The embodiments disclosed herein relate to the transfer of media, such as liquids, into or from a container or the like. For example, the embodiments disclosed herein relate to a fluid transfer device in the form of a connector or valve, enabling good sterile fluid transfer between two systems.
When conducting complex and/or delicate fluid processes within a “closed” fluid system, it is often necessary to connect or link unit operations of the manufacturing process or to monitor the progress of the process it is often desirable to transfer the fluid without disturbing the process, such as may occur upon “opening” the receptacle or unit operation. For example, in the study and/or manufacture of biochemical products (e.g., biopharmaceuticals), biochemical fluid is often contained in an aseptically “closed” fermenting tank, bioreactor, or like fluid receptacle, wherein the fluid is processed over comparatively long periods of time, under diverse and changing chemical and environmental conditions. By withdrawing and analyzing samples of the fluid intermittently in the course of the process, one can learn more about the progress of the process, and if called for, take prophylactic measures to change the outcome thereof. There also exists a need to connect multiple unit operations together or draw from or add to multiple vessels into a common flow conduit in a sterile manner without “opening” the vessel or flow conduit and disrupting the process.
Similar issues arise also in instances wherein fluid is conducted through a conduit, or a pipe, or other like fluid receptacle. Sampling of said fluid is often difficult because in many industrial systems, said receptacles are not easily opened or disassembled to allow one to withdraw fluid samples, especially in a sterile manner. While several fluid sampling techniques are known, certain technical issues can be noted. For example, certain integrated fluid sampling fixtures comprise stainless steel valves and piping which, for biopharmaceutical applications, often require laborious steam sterilization and cleaning prior to use. Other fluid sampling devices are difficult to integrate into extant fluid processing systems, for example, by requiring the installation of custom-fitted ports onto a host fluid receptacle. Still other devices, although adapted for use in standard industrial ports, are complex and costly instruments comprising valves, inlets, outlets, seals, needles, and other components, all precisely arranged, but capable of only a single aseptic sample per sterilization cycle. Finally, the majority of fluid sampling devices—as is the case in many of those already mentioned—require in their operation the piercing of a septum using a hypodermic needle
There is a need for the introduction or removal of materials from the process stream in order to add components of the product, such as media or buffers to a bioreactor; withdraw samples from the process stream to check for microbial contamination, quality control, process control, etc; conduct unit operations such as mixing, filtration, cell culture, etc., and to fill the product into its final container such as vials, syringes, sealed boxes, bottles, single use storage containers such as film bags, single use mix bags/mixers, and the like.
In light of the above, a need exists for a fluid transfer device that can provide a sterile wet connection, under pressure, provide a dripless disconnection, and completely reverse the connection leaving the flow path sterile and reusable.
Embodiments disclosed herein provide a fluid transfer device that allows for wet connections under pressure, allows the connection to be reversed, and allows the connection to be reconnected, while leaving the connectors sterile and reusable. In certain embodiments, the device is in the form of a connector or valve. In certain embodiments, the device includes a first member or housing and a second member or housing, one adapted to receive the other in locking engagement upon actuation of the device to create fluid communication between the two in a sterile manner. Each of the members or housings includes a door that when opened, allows a valve sleeve of one member to be displaced into the other member to allow fluid to be transferred. When fluid transfer is complete, the valve sleeve can be retracted, and the doors closed.
In accordance with certain embodiments, disclosed is a fluid transfer device comprising a first member or housing, the first member or housing comprising a first body member having a port and a grooved surface, and a first base having an outlet. The device also includes a second member or housing, the second member or housing comprising a second body member, a second member valve sleeve member having at least one thread configured to be engaged in the grooved surface of the first body member, and a second inner body having an inlet. The second member valve sleeve member is linearly displaceable into and out of the first body member to create (and eliminate) fluid communication between the inlet and the outlet.
Drip-free connection and disconnection are achieved.
In certain embodiments, the fluid transfer device includes first and second members or housings, which can be engaged or coupled and locked together. The act or acts of engagement or coupling, and locking of the two members or housings, also creates sterile fluid communication between the two members or housings, and thus between valve members carried by the two members or housings. In certain embodiments, the act or acts of engaging or coupling, and locking the two members or housings creates sterile fluid communication by actuating one or more doors within the device to open positions. In certain embodiments, the act or acts of engaging and coupling, and locking the two members or housings is carried out by relative movement of one member or housing with respect to the other. In certain embodiments, the relative movement includes rotational movement. In certain embodiments, the rotational movement includes rotating the first and second members or housings in opposite directions. In certain embodiments, the relative movement includes linear movement. In certain embodiments, the linear movement includes moving the first and second members or housings in the same direction.
In certain embodiments, once the members are engaged or coupled, locked, and fluid communication is achieved, relative displacement of a valve member carried by one of the members or housings into a valve member carried by the other member or housing is effectuated, such as by applying a rotational and/or axial force to one of the valve members.
Suitable materials of construction include materials capable of withstanding the conditions typically encountered by such devices, including those of sterilization. Suitable materials include but are not limited to plastic, stainless steel and aluminum. Suitable plastic materials may include but are not limited to polysulfone, glass filled polysulfone, polyphenylene sulfide, glass filled polyphenylene sulfide, polyphenyl sulfone and glass filled polyphenyl sulfone are all acceptable materials due to their biocompatibility, chemical, heat and creep resistance. The plastic components of said connector may be formed by machining or molding. The seals used in the embodiments disclosed herein can be made of but not limited to silicone, rubber, including natural and synthetic rubbers, thermoplastic elastomers, polyolefins, PTFE, thermoplastic perfluoropolymer resins, urethanes, EPDM rubber, PDDF resins etc. Fluids to be transferred include liquids and gases.
Turning first to
The first member or housing 100 also includes a first body member 3, which includes an aperture 33 that receives an axially extending shaft member 32′ of door 2, and is sealed with O-ring 10. Thus, the door is pivotable about the axis defined by shaft member 32′, between the sterility housing plate 1 and the body member 3, to allow or prohibit fluid communication from the port 30 in plate 1, through port 303, to the cylindrical member 304 of first body member 3. In accordance with certain embodiments, the first body member 3 has a base 300, an axially extending annular shoulder 41, and an outer annular rim 302 formed radially outwardly from the shoulder 41 and extending axially. The member 3 also includes a port 303 that leads to cylindrical member 304 extending axially from the base 300 in a direction opposite that of axially extending rim 302. The cylindrical member 304 includes an internal groove or grooves 305 formed in the inner cylindrical wall of the cylindrical member 304. As best seen in
The first member or housing 100 also includes first bayonet ring 4, which preferably has a knurled circumferential outer surface as shown, to facilitate the user grasping the ring and rotating it. The bayonet ring 4 has an inner annular shoulder 420 and a keyed locking mechanism coupled thereto for attaching to the second member 200 as discussed in greater detail below. In accordance with certain embodiments, the locking mechanism includes a plurality of slots 406 spaced along the perimeter of the shoulder 420, each slot defined by an L-shaped member 409 that extends axially from the shoulder 420. Positioned between the spaced slots is a plurality of spaced stopping members 407.
The first member or housing 100 also includes a cover 6 having a base 610 and an annular axially extending rim 612. The cover 6 has an aperture 615, preferably circular, that aligns with and receives cylindrical member 304 when in the assembled condition.
The first member or housing 100 includes inner body member 7 that is surrounded by valve shutoff sleeve 8, is positioned in the cylindrical member 304 and sits over wiper seal 12. The sleeve 8 is generally cylindrical, and includes an outer circumferential radially extending flange 77 that serves as a seat for biasing member or spring 9, which fits over the outer cylindrical wall of the sleeve 8.
The first member or housing 100 also includes first base member 13, which includes an axially extending generally cylindrical member 113 terminating in a free distal end having distal opening or outlet 114, and extending axially to a free proximal end having a proximal end 115. The distal region of the member 13 tapers radially outwardly towards the proximal end, thereby forming a shoulder 118. This creates a region of increase radial thickness that helps act as a barb-like fitting and facilitates connection to a tube or the like. The base member 13 includes a generally frusto-conical region 116 that surrounds cylindrical member 113, the region 116 having a circumferential radially extending flange 117 that sits on the rim of the cylindrical member 304 when in the assembled condition (
Turning now to
The second member or housing 200 also includes a poppet 60, which includes a base portion 61 and a plurality of spaced legs 62 extending axially from the base portion 61. Those skilled in the art will appreciate that although four legs 62 are shown, the number of legs is not particularly limited. The legs 62 retain a biasing member or spring 800 that is positioned internally of the legs 62, as best seen in
Overmolded inner sleeve 50 includes tubular member 50A that is positioned around spring 800 and poppet 60, and over-mold seal 50B that seats in an annular groove at the base of the tubular member 50A, as shown in detail in
The second member 200 also includes a generally cylindrical second member valve sleeve 110, which includes a proximal free end 111 formed with an external thread or threads 112 configured to engage the groove or grooves 305 in the first member 100. A circumferential groove 213 is provided to receive O-ring 127 that seals against cylindrical member 130 of the second body 150 as discussed below. Distal free end 216 of the sleeve 110 includes a plurality of spaced slots 217 that receive corresponding spaced projections 141 on nut 140. As best seen in
The second member 200 includes a second body 150 having a base 151, an axially extending annular shoulder 152, and an outer annular rim 153 formed radially outwardly from the shoulder 152 and extending axially. The member 200 includes a port 203 that leads to cylindrical member 130 extending axially from the base 151 in a direction opposite that of axially extending shoulder 152. The door 22 is pivotable about the axis defined by shaft member 24, between the sterility housing plate 19 and the second body 150, to allow or prohibit fluid communication from the port 23 in plate 19, through port 203, to the cylindrical member 130 of the second body 150. Extending radially outwardly from the rim 153 is a plurality of spaced tabs 155 configured to be received in the slots 406 in the bayonet ring 4 of the first member 100.
In operation, the second member 200 and first member 100 are brought together such that the sterility housing plates 1 and 19 are in opposing relation. Relative rotation of the first and second members is created, such as by rotating the bayonet ring 4, causing the tabs 155 in the second member to enter the slots 460 of the first member and lock the members together. This relative rotation also causes the alignment of the ports 30 and 23 in the sterility housing plates 1 and 19, which are opposed. Fluid communication between the first and second members is created, as the relative rotation also causes the doors 2 and 22, which were previously blocking the ports in the respective sterility housing plates and the ports in the respective body members, to pivot to an open position. Once the doors are in the open position, the second member valve sleeve 110 is axially displaced through the port 23 in sterility housing plate 19, and through the port 30 in sterility housing plate 1. The second member valve sleeve 110 is then rotated with nut 140, and is further displaced axially, causing the thread or threads 112 to engage and mate with the groove or grooves 305 in cylindrical member 304 of base 300. This causes the axial displacement of valve shutoff sleeve 8, compressing spring 9. A sterile connection is thus made, and fluid can be transferred.
Once fluid transfer is complete, the second member or housing 200 is retracted from the first member or housing 100. Thus, the nut 140 is rotated, causing the threads 112 in the second member valve sleeve 110 to disengage with the grooves 305 in the cylindrical member 304 of base 300. Spring 9 is no longer compressed, and the valve shutoff sleeve 8 is retracted axially to its original position. Wiper seal 12 pushes against base portion 61 and seals and wipes across over-mold seal 50B in tubular member 50A. The seal wipes any liquid that may be present when device is being pulled apart. The second member valve sleeve 110 is then removed from the first member, and the bayonet ring 4 is rotated to cause the doors to block the respective ports, thereby maintaining a sterile environment in each member. The process can then be repeated.
Due to its simplicity, the device can be obtained by simple molding of all the members that constitute it, thus being possible for the device to be a single-use (disposable) device for reasonable cost. The device may also be made from conventional machining of its components from the various plastic and metal materials previously listed.
More specifically,
Slidable locking handle assembly 410 is shown in greater detail in
In certain embodiments, door 425 is a generally flat member configured to block the port in the second member 320, preventing fluid communication between the first and second members 400, 320. In certain embodiments, the door 425 seals against overmolded gasket 429 that is positioned on the inside of the bottom sterile face 411 of the body member 401. An overmolded sterile plate gasket 419 is a perimeter gasket that can be overmolded onto the housing beyond the edge of the sterile plate 411 to seal against the corresponding second member sterile plate when the first and second members are brought together, to keep out contaminants.
Projecting upwardly from the door 425 is a door stop 426, which when the door 425 is in the fully open position, abuts against a wall in the body member 401 to delimit the door open position.
In certain embodiments, wiper seal 428 is positioned in the body member 401 so that as the door 425 is actuated from its closed to its open position, and vice versa, it contacts the wiper seal 428. The wiper seal 428 isolates the door in the open position from the region of the device where fluid flows. This helps to maintain sterile the area where fluid flows.
The handle assembly 310 of second member 320 has a similar construction, as shown in
In certain embodiments, door 325 is a generally flat member configured to close the port in the second member 320, preventing fluid communication between the first and second members 400, 320. In certain embodiments, the door 325 seals against overmolded gasket 329 that is positioned on the inside of the bottom sterile face 311 of the body member 301. Projecting upwardly from the door 325 is door stop 326, which when the door 325 is in the fully open position, abuts against a wall in the body member 301 to delimit the door open position.
In certain embodiments, wiper seal 328 is positioned in the body member 301 so that as the door 325 is actuated from its closed to its open position, and vice versa, it contacts the wiper seal 328. The wiper seal 328 isolates the door in the open position from the region of the device where fluid flows. This helps to maintain sterile the area where fluid flows.
In certain embodiments, a vent 625, vent membrane 626 and vent cover 627 may be incorporated into the housing, to draw in ambient air as the valve member is retracted (
To assemble the transfer device, the first member 400 and second member 320 are oriented at 90° as shown in
Upon connection of first and second members or housings 400, 320, each of the pins 312 enters a respective slot 403 in the first member 400, and displaces locking member 405 axially, moving it out of the path of slidable handle assembly 410. Similarly, each of the pins 402 enters a respective slot 313 in the second body member 320, and displaces locking member 365 axially, moving it out of the path of slidable handle assembly 310. In certain embodiments, each locking member 365, 405 is an elongated member having a free end that is axially displaceable.
Once the first and second members or housings 400, 320 are in engaging relation, the locking handle assemblies 310, 410 are actuated by sliding them to the left as depicted in
Wiper seal 442 is a generally cylindrical member, and includes an intermediate outer circumferential radially extending flange 477 that serves as a seat for biasing member or spring 479 which fits over the downwardly projecting member 439 in fitting 413.
Base member 480 has an upper cylindrical portion that seals inside wiper seal 442 with the aid of O-ring 486. The lower region 484 of the base member 480 includes a downwardly facing depressor member 481 that in the embodiment shown extends axially from the member 480 and has a semispherical shape. It functions to displace the poppet 560 in the corresponding valve member 350 of the second member 320 upon actuation of the valve, as discussed in greater detail below.
The valve member 350 also includes a poppet 560, which includes a solid base portion 561 and a plurality of spaced legs 562 extending axially from the base portion 561. Those skilled in the art will appreciate that the number of legs is not particularly limited. The base portion 561 includes a centrally located detent 559 that receives projection 482 on the depressor member 481, as discussed in greater detail below. The legs 562 retain a biasing member 580 such as a compression spring or the like that is positioned internally of the legs 562. The opposite end of the biasing member 580 sits in inner body connector 594, which is shown in greater detail in
Valve outer sleeve 570 is a generally cylindrical member that has threads 571 at its lower end for engaging corresponding grooves 318 (
In certain embodiments, relative linear displacement of the valve members 350, 450 into each other is effectuated by applying an axial load. In certain embodiments, the valve member 350 of the second member 320 is linearly displaced into the valve member 450 of the first member 400, and then further displacement of the valve member 350 into the valve member 450 is effectuated by relative rotation of the valve members, such as by rotating the valve member 350 of the second member 320 with knob 599. This rotation causes the thread or threads 571 on the valve outer sleeve 570 to engage the corresponding groove or grooves 318 in the cylindrical member 404 of valve member 450. Continued relative rotation further displaces the valve member 350 into valve member 450, causing the depressor member 481 to contact and displace poppet 560 in a first direction against the bias of biasing member 580. Still further rotation causes the threaded end of valve member 350 to engage the radial flange 477 of wiper seal 442, causing the latter to displace in a second direction against the bias of biasing member 479. In certain embodiments, the first and second directions are opposite directions. The displacements of the poppet 560 and of the wiper seal 442 create fluid communication between and through the valve members 350, 450.
More specifically,
The housing for the valve members (shown in
In certain embodiments, each body member 401′, 301′ has a bottom plate having a valve port that is normally closed by a respective door 425′, 325′. When the members are in the assembled condition, the valve ports are aligned.
In certain embodiments, the door 325′ includes a pin (not shown) extending axially downwardly from its bottom to mate with an aperture 306′ (
Although the bellows assembly is shown with respect to member or housing 320, in certain embodiments both housings include bellows assemblies to isolate their respective valves during connection.
As shown in
This application is a divisional of U.S. patent application Ser. No. 14/773,426 filed Sep. 8, 2015, which claims priority of U.S. Provisional Application Ser. No. 61/806,442 filed Mar. 29, 2013, the disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
263330 | Franklin | Aug 1882 | A |
950263 | Harpster | Feb 1910 | A |
2073048 | Clark | Mar 1937 | A |
2317827 | Townhill | Apr 1943 | A |
2333496 | Townhill et al. | Nov 1943 | A |
2399516 | Snyder | Apr 1946 | A |
2399525 | Waag | Apr 1946 | A |
2403620 | Snyder et al. | Jul 1946 | A |
2687903 | Zeeb | Aug 1954 | A |
2709090 | Zeeb | May 1955 | A |
2749146 | Gumbert et al. | Jun 1956 | A |
2757941 | Zeeb | Aug 1956 | A |
2779608 | Abbey | Jan 1957 | A |
2823887 | Osinski | Feb 1958 | A |
2828146 | Abbey | Mar 1958 | A |
3106223 | Cooper | Oct 1963 | A |
3357452 | Larkin et al. | Dec 1967 | A |
4019512 | Tenczar | Apr 1977 | A |
4022205 | Tenczar | May 1977 | A |
4089506 | Blake | May 1978 | A |
4253684 | Feder | Mar 1981 | A |
4271865 | Galloway | Jun 1981 | A |
4275763 | Fahrig | Jun 1981 | A |
4306705 | Svensson | Dec 1981 | A |
4334551 | Pfister | Jun 1982 | A |
4456026 | Kantor | Jun 1984 | A |
4509554 | Failla | Apr 1985 | A |
4564054 | Gustaysson | Jan 1986 | A |
4576199 | Svensson | Mar 1986 | A |
4610469 | Wolff-Mooij | Sep 1986 | A |
4942901 | Vescovini | Jul 1990 | A |
4989638 | Tervo | Feb 1991 | A |
5009252 | Faughn | Apr 1991 | A |
5039063 | Louch et al. | Aug 1991 | A |
5092363 | Vanderjagt | Mar 1992 | A |
5165439 | Krynicki | Nov 1992 | A |
5492147 | Challender et al. | Feb 1996 | A |
5662141 | Arosio | Sep 1997 | A |
5738143 | Faughn | Apr 1998 | A |
5884648 | Savage | Mar 1999 | A |
6077259 | Caizza et al. | Jun 2000 | A |
6394132 | Walcome | May 2002 | B1 |
7137974 | Almasian et al. | Nov 2006 | B2 |
7350535 | Leipold et al. | Apr 2008 | B2 |
7396051 | Baldwin | Jul 2008 | B2 |
7708025 | Johnson | May 2010 | B2 |
7918243 | Diodati | Apr 2011 | B2 |
7922211 | Arthun et al. | Apr 2011 | B2 |
8671964 | Py | Mar 2014 | B2 |
8746278 | Py | Jun 2014 | B2 |
9901729 | Vigna et al. | Feb 2018 | B2 |
20030030272 | Johnson et al. | Feb 2003 | A1 |
20030032940 | Doyle | Feb 2003 | A1 |
20050016620 | Proulx et al. | Jan 2005 | A1 |
20090229671 | Hartnett et al. | Sep 2009 | A1 |
20090232586 | Diodati et al. | Sep 2009 | A1 |
20120042971 | Py | Feb 2012 | A1 |
20140345748 | Rogers et al. | Nov 2014 | A1 |
20160022979 | Vigna et al. | Jan 2016 | A1 |
20180161568 | Banco | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2011211445 | Sep 2011 | AU |
101526174 | Sep 2009 | CN |
201916514 | Aug 2011 | CN |
103477201 | Dec 2013 | CN |
0116986 | Aug 1984 | EP |
0715860 | Jun 1996 | EP |
2958365 | Oct 2011 | FR |
2000-107300 | Apr 2000 | JP |
2005-315338 | Nov 2005 | JP |
2009-530561 | Aug 2009 | JP |
9850105 | Nov 1998 | WO |
03090843 | Nov 2003 | WO |
2004082756 | Sep 2004 | WO |
2007107500 | Sep 2007 | WO |
2010142385 | Dec 2010 | WO |
2012114105 | Aug 2012 | WO |
Entry |
---|
Chinese communication, with English translation, dated Aug. 30, 2019 in corresponding Chinese patent application No. 201810448671.2. |
International Search Report and Written Opinion dated Aug. 21, 2014 in corresponding PCT application No. PCT/US2014/031829. |
International Preliminary Report on Patentability dated Oct. 8, 2015 in corresponding PCT application No. PCT/US2014/031829. |
European communication dated Oct. 26, 2016 in corresponding European patent application No. 14774870.1. |
Chinese communication, with English translation, dated Aug. 31, 2016 in corresponding Chinese patent application No. 201480019424.0. |
Japanese communication, with English translation, dated Nov. 11, 2016 in corresponding Japanese patent application No. 2016-505544. |
Japanese communication, with English translation, dated Sep. 5, 2017 in corresponding Japanese patent application No. 2016-505544. |
Number | Date | Country | |
---|---|---|---|
20180133453 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
61806442 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14773426 | US | |
Child | 15867915 | US |