Feb 2016 | JP |
2016523591 | Aug 2016 | JP |
5997760 | Sep 2016 | JP |
2016527939 | Sep 2016 | JP |
6194415 | Sep 2017 | JP |
2018525191 | Sep 2018 | JP |
20120030087 | Mar 2012 | KR |
101134279 | Apr 2012 | KR |
200528066 | Sep 2005 | TW |
WO-8605568 | Sep 1986 | WO |
WO-9004351 | May 1990 | WO |
WO-9118632 | Dec 1991 | WO |
WO-9216144 | Oct 1992 | WO |
WO-9407415 | Apr 1994 | WO |
WO-9412093 | Jun 1994 | WO |
WO-9415665 | Jul 1994 | WO |
WO-9511712 | May 1995 | WO |
WO-9516395 | Jun 1995 | WO |
WO-9521639 | Aug 1995 | WO |
WO-9524176 | Sep 1995 | WO |
WO-9621853 | Jul 1996 | WO |
WO-9718845 | May 1997 | WO |
WO-9846136 | Oct 1998 | WO |
WO-9913925 | Mar 1999 | WO |
WO-9948425 | Sep 1999 | WO |
WO-9955232 | Nov 1999 | WO |
WO-0024313 | May 2000 | WO |
WO-0040291 | Jul 2000 | WO |
WO-0041624 | Jul 2000 | WO |
WO-0108546 | Feb 2001 | WO |
WO-0191829 | Dec 2001 | WO |
WO-0245813 | Jun 2002 | WO |
WO-02051520 | Jul 2002 | WO |
WO-03008012 | Jan 2003 | WO |
WO-03041767 | May 2003 | WO |
WO-03047660 | Jun 2003 | WO |
WO-03078964 | Sep 2003 | WO |
WO-03085395 | Oct 2003 | WO |
WO-2004103565 | Dec 2004 | WO |
WO-2005068011 | Jul 2005 | WO |
WO-2006031500 | Mar 2006 | WO |
WO-2007033319 | Mar 2007 | WO |
WO-2008028165 | Mar 2008 | WO |
WO-2008077047 | Jun 2008 | WO |
WO-2008101025 | Aug 2008 | WO |
WO-2009094345 | Jul 2009 | WO |
WO-2009113999 | Sep 2009 | WO |
WO-2011069145 | Jun 2011 | WO |
WO-2011114413 | Sep 2011 | WO |
WO-2011123685 | Oct 2011 | WO |
WO-2011162772 | Dec 2011 | WO |
WO-2012012127 | Jan 2012 | WO |
WO-2012114105 | Aug 2012 | WO |
WO-2013181352 | Dec 2013 | WO |
WO-2014022275 | Feb 2014 | WO |
WO-2014058945 | Apr 2014 | WO |
WO-2014085800 | Jun 2014 | WO |
WO-2014089186 | Jun 2014 | WO |
WO-2014099266 | Jun 2014 | WO |
WO-2016201406 | Dec 2016 | WO |
WO-2017041087 | Mar 2017 | WO |
WO-2018227191 | Dec 2018 | WO |
WO-2019055487 | Mar 2019 | WO |
WO-2019113505 | Jun 2019 | WO |
WO-2019232196 | Dec 2019 | WO |
WO-2020163744 | Aug 2020 | WO |
WO-2020185914 | Sep 2020 | WO |
WO-2022203747 | Sep 2022 | WO |
Entry |
---|
Arenas et al., “Asynchronous Testing of 2 Specimen-Diversion Devices to reduce Blood Culture Contamination: A Single-Site Product Supply Quality Improvement Project,” J. Emergency Nursing, vol. 47, No. 2, pp. 256-264.e6 (Mar. 2021), 15 pages. |
Bauman et al., “Don't Stick Me Again! Reducing Blood Culture Contamination,” INOVA Fairfax Medical Campus, Emergency Department (2019), 1 page. |
Bell et al., Effectiveness of a Novel Specimen Collection System in Reducing Blood Culture Contamination Rates, J. Emergency Nursing, vol. 44, No. 6, 570 (Nov. 2018), 6 pages. |
Blakeney, “Reduction of Blood Culture Contaminations Using Initial Specimen Diversion Device,” Beebe Healthcare (Jun. 2018), 1 page. |
Brownfield et al., “Emergency Department Observes 83% Reduction in Blood Culture Contamination with Initial Specimen Diversion Technology Adoption,” Am. J. Infection Control, vol. 49, S14, ADS 34 (Jun. 2021), 1 page. |
Chang et al., “Impact of Blood Culture Diversion Device and Molecular Pathogen Identification on Vancomycin Use,” San Antonio Military Medical Center (2016), 1 page. |
Claim Construction Order, Magnolia Medical Techs. v. Kurin, Case No. 19-00097-CFC-CJB, at 3 (D. Del.) (May 20, 2020), 4 pages. |
Declaration of Dr. Morten Jensen under 37 C.F.R. § 1.132, Oct. 10, 2023, 56 pages. |
Doern et al., “A Comprehensive Update on the Problem of Blood Culture Contamination and a Discussion of Methods for Addressing the Problem,” Clinical Microbiology, vol. 33, No. 1, e00009-19 (Jan. 2020), 21 pages. |
Geisler et al., “Model to Evaluate the Impact of Hospital-Based Interventions Targeting False-Positive Blood Cultures on Economic and Clinical Outcomes,” J. Hospital Infection, vol. 102, No. 4, pp. 438-444 (Mar. 2019). |
Lanteri et al., “Reduction of Blood Culture Contaminations in the Emergency Department,” Department of Emergency Medicine, San Antonio Military Medical Center (2016), 1 page. |
Nielsen et al., “Initial Specimen Diversion Device Reduces Blood Culture Contamination and Vancomycin Use in Academic Medical Centre,” J. Hospital Infection, vol. 120:127-133 (Feb. 2022). |
Povroznik, “Initial Specimen Diversion Device Utilization Mitigates Blood Culture Contamination Across Regional Community Hospital and Acute Care Facility,” Am. J. Medical Quality, vol. 37, No. 5, 405 (Mar. 2022), 8 pages. |
Rupp et al., “Reduction in Blood Culture Contamination Through Use of Initial Specimen Diversion Device,” Clinical Infectious Diseases, vol. 65, No. 2, 201 (Jul. 15, 2017), 19 pages. |
Skoglund et al., “Estimated Clinical and Economic Impact through Use of a Novel Blood Collection Device To Reduce Blood Culture Contamination in the Emergency Department: a Cost-Benefit Analysis,” J Clin Microbiol. (Jan. 2019); 57(1):e01015-18, 10 pages. |
Steed et al., “Study Demonstrates Reduction in Blood Culture Contamination Rates with Novel Blood Culture Collection Device,” Clinical Lab Products Magazine (Feb. 2018), 2 pages. |
Tompkins et al., “Getting to Zero: Impact of A Device To Reduce Blood Culture Contamination and False-Positive Central-Line-Associated Bloodstream Infection,” Infection Control & Hospital Epidemiology, pp. 1-5 (Nov. 2022). |
Tongma et al., “Significant Reduction of Blood Culture Contamination in the Emergency Department (ED) Using the Steripath® Blood Diversion Device,” Open Forum Infectious Diseases, vol. 4, Supp. 1, 2035 (Oct. 2017), 1 page. |
Zimmerman et al., “Reducing Blood Culture Contamination Using an Initial Specimen Diversion Device,” Am. J. Infection Control, vol. 47, No. 7, pp. 822-826 (Jan. 2019). |
Arkin, C. F. et al., “Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture; Approved Standard,” Fifth Edition, Clinical and Laboratory Standards Institute, vol. 23, No. 32 (2003), 52 pages. |
Barnard, D. R. & Arthur, M. M., “Fibronectin (cold insoluble globulin) in the neonate,” Clinical and Laboratory Observations, 102(3): 453-455 (1983). |
Baxter, “IV Tubing and Access Devices” authored by and published by Baxter, dated Nov. 6, 2006, 105 pages. |
BD Medical Surgical Systems Catalogue (Canadian Version), BD Medical, 2010, 51 pages. |
BD Saf-T-Intima Closed IV Catheter System, Becton, Dickinson and Company, 2015 Brochure. Retrieved from the Internet (Sep. 11, 2019) https://www.bd.com/en-us/offerings/capabilities/infusion- therapy/iv-catheters/bd-saf-tintima-closed-iv-catheter-system, 2 pages. |
BD Vacutainer Passive Shielding Blood Collection Needle Brochure; Becton Dickinson and Company (2005), 2 pages. |
Brecher, M. E. et al., “Bacterial Contamination of Blood Components,” Clinical Microbiology Reviews, 18(1):195-204 (2005). |
Calam, R. R., “Recommended ‘Order of Draw’ for Collecting Blood Specimens Into Additive-Containing Tubes,” Letter to the Editor, Clinical Chemistry, 28(6):1399 (1982), 1 page. |
Cartridge and Test Information, Abbott, Art: 714258-010 Rev. Date: Aug. 15, 2016, 6 pages. |
Challiner, A. et al., Queen Alexandra Hospital, Portsmouth P06 3LY, “Venous/arterial blood management protection system,” Correspondence, 1992, p. 169. |
De Korte, D. et al., “Diversion of first blood volume results in a reduction of bacterial contamination for whole-blood collections,” Vox Sanguinis, 83:13-16 (2002). |
De Korte, D. et al., “Effects of skin disinfection method, deviation bag, and bacterial screening on clinical safety of platelet transfusions in the Netherlands,” Transfusion, 46: 476-485 (2006). |
Edwards Lifesciences, “Conservation. Safety. Simplicity. Edwards Vamp and Vamp Jr. Systems,” 2002 Brochure. Retrieved from the Internet (Sep. 11, 2019) https://www.medline.com/media/catalog/Docs/MKT/VAMPSYSTEMBROCHURE.PDF, 4 pages. |
Ernst, D. J. et al., “NCCLS simplifies the order of draw: a brief history,” MLO, 26-27 (2004). |
Extended European Search Report for EP Application No. 17204012.3, dated Feb. 14, 2018, 7 pages. |
Extended European Search Report for EP Application No. 19190772.4, dated Feb. 10, 2020, 7 pages. |
Extended European Search Report for European Application No. 23153164.1, dated Aug. 7, 2023, 8 pages. |
Gottlieb, T., “Hazards of Bacterial Contamination of Blood Products,” Anaesth Intens Care, 21: 20-23 (1993). |
Hall, K. K. et al., “Updated Review of Blood Culture Contamination,” Clinical Microbiology Reviews, 19(4):788-802 (2006). |
Hillyer, C. D. et al., “Bacterial Contamination of Blood Components Risks, Strategies, and Regulation,” Hematology, 575-589 (2003). |
International Search Report and Written Opinion for International Application No. PCT/US2013/073080, dated Feb. 18, 2014, 14 pages. |
Japanese Office Action for Application No. JP20190230734 dated Jan. 5, 2022, 6 pages. |
Kim, J. Y. et al., “The Sum of the Parts is Greater Than the Whole: Reducing Blood Culture Contamination,” Annals of Internal Medicine, 154:202-203 (2011). |
Levin, P. D. et al., “Use of the Nonwire Central Line Hub to Reduce Blood Culture Contamination,” Chest, 143(3):640-645 (2013). |
Liumbruno, G. M. et al., “Reduction of the risk of bacterial contamination of blood components through diversion of the first part of the donation of blood and blood components,” Blood Transfus, 7: 86-93 (2009). |
Li, Y. et al., “Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye Oil,” Nature Protocols, 3(11): 1703-1708 (2008). |
Mayer, G. A, “A Method for the Reliable Determination of Clotting Time in Whole Blood,” Can Med Assoc J., 72(12): 927-929 (1955). |
McDonald, C. P., “Interventions Implemented to Reduce the Risk of Transmission of Bacteria by Transfusion in the English National Blood Service,” Transfus Med Hemother, 38:255-258 (2011). |
Meissner, G. F. et al., “A Method Based on the Use of Whole Venous Blood in Capillary Tubes,” American Journal of Clinical Pathology, 33(2): 29-31 (1963). |
Murphy, M., “Better Blood Transfusion,” Journal of the Intensive Core Society, 4(3): 78-80 (2003). |
Napolitano, M. et al., “Quality control of bacterial contamination of blood components: the feasibility of diversion system testing,” Blood Transfus, 2: 231-232 (2004). |
Non-Final Office Action for U.S. Appl. No. 16/934,975 mailed on Oct. 6, 2022, 17 pages. |
Norberg, A et al., “Contamination Rates of Blood Cultures Obtained by Dedicated Phlebotomy vs Intravenous Catheter,” JAMA, 289(6): 726-729 (2003). |
Notice of Reasons for Rejection for Japanese Application No. 2015-545813, dated Jul. 4, 2017, 14 pages. |
Notice of Reasons for Rejection for Japanese Application No. 2018-086721, dated Mar. 15, 2019, 6 pages. |
Notice of Reasons for Rejection for Japanese Application No. 2019-230734, dated Jan. 22, 2021, 9 pages. |
Notification of the First Office Action for Chinese Application No. 201380072185.0, dated Sep. 28, 2016, 17 pages. |
Notification of the Second Office Action for Chinese Application No. 201380072185.0, dated Jun. 2, 2017. |
Office Action for Canadian Application No. 2,932,536, dated Jul. 13, 2021, 4 pages. |
Office Action for Canadian Application No. 2,932,536, dated Nov. 8, 2019, 6 pages. |
Office Action for Canadian Application No. 2,932,536, dated Oct. 23, 2020, 6 pages. |
Office Action for Israeli Application No. 239098, dated Jan. 1, 2019, 3 pages. |
Office Action for Japanese Application No. JP20220074696 dated Feb. 20, 2023, 11 pages. |
Office Action for U.S. Appl. No. 14/096,826, dated Jul. 26, 2017, 12 pages. |
Office Action for U.S. Appl. No. 14/096,826, dated Mar. 8, 2018, 14 pages. |
Office Action for U.S. Appl. No. 14/728,318, dated Dec. 20, 2018, 26 pages. |
Office Action for U.S. Appl. No. 14/728,318, dated Jan. 8, 2018, 36 pages. |
Office Action for U.S. Appl. No. 14/728,318, dated Jul. 18, 2019, 27 pages. |
Office Action for U.S. Appl. No. 14/728,318, dated May 19, 2017, 26 pages. |
Office Action for U.S. Appl. No. 16/274,835, dated Feb. 12, 2021, 17 pages. |
Office Action in Ex Parte Reexamination for U.S. Appl. No. 90/019,177, dated Aug. 9, 2023, 11 pages. |
Order of Draw for Multiple Tube Collections, LabNotes, a newsletter from BD Diagnostics,—Preanalytical Systems, 17(1):3 (2007). |
Page, C. et al., “Blood conservation devices in critical care: a narrative review,” Annals of Intensive Care, 3:14 (2013), 6 pages. |
Palavecino, E. L. et al., “Detecting Bacterial Contamination in Platelet Products,” Clin. Lab., 52:443-456 (2006). |
Pall Corp., “Leukotrap Filtration Systems for Whole Blood Derived Platelets: Leukotrap RC PL and Leukotrap PL Systems,” 2005 Brochure, 2 pages. |
Patton, R. G. et al., “Innovation for Reducing Blood Culture Contamination: Initial Specimen Diversion Technique,” Journal of Clinical Microbiology, 48(12):4501-4503 (2010). |
Perez, P. et al., “Multivariate analysis of determinants of bacterial contamination of whole-blood donations,” Vox Sanguinis, 82:55-60 (2002). |
Proehl, J. A et al., “Clinical Practice Guideline: Prevention of Blood Culture Contamination, Full Version,” 2012 ENA Emergency Nurses Resources Development Committee, Emergency Nurses Association (Dec. 2012), 14 pages. |
Quilici, N. et al., “Differential Quantitative Blood Cultures in the Diagnosis of Catheter-Related Sepsis in Intensive Care Units,” Clinical Infectious Diseases 25:1066-1070 (1997). |
Schuur, J., “Blood Cultures: When Do they Help and When Do They Harm?” Brigham & Women's Hospital, Department of Emergency Medicine, (Jun. 21-23, 2012), 42 pages. |
Sheppard, C. A et al., “Bacterial Contamination of Platelets for Transfusion: Recent Advances and Issues,” LabMedicine, 36(12):767-770 (2005). |
Shulman, G., “Quality of Processed Blood for Autotransfusion,” The Journal of Extra-Corporeal Technology, 32(1): 11-19 (2000). |
Sibley, C. D. et al., “Molecular Methods for Pathogen and Microbial Community Detection and Characterization: Current and Potential Application in Diagnostic Microbiology,” Infection, Genetics and Evolution 12:505-521 (2012). |
Stohl, S. et al., “Blood Cultures at Central Line Insertion in the Intensive Care Unit: Comparison with Peripheral Venipuncture,” Journal of Clinical Microbiology, 49(7):2398-2403 (2011). |
Supplementary European Search Report for EP Application No. 13860741.1, dated Jun. 7, 2016, 5 pages. |
Tang, M. et al., “Closed Blood Conservation Device for Reducing Catheter-Related Infections in Children After Cardiac Surgery,” Critical Care Nurse, 34(5): 53-61 (2014). |
Wagner et al., “Diversion of Initial Blood Flow to Prevent Whole-Blood Contamination by Skin Surface Bacteria: an in vitro model,” Transfusion, 40:335-338 (2000). |
Wang, P. et al., “Strategies on Reducing Blood Culture Contamination,” Reviews in Medical Microbiology, 23: pp. 63-66 (2012). |
Weinbaum, F. I. et al., “Doing It Right the First Time: Quality Improvement and the Contaminant Blood Culture,” Journal of Clinical Microbiology, 35(3): 563-565 (1997). |
Weinstein, M.P., “Current Blood Culture Methods and Systems: Clinical Concepts, Technology, and Interpretation of Results,” Clinical Infectious Diseases, 23: 40-46 (1996). |
Weinstein, M.P. et al., “The Clinical Significance of Positive Blood Cultures in the 1990s: A Prospective Comprehensive Evaluation of the Microbiology, Epidemiology, and Outcome of Bacteremia and Fungemia in Adults,” Clinical Infectious Diseases, 24:584-602 (1997). |
Weinstein, M.P., “Minireview: Blood Culture Contamination: Persisting Problems and Partial Progress,” Journal of Clinical Microbiology, 41(6): 2275-2278 (2003). |
Ziegler, et al., “Controlled Clinical Laboratory Comparison of Two Supplemented Aerobic and Anaerobic Media Used in Automated Blood Culture Systems To Detect Bloodstream Infections,” J. Clinical Microbiology, 36(3):657-661 (1998). |
Zimmon, D. S. et al., “Effect of Portal Venous Blood Flow Diversion on Portal Pressure,” J Clin Invest, 65(6): 1388-1397 (1980). |
Zundert, A V., “New Closed IV Catheter System,” Acta Anaesth. Belg., 56: 283-285 (2005). |
EP Application No. 23209844.2 Extended European Search Report dated Mar. 20, 2024, 9 pages. |
JP Application No. 2023-075104 Notice of Reasons for Rejection dated Feb. 29, 2024, mailed Mar. 5, 2024, with English Translation, 9 pages. |
Office Action for Israel Application No. IL20230303591 dated Feb. 25, 2024, 4 pages. |
U.S. Appl. No. 18/399,007 Non-Final Office Action dated Mar. 7, 2024, 8 pages. |
U.S. Appl. No. 18/407,010 Non-Final Office Action dated Mar. 13, 2024, 8 pages. |
Extended European Search Report for European Application No. 18855938.9, mailed Aug. 2, 2021, 7 pages. |
Extended European Search Report for European Application No. 23218666.8 mailed Apr. 18, 2024, 9 pages. |
Office Action for Israeli Application No. 285289, mailed May 6, 2024, 4 pages. |
Office Action for Israeli Application No. 286263, mailed May 12, 2024, 4 pages. |
Office Action for Japanese Application No. 2022-184274, mailed Jun. 14, 2024, with English Translation, 4 pages. |
Office Action for Japanese Application No. 2022-212405, mailed Jun. 20, 2024, with English translation, 6 pages. |
Office Action for U.S. Appl. No. 17/136,882, mailed Apr. 19, 2024, 8 pages. |
Office Action for U.S. Appl. No. 17/403,500, mailed May 20, 2024, 28 pages. |
Office Action for U.S. Appl. No. 18/227,185, mailed Apr. 18, 2024, 18 pages. |
Office Action for U.S. Appl. No. 18/240,178, mailed Jun. 12, 2024, 16 pages. |
Patel, R. et al., “Optimized Pathogen Detection with 30-Compared to 20-Milliliter Blood Culture Draws.” Journal of Clinical Microbiology, 49(12):4047-4051 (2011). |
Avatar: “Is it safe to reinfuse blood drawn from a CVAD via a syringe when checking line patency or drawing blood?” [retrieved online Jul. 31, 2024] URL:https://www.avatargroup.org.au/faq---blood-collection.html, 4 pages. |
Bruneau, Cecile, et al.; “Efficacy of a new collection procedure for preventing bacterial contamination of whole-blood donations,” Transfusion (2001); 41(1):74-81. |
McDonald, C.P.; “Bacterial risk reduction by improved donor arm disinfection, diversion and bacterial screening,” Transfus Med., (2006); 16(6):381-396. |
Office Action for Australian Application No. 2020218544, mailed Jul. 31, 2024, 3 pages. |
Office Action for Israeli Application No. 309638, mailed Jul. 16, 2024, 3 pages. |
Office Action for U.S. Appl. No. 18/675,824, mailed Jul. 26, 2024, 13 pages. |
Office Action for U.S. Appl. No. 18/676,186, mailed Aug. 5, 2024, 13 pages. |
Office Action for Canadian Application No. 3183294, mailed Aug. 19, 2024, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20240008780 A1 | Jan 2024 | US |
Number | Date | Country | |
---|---|---|---|
61733199 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16934975 | Jul 2020 | US |
Child | 18220960 | US | |
Parent | 14728318 | Jun 2015 | US |
Child | 16934975 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14096826 | Dec 2013 | US |
Child | 14728318 | US | |
Parent | PCT/US2013/073080 | Dec 2013 | WO |
Child | 14728318 | US |