Sterile draping of robotic arms

Information

  • Patent Grant
  • 11793588
  • Patent Number
    11,793,588
  • Date Filed
    Thursday, July 23, 2020
    4 years ago
  • Date Issued
    Tuesday, October 24, 2023
    a year ago
Abstract
A drape covers robotic equipment in a medical environment to maintain sterility. The robotic equipment has an arm with an end surface which attaches to a tool, such as an active end effector. The drape has an extended drape portion that covers the arm, and a shaped drape portion that covers the end of the arm where the arm is clamped to the tool. The drape is clamped inside the clamp, and where the clamping occurs, the drape has a band of material that is reinforced by being thickened or by including a different material. The shape of the band corresponds to the portion of the arm that is clamped by the clamp.
Description
FIELD OF THE INVENTION

This invention relates to draping robotic arms for sterility in an operating theatre, and more particularly to protecting a drape that is clamped within the robotic arm from becoming torn.


BACKGROUND OF THE INVENTION

Position recognition systems are used to determine the position of and track a particular object in 3-dimensions (3D). In robot assisted surgeries, for example, certain objects, such as surgical instruments, need to be tracked with a high degree of precision as the instrument is being positioned and moved by a robot or by a physician, for example.


With either active or passive tracking sensors, the system geometrically resolves the 3-dimensional position of active and/or passive sensors based on information from or with respect to one or more of the infrared cameras, digital signals, known locations of the active or passive sensors, distance, the time it took to receive the responsive signals, other known variables, or a combination thereof.


In order to accomplish this, power transfer and data communications must be carried out between a robotics base station locator (GPS), and a replaceable end effector tool. However, a surgical drape must be interposed between the base and a tool, precluding a direct electrical connection.


To transfer power and enable one-way data transfer, the ExcelsiusGPS system, for example, uses a pair of wireless charging coils, one being positioned in a moveable arm attached to the base, and the other in the tool. Power is transferred by induction through both the drape material and an air gap from the arm to the tool. Data signals are sent from the tool to the base by changing the load placed upon the coils during power transfer for predetermined time periods. The specific time period of change is observed by the base and correlated to a particular command or status.


To maintain a sterile field in the operating room, to avoid a requirement of sterilizing an entire robotics device, a drape is pulled over the robotic arm and is pulled against the palm assembly. A clamp that is attached to an active end effector is clamped onto the arm, with the drape trapped in the clamp. Movement of the arm and pulling on the drape after clamping increases the tension on the drape, particularly at the point of clamping, to an extent where the drape is susceptible to being torn. Clamping the drape also creates stress concentrations, and the drape may become tom though repeated clamping, particularly when large forces are transmitted through the drape within the clamp interface.


SUMMARY OF THE INVENTION

In an embodiment of the disclosure, a drape for covering robotic equipment in a medical environment, the robotic equipment having an arm and an arm portion with an end surface and a tool which attaches to the arm portion with a clamp, the drape comprises an extended drape portion of a first material sized to cover the arm; and a shaped drape portion sized to cover the arm end surface, the shaped drape portion defined by a band of second material that is reinforced relative to the first material, the band shaped to correspond to the portion of the arm that is clamped by the clamp; whereby the clamp clamps the band when the clamp clamps the arm portion to the tool.


In variations thereof, the second material is reinforced by being the same type of material as the first material, and which is thicker than the first material; the second material is reinforced by being a different type of material that is more resistant to physical deformation than the first material; the band has at least one indexing region that is shaped to mate with an indexing region of the clamp; the second material is a dielectric material; the band is a thermoplastic polyurethane; and/or the band includes a first band portion sized to be pressed by the clamp during clamping, and a second band portion extending away from the first portion to thereby provide strain relief at a transition from the shaped drape portion to the extended drape portion.


In further variations thereof, the second band portion is tapered; the shaped drape portion is formed separately from the extended drape portion and affixed to the extended drape portion; and/or the clamp is a v-band type, the arm portion including a flange squeezed by a v-band of the v-band clamp, the band having a loop shape sized to cover the squeezed portion of the flange; the arm portion includes a flange squeezed by the clamp, the flange having the band having a loop shape sized to cover the squeezed portion of the flange


In other variations thereof, the drape further includes a plurality of electrically conductive contacts within the shaped drape portion, the electrically conductive contacts operative to conduct electricity from a first side of the shaped drape portion to a second side of the shaped drape portion opposite to the first side; the electrically conductive contacts are integrally formed within the second material by 3D printing; the drape further includes a plurality of capacitive plates affixed to, positioned within, and on a first side of the shaped drape portion; and/or the shaped drape portion including electrically conductive contacts.


In accordance with another embodiment of the disclosure, a drape for covering robotic equipment in a medical environment, the robotic equipment having an arm and an arm portion with an end surface with a flange having an indexing shape and a tool which attaches to the arm portion with a clamp, the clamp including an indexing shape corresponding to the indexing shape of the flange, the drape comprises an extended drape portion of a first material sized to cover the arm; and a shaped drape portion sized to cover the arm end surface, the shaped drape portion defined by a band of second material that is at least one of thicker than the first material and including a different material than the first material whereby the second material is reinforced relative to the first material, the band shaped to correspond to the flange and having an indexing shape which corresponds to the indexing shape of the flange; whereby the clamp clamps the band when the clamp clamps the arm portion to the tool.


In a variation thereof, the drape further includes a plurality of electrically conductive contacts within the shaped drape portion, the electrically conductive contacts operative to conduct electricity from a first side of the shaped drape portion to a second side of the shaped drape portion opposite to the first side.


Further in accordance with the disclosure, a method of draping robotic equipment in a medical environment for sterility, the robotic equipment having an arm and an arm portion with an end surface and a tool which attaches to the arm portion with a clamp, comprises providing a drape having: an extended drape portion of a first material sized to cover the arm; and a shaped drape portion sized to cover the arm end surface, the shaped drape portion defined by a band of second material that is reinforced relative to the first material, the band shaped to correspond to the portion of the arm that is clamped by the clamp; whereby the clamp clamps the band when the clamp clamps the arm portion to the tool.


In variations thereof, the method further includes providing an intermediate coupling which is sized and dimensioned on a first end to be clampable to the arm with the drape passing between the intermediate coupling and the arm, the intermediate coupling having a second end sized and dimensioned to be clampable to the tool; whereby the tool can be attached to the robotic equipment without a requirement of unclamping the drape; and/or the clamp has an indexing region, the band having an indexing region corresponding to the indexing region of the clamp.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the disclosure, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, in which:



FIG. 1 depicts a robotics system, including an arm/palm unit, a clamp, and a tool/AEE;



FIG. 2 depicts the robotics system of FIG. 1 where components are separated;



FIG. 3 depicts the robotics system of FIG. 1, the arm covered by a PRIOR ART drape;



FIG. 4 depicts the robotics system and drape of FIG. 3, the clamp and tool assembled over the drape;



FIG. 5 depicts the clamp of FIG. 1, separated from the tool, and in an opened configuration;



FIG. 6 depicts a robotics arm covered by a drape of the disclosure, the drape including a reinforcing band;



FIG. 7 depicts the robotics arm and drape of FIG. 6, capacitive plates of the disclosure positioned upon the arm and visible through a portion of the drape inside of the band;



FIG. 8 depicts the drape of FIG. 6, removed from the arm;



FIG. 9 depicts the drape and arm of FIG. 6, with capacitive plates shown in cross-section, and further depicting an intermediate coupling interposed between the arm and a tool;



FIG. 10 depicts a pattern of capacitive plates in accordance with the disclosure;



FIG. 11 depicts an alternative pattern of capacitive plates in accordance with the disclosure, and an indexing shape;



FIG. 12 depicts a further alternative pattern of capacitive plates in accordance with the disclosure, and indexing elements;



FIG. 13 depicts a robotic arm of the disclosure including a cross-section of electrical contacts, and a drape of the disclosure including a reinforced band and electrical contacts which pass through the drape and mate with electrical contacts of the arm;



FIG. 14 depicts the drape of FIG. 13, with contacts which are integrated into the drape, the dashed line indicating a replaceable portion of a drape;



FIG. 15 depicts the drape of FIG. 13, with contacts which are positioned on one side of the drape;



FIG. 16 depicts a tool and an arm of the disclosure, each having an attached mating flange, the tool and arm each having capacitive plates which are disposed on opposite sides of a drape of the disclosure when the flanges are mated and affixed with a clamp;



FIG. 17 depicts a tool of the disclosure attached to an intermediate coupling of the disclosure having an electrical socket, the tool have an electrical plug, the intermediate coupling including an outlet socket, and further depicting a drape of the disclosure interposed between an arm and the intermediate coupling; and



FIGS. 18-20 depicts a clamp of the disclosure including a plurality of capacitive plates.





DETAILED DESCRIPTION OF THE INVENTION

As required, detailed embodiments are disclosed herein; however, it is to be understood that the disclosed embodiments are merely examples and that the systems and methods described below can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present subject matter in virtually any appropriately detailed structure and function. Further, the terms and phrases used herein are not intended to be limiting, but rather, to provide an understandable description of the concepts.


The terms “a” or “an”, as used herein, are defined as one or more than one. The term plurality, as used herein, is defined as two or more than two. The term another, as used herein, is defined as at least a second or more. The terms “including” and “having,” as used herein, are defined as comprising (i.e., open language). Headings are provided for the convenience of the reader, and are not intended to be limiting in any way.


A problem with prior art surgical drapes when covering robotic devices is that power transfer and communication must be accomplished through the drape in order to maintain a sterile field. However, a direct electrical connection is the most efficient type of connection for power transfer and communication, and this is not possible with a prior art drape. The disclosure provides solutions which maintain sterility while also providing efficient power transfer and communication data exchange between a draped robotics base (e.g. GPS) and an attached tool (e.g. an active end effector) of a robotic device.


With reference to FIGS. 1-4, a robotic surgical aid system 200, such as the ExcelsiusGPS, includes a connection between a “GPS” arm or other type of robotic arm 202 and an active end-effector (“AEE”) tool 208, where arm 202 is draped for sterility during surgical procedures. In particular, a sterile drape 212 is placed around and over the end of the arm before tool 208 is attached to arm 202. Tool 208 is secured to arm 202 with a clamp 204, such as a V-band clamp as shown, clamp 204 passing over and squeezing together mating flanges 206, 210 of arm 202 and tool 208. During clamping, drape 212 is also clamped because it drapes over flange 206 of arm 202. With reference to FIGS. 3-4, depicting a prior art drape, it may be seen that as a result of clamping, drape 212 is forcefully pinched. This can lead to prior art drapes 212 becoming worn or torn though repeated clamping, which can result in increased microbial exposure to the patient, and which requires replacement of the drape.


More particularly, as can be seen in FIGS. 3-4, drape 212 is pulled over arm 202 and is pulled against the palm assembly, or end face 214 of arm 202. With no end-effector 208 attached, drape 212 can slide or shift with respect to arm 202, and there is a low probability of shear or tensile forces tearing drape 212. With tool 208 attached, as in FIG. 4, some of drape 212 will be locked in place by the clamping force of clamp 204. Movement of the arm and pulling on drape 212 after clamping increases the tension on the drape, particularly at the point of clamping, to an extent where the drape is susceptible to being torn. Clamping drape 212 also creates stress concentrations, and the drape may become tom though repeated clamping, particularly when large forces are transmitted through the drape within the clamp interface. The disclosure provides a drape 102 which addresses these and other problems.


Drape


With reference to FIGS. 6-16, a device 100 in accordance with the disclosure includes a drape 102, which fulfills the functions of drape 212, and which is provided with a band 104 which is one or more of thickened, replaced with an alternative material, or reinforced by being supplemented with additional material which can be the same or different from the material of a remainder of the drape 102. Reinforcement may alternatively be provided by band 104 being thicker or by being fabricated with an additional material, with the result that band 104 is more resistant than a remainder of drape 102 to abrasion, tearing, crushing, bunching, skewing, stretching, or other physical deformation as a result of being under a clamping portion 224 of clamp 104 while clamp 104 is closed or clamped. Band 104 is provided to prevent tearing or other damage to drape 102 in the area of clamping, which could adversely affect an ability of a drape to maintain a sterile field. A remainder of drape 102, which is not subject to clamping forces, can be relatively thinner, weaker, less expensive, and/or easier to manufacture than band 104, while still able to maintain sterility without a need for strengthening or reinforcement.


Band 104 is defined in shape and size by an area of drape 102 which would pass between clamp 204 and flange 206 of arm 202, whether the clamp is a V-band clamp as shown in the figures, or some other clamp style. Band 104 can be larger than the clamping area to provide additional strain relief. The extended or larger portion can be tapered for more effective strain relief. Band 104 reduces the possibility of chafing, tearing, and wear of drape 102 in the area of the clamp, particularly during movements of arm 202 and tool 208 during a surgical procedure, or if drape 102 is pulled.


As shown in FIG. 8, it may be seen that drape 102 defines a general draping portion 106 which extends away from band 104 to cover arm 202 and other components, and a coupling region 114 which extends away from and inside band 104 to cover end face 214 of arm 202, which in the example shown is a palm assembly. Coupling region 114 therefore lies between arm 202 and tool 208, in use. As detailed elsewhere herein, it can be advantageous for drape 102 to be thin in coupling region 114. FIG. 7 depicts drape 102 positioned over end face 214. As drape 102 can be transparent, as depicted in FIG. 6, end face 214 and conductive plates 116 can be visible through drape 102.


It is important that material of band 104 be both durable and sufficiently thin to allow tool 208 to properly clamp and without resulting in extra space that could possibly introduce play between the palm/arm 202 and tool 208.


Band 104 can be formed by adding material to one or both sides of drape 102. The additional material can be highly resistant to abrasion, or can be partially abraded, while still protecting the underlying or inner layer of drape material. Band 104 can be formed with a resilient material which can absorb and distribute clamping force. A resilient material additionally has the advantage of providing strain relief if extending outside of the clamped area in either or both directions. Alternatively, a relatively hard or non-resilient material can be used, such as a metallic foil, as the abrasion from clamping would be applied to the hard material, and not the underlying drape. The hard material can be thin, particularly where it extends outside of the clamped area, in order to retain some of the properties of a resilient material with respect to strain relief.


Band 104 can alternatively be inserted into a cut out region of drape 102, whereby an interior panel is attached to one side of band 104 to cover end face 214, and an exterior panel extends away from band 104 to cover arm 202. The interior and exterior panels can be attached to band 104 by any known means, including adhesion, ultrasonic welding, crimping, or clamping, as examples.


In an embodiment, drape 102 is molded or otherwise formed to have band 104 in a predetermined location. Band 104 can additionally or alternatively be formed by welding, adhering, bonding, or otherwise affixing a reinforcing material, such as an abrasion or crush resistant material, over one or both sides of, or throughout, an area of drape 102 which is positioned upon drape 102 to cover end face 214 of arm 202 when drape 102 is in use, or to cover the portion of drape 102 which will lie within the clamped area of the clamp. The method of affixing should not result in openings in drape 102 which could compromise the sterile field properties of drape 102. The reinforcing material can be any material that can bond to, attach to, or be formed from the material of draping portion 106 and coupling region 114, e.g. the material of drape 102 generally, and which is compatible with any other requirements of the operating theatre. Examples include a plastic material, for example a thermoplastic elastomer or thermoplastic polyurethane, a rubber or rubberized material, such as vulcanized rubber, polyvinylchloride (PVC), as non-limiting examples. While the material of band 104 can be resilient, it can be more rigid than material of drape 102, which helps to prevent bunching, crumpling, or other deformation of band 104 during clamping, which could lead to tearing. If drape 102 is to function in a capacitive conduction configuration, as described herein, a selection of material is additionally influenced by a desired dielectric constant of the material.


The material for band 104 is advantageously sterilizable using ethylene oxide (EtO) or gamma radiation. Thermoplastic polyurethane (TPU) has been noted to have no significant negative effects from sterilization with EtO. It should be considered that some materials can become brittle when exposed to gamma radiation, in which case a material which is sterilizable in both manners is advantageous.



FIGS. 6-9 illustrate band 104 formed as a reinforced band 104 wrapping around flange 206. In this manner, clamping force is only applied to the band 104, and not to the rest of the drape material 106. When clamped, there is no relative motion between arm 202, tool 208, band 104, and a GPS portion of the robotics system. Clamping additionally enforces alignment and contact of any power transfer elements in the area of band 104, as discussed in greater detail elsewhere herein.


With reference to FIG. 11, flange 206 can be provided with a periphery that is non-uniform in shape, and which has indexing elements 218, for example flattened sides on an otherwise circular peripheral shape, as can be seen in FIG. 2. This can be used to guide indexing or relative alignment between arm 202 and clamp 204. In the embodiment shown, clamp 204 is affixed to tool 208 by bolts or other fastener, resulting in appropriate indexing of clamp 204 relative to tool 208. However, where tool 208 is provided as a separate part, it can be provided with a flange having an indexing element 218. Clamp 204 has internal surfaces which mate with indexing element 218, whereby clamping cannot be accomplished until a proper orientation of flange 206 and clamp 204 is attained. During clamping, further alignment and indexing is carried out as a clamping force is applied to the clamped parts.


Accordingly, with reference to FIGS. 11-12, band 104 can be provided with a shape which includes indexing elements 108 which correspond to mating indexing elements 218 of flange 206. In this manner, band 104 can only be inserted over flange 206 in the correct orientation. FIG. 12 depicts an alternative indexing element 108, 218 shape, although other shapes are possible.


Herein, in embodiments where clamp 204 is affixed to tool 208, a portion of tool 208 can extend through or into an opening 222 (FIG. 2) in clamp 204, which portion includes electrical contacts or conductive plates 218. Alternatively, contacts or conductive plates 218 can be affixed to clamp 204 (FIGS. 17-19), and wires (not shown) can extend from these into tool 208.



FIG. 20 illustrates an alternative method of indexing arm 202 and clamp 104/tool 208 in accordance with the disclosure. An indexing element 218A has the form of several raised shapes on a plate within clamp 204. Alternatively, the raised shapes can be provided on an endplate of flange 210 of tool 208, where tool 208 is not affixed to clamp 204. Mating depressions (not shown) can be formed in end face 214 of arm 202. The indexing elements can be placed in an irregular pattern enforcing a unique alignment of arm 202 and tool 208.


To affix drape 102 to the robot, the user first places band 104 area over flange 106 at end face 214 at the end of the GPS arm 202. If flange 106 and band 104 have indexing elements 218, 108, respectively, these are aligned by rotating either drape 102 or arm 202 into alignment. In the embodiment shown, flange 210 is affixed to clamp 204 and tool 108, so alignment can be carried out using only indexing elements 218. Other indexing elements can be provided within clamp 204, such as indexing elements 220, shown in FIG. 20. If clamp 204 were not affixed to tool 208, indexing elements 218 of flange 210 would be aligned within clamp 204 to be aligned with indexing elements 218 of flange 206 and any indexing elements of clamp 204. Once all components are aligned, clamp 204 can be tightened over band 104.


Electrical


To perform power and data transfer, the ExcelsiusGPS, for example, uses a pair of wireless charging coils (not shown) for power transfer and communication. One coil is positioned in arm 202 adjacent flange 206, and the other coil is positioned in tool 208 proximate flange 210, whereby power can be transferred by induction through both the drape material and an air gap between tool 208 and arm 202.


In the ExcelsiusGPS, communication is unidirectional, from tool 208 to arm 202, and is achieved by modulating the power level (load) of the charging coil of the tool. For instance, tool 208 sends data signals by changing the load to define specific time periods, each indicating a different status condition. These periods include, for example, a period of 66 ms to indicate ‘end-effector connected’, 90 ms for ‘tool inserted’, and 110 ms for ‘error state’.


The aforedescribed data and power transfer methods adequately meet existing requirements, but it is desired to be able to bidirectionally transfer information at a higher bandwidth, and with increased power transfer efficiency, each of which are addressed by the instant disclosure.


Further, while the aforedescribed bandwidth and power efficiency challenges are described in the context of the ExcelsiusGPS, it is attendant to other models and brands of robotic arm configurations, and electrical equipment that is not robotic but includes similar requirements with respect to draping. This disclosure is intended to address such problem in any configuration where a tool portion inside a sterile field must be mechanically attached to another tool portion that is intended to remain outside the sterile field, and whether or not there is a requirement to transfer an electrical signal through a drape.


More particularly, in accordance with the disclosure, electronic communication and optionally power are transmitted through drape 102 using capacitive coupling. Coupling region 114 of drape 102 functions as a dielectric, separating capacitive elements disposed upon either side of coupling region 114 that are associated with tool 208 and arm 202. In this manner, communication and energy transfer take place through drape 102, without requiring an opening in drape 102, preserving the sterile field created by drape 102.


Similar in some respects to electromagnetic induction, capacitively coupled signaling uses metallic plates and an interposed dielectric. In accordance with the disclosure, drape 102 functions as the dielectric, and an electrical connection is thereby established in order to accomplish the transmission of data. By nature, capacitive connections provide the ability to transfer data faster than electromagnetic induction. In addition, increasing the number of metal plate pairs can enable a corresponding increase in data or power throughput. Each plate pair enables a separate bidirectional communication path, and individually or collectively, the pairs eliminate a requirement that the end-effector modulate an inductive load in order to communicate when using magnetic power induction. In one embodiment, communication is provided by capacitive coupling, and power transfer is accomplished by induction and/or a wired connection to tool 208.


More particularly, with reference to FIGS. 10-12, a plurality of capacitive plates 116 are positioned on or near flange 206 upon a surface of end face 214. A matching plurality of capacitive plates 118 are positioned adjacent flange 210 either (a) on an end surface 122 of clamp 204A (FIG. 20), (b) on an end surface 124 of tool 208 (FIG. 16), or (c) an end surface 126 of an intermediate coupling 140 (FIG. 9, as detailed elsewhere herein). Drape 102 passes between plates 116, 118 when their respective components are clamped together. With respect to surface 122/124/126, either or both of plates 116, 118 can be positioned to extend above, be even with, or be below the surface, determined by optimal transmission efficiency and a desired component fitment. The number of plate 116/118 pairs is selected based upon considerations including the number of desired data streams and total desired bandwidth, the amount of available power, and a desire for redundant data or power streams, as examples.


With reference to FIGS. 13-15, in an alternative embodiment, contact plates 128 are attached to drape 102, and form a direct electrical connection through drape 102 between plates 116 and 118, when clamp 204 is affixed with drape 102 in position over end face 214. As such, induction or conduction is not needed to transfer data or power, although either could still be used by introducing a dielectric gap. In FIG. 13, it may be seen that contact plates 128 can pass through drape 102 and be riveted, for example, to form a sterile barrier. Another type of fastening can be used, such as a threaded fastener or clip. Alternatively, an adhesive or other sealer can be used, or can be used together with another fastener as needed to ensure an adequate seal.


In FIG. 14, contact plates 128 form part of drape 102 and extend from one side surface of drape 102 to the opposite side/surface. For example, a portion of drape can be fabricated with a conductive plastic, or a conductive additive. This portion can be made using 3D printing or can be stamped or welded into place, for example using ultrasonic welding. Contact plates 128 can be positioned to pass through drape 102 and extend above drape 102 (FIG. 13), through drape 102 (FIG. 14), or below drape 102 (FIG. 15).


Still further, a portion of drape 102 can be removed, and a replacement panel 134, indicated for example by a dashed box in FIG. 14, including contact plates 128 can be inserted. Panel 134 can include band 104, or can attach to band 104. Panel 134 can include band 104 and portions interior to band 104, and can include a strain relieving extension to band 104 which extends away from an interior of band 104. Panel 134 can be ultrasonically welded to the remainder of drape 102, or can be bonded in another way, for example adhesive. Panel 134 can include indicia which define a proper orientation of panel 102 for contact alignment, which can be established prior to clamping. Alternatively, if panel 134 includes band 104, indexing to align contacts can be achieved as explained elsewhere herein. In an embodiment, Panel 134 is attached to an intact portion of drape 102, thereby forming a doubled layer within the band portion and extending over end face 214.


In FIG. 15, contacts 128 extend through drape 102 or drape panel 134 to pass an electrical signal through drape 102. However, FIG. 15 can alternatively be considered to depict that drape 102 can be provided with affixed capacitive plates which are positioned on only one side of drape 102. Such capacitive plates could in turn form an electrical connection with contacts 116 (FIG. 13) and pass a signal through drape 102 by capacitive transmission.


Intermediate Coupler


With reference to FIG. 9, in an embodiment of the disclosure, an intermediate coupling 140 is positioned between arm 202 and tool 208. An electrical interface between arm 202 and coupling 208 can be carried out by any method described herein between arm 202 and clamp 204 or tool 208, including capacitive, inductive, or direct electrical connection through drape 102. For example, flange 142 can be considered to replace flange 210, or alternatively, coupling 140 can be affixed to clamp 204, as described elsewhere herein for affixing clamp 204 to tool 208, wherein flange 110/142 is not needed and is absent. As drape 102 passes between coupling 140 and arm 202, no additional draping is needed between coupling 140 and tool 208. As such, direct electrical contacts can be provided between coupling 140 and tool 208. Where clamp 204 is affixed to tool 208, the direct electrical contacts would be formed between coupling 140 and clamp 204, or to a portion of tool 208 which extends through an opening 222 in clamp 204.


Coupling 140 enables tool 208 to be detached or replaced while drape 102 remains clamped to arm 202 and undisturbed. More particularly, a medical practitioner can drape arm 202 as described elsewhere herein and in accordance with applicable health procedures. Drape 102 is pulled taught over end face 214 and otherwise indexed as described herein, and coupling 140 is mated and clamped to flange 206. As noted, this clamped interface is a duplication of the interface between tool 208 and arm 202. Likewise, flange 144 at an opposite end 146 of coupling 140 is a duplication of flange 206, whereby tool 208 can connect to flange 144 as it would have to flange 206, with the distinction that electrical contacts between tool 208 and coupling 140 can be by direct contact.


Intermediate coupling 140 accordingly provides for replacement of tool 208 without a requirement of unclamping drape 102, thereby avoiding an increased likelihood of damage to drape 102. Intermediate coupling can be used with a prior art drape 212 with like benefits.


Power Connector


Tool 208 can at times include a device which uses a substantial amount of power, such as a drill. With reference to FIG. 17, coupling 140 or tool 208 can include output socket 148 which is connected to a power or data signal obtained through the power or data signal passed between connectors or plates 116, 118. By providing output socket 148 upon coupling 140A, accessories can be powered without regards to which tool 208 is currently attached to coupling 140. Output socket 148 is advantageously fabricated using materials and methods which can withstand sterilization by autoclave.


In the embodiment of FIG. 17, it can be seen that an interface between coupling 140A and tool 208A is different than, for example, the interface shown in FIG. 9. More particularly, coupling 140A includes a coupling socket 150, and tool 208A includes a tool plug 152. Coupling socket 150 and tool plug 152 provide for a mechanical coupling of tool 208A and coupling 140A, and can be keyed relative to each other for proper indexing. Electrical contacts 154, 156 are provided upon coupling socket 150 and tool plug 152, respectively, and enable direct transfer of power and data between coupling 140A and tool 208A.


Herein, direct contact connections, whether within a plug and socket disclosed herein or via a direct connection form of plates 116, 118, can have the form of pogo pins, conductive springs or spring loaded plates, or other resilient connection, or any other known or hereinafter developed electrical connection. An advantage of a direct electrical connection is more efficient transfer of energy, and in certain cases increased reliability. Quick release, twist lock, push and pull, or other type of convenient connector styles can be used for plug and socket connections.


In an alternative embodiment, as an alternative or supplement to inductive or capacitive coupling for power as described herein, output socket 148 can function as an input socket, into which a cable carrying power and/or data can be plugged. A cable (not shown) having a plug mateable with socket 148, and which is connectable to a source of power and/or data signal, can be separately sterilized to be present within the sterile field. As such, power can be provided directly to tool 208. Likewise, a data signal can optionally be passed bidirectionally through socket 148.


The disclosure provides a tool 208 coupling method which is more secure and stable in terms of both sterility and the transfer of power and communications. As such, the disclosure enables easier use of the robotics system, particularly in terms of wireless instrumentation, with a consistent power connection, and bidirectional communication which is faster and more robust, while reducing or eliminating drape tearing due to clamping. The electrical connections disclosed herein provide for power transfer and communication which ensure consistent performance during medical procedures, which is critical. Additionally, power capacity for instruments, as well as power transfer efficiency, are increased. Moreover, these advantages are realized while eliminating a requirement for long external power or data cables which could otherwise introduce a trip hazard into the OR.


All references cited herein are expressly incorporated by reference in their entirety. There are many different features of the present disclosure and it is contemplated that these features may be used together or separately. Unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. Thus, the disclosure should not be limited to any particular combination of features or to a particular application of the disclosure. Further, it should be understood that variations and modifications within scope of the disclosure might occur to those skilled in the art to which the disclosure pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope of the present disclosure are to be included as further embodiments of the present disclosure.

Claims
  • 1. A drape for covering robotic equipment in a medical environment, the robotic equipment having a clamp, an arm, an arm portion having a circular flange defining an end surface and a tool which attaches to the arm portion with the clamp, the drape comprising: an extended drape portion of a first material sized to cover the arm; anda shaped drape portion sized to cover the end surface, the shaped drape portion including a band of second material that is reinforced relative to the first material, the band extending around the circumference of the flange and adapted to be clamped radially inwardly over the circumference of the flange by the clamp;whereby the clamp clamps the band when the clamp clamps the arm portion to the tool such that no part of the extended drape portion is clamped.
  • 2. The drape of claim 1, the second material reinforced by being the same type of material as the first material, and which is thicker than the first material.
  • 3. The drape of claim 1, the second material reinforced by being a different type of material that is more resistant to physical deformation than the first material.
  • 4. The drape of claim 1, the band having at least one indexing region that is shaped to mate with an indexing region of the clamp.
  • 5. The drape of claim 1, the second material being a dielectric material.
  • 6. The drape of claim 1, wherein the band is a thermoplastic polyurethane.
  • 7. The drape of claim 1, the band including a first band portion sized to be pressed by the clamp during clamping, and a second band portion extending away from the first portion to thereby provide strain relief at a transition from the shaped drape portion to the extended drape portion.
  • 8. The drape of claim 7, the second band portion being tapered.
  • 9. The drape of claim 1, the shaped drape portion formed separately from the extended drape portion and affixed to the extended drape portion.
  • 10. The drape of claim 1, the clamp being a v-band type, wherein the flange is shaped to be squeezed by a v-band of the v-band clamp, the band having a loop shape sized to cover the squeezed portion of the flange.
  • 11. The drape of claim 1, the flange being shaped to be squeezed by the clamp, the band having a loop shape sized to cover the squeezed portion of the flange.
  • 12. The drape of claim 1, further including a plurality of electrically conductive contacts within the shaped drape portion, the electrically conductive contacts operative to conduct electricity from a first side of the shaped drape portion to a second side of the shaped drape portion opposite to the first side.
  • 13. The drape of claim 12, the electrically conductive contacts integrally formed within the second material by 3D printing.
  • 14. The drape of claim 1, further including a plurality of capacitive plates affixed to, positioned within, and on a first side of the shaped drape portion.
  • 15. The drape of claim 1, the shaped drape portion including electrically conductive contacts.
  • 16. A drape for covering robotic equipment in a medical environment, the robotic equipment having a clamp, an arm, an arm portion having a circular flange defining an end surface with the flange having an indexing shape and a tool which attaches to the arm portion with the clamp, the clamp including an indexing shape corresponding to the indexing shape of the flange, the drape comprising: an extended drape portion of a first material sized to cover the arm; anda shaped drape portion sized to cover the end surface, the shaped drape portion including a band of second material that is at least one of thicker than the first material and a different material than the first material whereby the second material is reinforced relative to the first material, the band extending around the circumference of the flange and adapted to be clamped radially inwardly over the circumference of the flange by the clamp, the band having an indexing shape which corresponds to the indexing shape of the flange;whereby the clamp clamps the band when the clamp clamps the arm portion to the tool such that no part of the extended drape portion is clamped.
  • 17. The drape of claim 16, further including a plurality of electrically conductive contacts within the shaped drape portion, the electrically conductive contacts operative to conduct electricity from a first side of the shaped drape portion to a second side of the shaped drape portion opposite to the first side.
  • 18. A method of draping robotic equipment in a medical environment for sterility, the robotic equipment having a clamp, an arm and an arm portion having a circular flange defining an end surface and a tool which attaches to the arm portion with the clamp, the method comprising: providing a drape having: an extended drape portion of a first material sized to cover the arm; anda shaped drape portion sized to cover the arm end surface, the shaped drape portion including a band of second material that is reinforced relative to the first material, the band extending around the circumference of the flange and adapted to be clamped radially inwardly over the circumference of the flange by the clamp;whereby the clamp clamps the band when the clamp clamps the arm portion to the tool such that no part of the extended drape portion is clamped.
  • 19. The method of claim 18, further including providing an intermediate coupling which is sized and dimensioned on a first end to be clampable to the arm with the drape passing between the intermediate coupling and the arm, the intermediate coupling having a second end sized and dimensioned to be clampable to the tool; whereby the tool can be attached to the robotic equipment without a requirement of unclamping the drape.
  • 20. The method of claim 18, the clamp having an indexing region, the band having an indexing region corresponding to the indexing region of the clamp.
US Referenced Citations (684)
Number Name Date Kind
3706185 Chaplin et al. Dec 1972 A
4150293 Franke Apr 1979 A
5246010 Gazzara et al. Sep 1993 A
5354314 Hardy et al. Oct 1994 A
5397323 Taylor et al. Mar 1995 A
5598453 Baba et al. Jan 1997 A
5772594 Barrick Jun 1998 A
5791908 Gillio Aug 1998 A
5820559 Ng et al. Oct 1998 A
5825982 Wright et al. Oct 1998 A
5887121 Funda et al. Mar 1999 A
5911449 Daniele et al. Jun 1999 A
5951475 Gueziec et al. Sep 1999 A
5987960 Messner et al. Nov 1999 A
6012216 Esteves et al. Jan 2000 A
6031888 Ivan et al. Feb 2000 A
6033415 Mittelstadt et al. Mar 2000 A
6080181 Jensen et al. Jun 2000 A
6106511 Jensen Aug 2000 A
6122541 Cosman et al. Sep 2000 A
6144875 Schweikard et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6167145 Foley et al. Dec 2000 A
6167292 Badano et al. Dec 2000 A
6201984 Funda et al. Mar 2001 B1
6203196 Meyer et al. Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6212419 Blume et al. Apr 2001 B1
6231565 Tovey et al. May 2001 B1
6236875 Bucholz et al. May 2001 B1
6246900 Cosman et al. Jun 2001 B1
6301495 Gueziec et al. Oct 2001 B1
6306126 Montezuma Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6314311 Williams et al. Nov 2001 B1
6320929 Von Der Haar Nov 2001 B1
6322567 Mittelstadt et al. Nov 2001 B1
6325808 Bernard et al. Dec 2001 B1
6340363 Bolger et al. Jan 2002 B1
6377011 Ben-Ur Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6402762 Hunter et al. Jun 2002 B2
6424885 Niemeyer et al. Jul 2002 B1
6447503 Wynne et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6477400 Barrick Nov 2002 B1
6484049 Seeley et al. Nov 2002 B1
6487267 Wolter Nov 2002 B1
6490467 Bucholz et al. Dec 2002 B1
6490475 Seeley et al. Dec 2002 B1
6499488 Hunter et al. Dec 2002 B1
6501981 Schweikard et al. Dec 2002 B1
6507751 Blume et al. Jan 2003 B2
6535756 Simon et al. Mar 2003 B1
6560354 Maurer, Jr. et al. May 2003 B1
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6614453 Suri et al. Sep 2003 B1
6614871 Kobiki et al. Sep 2003 B1
6619840 Rasche et al. Sep 2003 B2
6636757 Jascob et al. Oct 2003 B1
6645196 Nixon et al. Nov 2003 B1
6666579 Jensen Dec 2003 B2
6669635 Kessman et al. Dec 2003 B2
6701173 Nowinski et al. Mar 2004 B2
6757068 Foxlin Jun 2004 B2
6782287 Grzeszczuk Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6804581 Wang et al. Oct 2004 B2
6823207 Jensen et al. Nov 2004 B1
6827351 Graziani et al. Dec 2004 B2
6837892 Shoham Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6856826 Seeley et al. Feb 2005 B2
6856827 Seeley et al. Feb 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892090 Verard et al. May 2005 B2
6920347 Simon et al. Jul 2005 B2
6922632 Foxlin Jul 2005 B2
6968224 Kessman et al. Nov 2005 B2
6978166 Foley et al. Dec 2005 B2
6988009 Grimm et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6996487 Jutras et al. Feb 2006 B2
6999852 Green Feb 2006 B2
7007699 Martinelli et al. Mar 2006 B2
7016457 Senzig et al. Mar 2006 B1
7043961 Pandey et al. May 2006 B2
7062006 Pelc et al. Jun 2006 B1
7063705 Young et al. Jun 2006 B2
7072707 Galloway, Jr. et al. Jul 2006 B2
7083615 Peterson et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7099428 Clinthorne et al. Aug 2006 B2
7108421 Gregerson et al. Sep 2006 B2
7130676 Barrick Oct 2006 B2
7139418 Abovitz et al. Nov 2006 B2
7139601 Bucholz et al. Nov 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7164968 Treat et al. Jan 2007 B2
7167738 Schweikard et al. Jan 2007 B2
7169141 Brock et al. Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7194120 Wicker et al. Mar 2007 B2
7197107 Arai et al. Mar 2007 B2
7231014 Levy Jun 2007 B2
7231063 Naimark et al. Jun 2007 B2
7239940 Wang et al. Jul 2007 B2
7248914 Hastings et al. Jul 2007 B2
7301648 Foxlin Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7313430 Urquhart et al. Dec 2007 B2
7318805 Schweikard et al. Jan 2008 B2
7318827 Leitner et al. Jan 2008 B2
7319897 Leitner et al. Jan 2008 B2
7324623 Heuscher et al. Jan 2008 B2
7327865 Fu et al. Feb 2008 B2
7331967 Lee et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7339341 Oleynikov et al. Mar 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7379790 Toth et al. May 2008 B2
7386365 Nixon Jun 2008 B2
7422592 Morley et al. Sep 2008 B2
7435216 Kwon et al. Oct 2008 B2
7440793 Chauhan et al. Oct 2008 B2
7460637 Clinthorne et al. Dec 2008 B2
7466303 Yi et al. Dec 2008 B2
7493153 Ahmed et al. Feb 2009 B2
7505617 Fu et al. Mar 2009 B2
7533892 Schena et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7555331 Viswanathan Jun 2009 B2
7567834 Clayton et al. Jul 2009 B2
7594912 Cooper et al. Sep 2009 B2
7606613 Simon et al. Oct 2009 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7623902 Pacheco Nov 2009 B2
7630752 Viswanathan Dec 2009 B2
7630753 Simon et al. Dec 2009 B2
7643862 Schoenefeld Jan 2010 B2
7660623 Hunter et al. Feb 2010 B2
7661881 Gregerson et al. Feb 2010 B2
7683331 Chang Mar 2010 B2
7683332 Chang Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7702379 Avinash et al. Apr 2010 B2
7702477 Tuemmler et al. Apr 2010 B2
7711083 Heigl et al. May 2010 B2
7711406 Kuhn et al. May 2010 B2
7720523 Omernick et al. May 2010 B2
7725253 Foxlin May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7742801 Neubauer et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7760849 Zhang Jul 2010 B2
7762825 Burbank et al. Jul 2010 B2
7763015 Cooper et al. Jul 2010 B2
7787699 Mahesh et al. Aug 2010 B2
7796728 Bergfjord Sep 2010 B2
7813838 Sommer Oct 2010 B2
7818044 Dukesherer et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7831294 Viswanathan Nov 2010 B2
7834484 Sartor Nov 2010 B2
7835557 Kendrick et al. Nov 2010 B2
7835778 Foley et al. Nov 2010 B2
7835784 Mire et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7840256 Lakin et al. Nov 2010 B2
7843158 Prisco Nov 2010 B2
7844320 Shahidi Nov 2010 B2
7853305 Simon et al. Dec 2010 B2
7853313 Thompson Dec 2010 B2
7865269 Prisco et al. Jan 2011 B2
D631966 Perloff et al. Feb 2011 S
7879045 Gielen et al. Feb 2011 B2
7881767 Strommer et al. Feb 2011 B2
7881770 Melkent et al. Feb 2011 B2
7886743 Cooper et al. Feb 2011 B2
RE42194 Foley et al. Mar 2011 E
RE42226 Foley et al. Mar 2011 E
7900524 Calloway et al. Mar 2011 B2
7907166 Lamprecht et al. Mar 2011 B2
7909122 Schena et al. Mar 2011 B2
7925653 Saptharishi Apr 2011 B2
7930065 Larkin et al. Apr 2011 B2
7935130 Willliams May 2011 B2
7940999 Liao et al. May 2011 B2
7945012 Ye et al. May 2011 B2
7945021 Shapiro et al. May 2011 B2
7953470 Vetter et al. May 2011 B2
7954397 Choi et al. Jun 2011 B2
7971341 Dukesherer et al. Jul 2011 B2
7974674 Hauck et al. Jul 2011 B2
7974677 Mire et al. Jul 2011 B2
7974681 Wallace et al. Jul 2011 B2
7979157 Anvari Jul 2011 B2
7983733 Viswanathan Jul 2011 B2
7988215 Seibold Aug 2011 B2
7996110 Lipow et al. Aug 2011 B2
8004121 Sartor Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8010177 Csavoy et al. Aug 2011 B2
8019045 Kato Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
3035685 Jensen Oct 2011 A1
8046054 Kim et al. Oct 2011 B2
8046057 Clarke Oct 2011 B2
8052688 Wolf, II Nov 2011 B2
8054184 Cline et al. Nov 2011 B2
8054752 Druke et al. Nov 2011 B2
8057397 Li et al. Nov 2011 B2
8057407 Martinelli et al. Nov 2011 B2
8062288 Cooper et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8066524 Burbank et al. Nov 2011 B2
8073335 Labonville et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8086299 Adler et al. Dec 2011 B2
8092370 Roberts et al. Jan 2012 B2
8098914 Liao et al. Jan 2012 B2
8100950 St. Clair et al. Jan 2012 B2
8105320 Manzo Jan 2012 B2
8108025 Csavoy et al. Jan 2012 B2
8109877 Moctezuma de la Barrera et al. Feb 2012 B2
8112292 Simon Feb 2012 B2
8116430 Shapiro et al. Feb 2012 B1
8120301 Goldberg et al. Feb 2012 B2
8121249 Wang et al. Feb 2012 B2
8123675 Funda et al. Feb 2012 B2
8133229 Bonutti Mar 2012 B1
8142420 Schena Mar 2012 B2
8147494 Leitner et al. Apr 2012 B2
8150494 Simon et al. Apr 2012 B2
8150497 Gielen et al. Apr 2012 B2
8150498 Gielen et al. Apr 2012 B2
8165658 Waynik et al. Apr 2012 B2
8170313 Kendrick et al. May 2012 B2
8179073 Farritor et al. May 2012 B2
8182476 Julian et al. May 2012 B2
8184880 Zhao et al. May 2012 B2
8202278 Orban, III et al. Jun 2012 B2
8208708 Homan et al. Jun 2012 B2
8208988 Jensen Jun 2012 B2
8219177 Smith et al. Jul 2012 B2
8219178 Smith et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8224024 Foxlin et al. Jul 2012 B2
8224484 Swarup et al. Jul 2012 B2
8225798 Baldwin et al. Jul 2012 B2
8228368 Zhao et al. Jul 2012 B2
8231610 Jo et al. Jul 2012 B2
8263933 Hartmann et al. Jul 2012 B2
8239001 Verard et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8248413 Gattani et al. Aug 2012 B2
8256319 Cooper et al. Sep 2012 B2
8271069 Jascob et al. Sep 2012 B2
8271130 Hourtash Sep 2012 B2
8281670 Larkin et al. Oct 2012 B2
8282653 Nelson et al. Oct 2012 B2
8301226 Csavoy et al. Oct 2012 B2
8311611 Csavoy et al. Nov 2012 B2
8320991 Jascob et al. Nov 2012 B2
8332012 Kienzle, III Dec 2012 B2
8333755 Cooper et al. Dec 2012 B2
8335552 Stiles Dec 2012 B2
8335557 Maschke Dec 2012 B2
8348931 Cooper et al. Jan 2013 B2
8353963 Glerum Jan 2013 B2
8358818 Miga et al. Jan 2013 B2
8359730 Burg et al. Jan 2013 B2
8374673 Adcox et al. Feb 2013 B2
8374723 Zhao et al. Feb 2013 B2
8379791 Forthmann et al. Feb 2013 B2
8386019 Camus et al. Feb 2013 B2
8392022 Ortmaier et al. Mar 2013 B2
8394099 Patwardhan Mar 2013 B2
8395342 Prisco Mar 2013 B2
8398634 Manzo et al. Mar 2013 B2
8400094 Schena Mar 2013 B2
8414957 Enzerink et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8450694 Baviera et al. May 2013 B2
8452447 Nixon May 2013 B2
RE44305 Foley et al. Jun 2013 E
8462911 Vesel et al. Jun 2013 B2
8465476 Rogers et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8467851 Mire et al. Jun 2013 B2
8467852 Csavoy et al. Jun 2013 B2
8469947 Devengenzo et al. Jun 2013 B2
RE44392 Hynes Jul 2013 E
8483434 Buehner et al. Jul 2013 B2
8483800 Jensen et al. Jul 2013 B2
8486532 Enzerink et al. Jul 2013 B2
8489235 Moll et al. Jul 2013 B2
8500722 Cooper Aug 2013 B2
8500728 Newton et al. Aug 2013 B2
8504201 Moll et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506556 Schena Aug 2013 B2
8508173 Goldberg et al. Aug 2013 B2
8512318 Tovey et al. Aug 2013 B2
8515576 Lipow et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8526688 Groszmann et al. Sep 2013 B2
8526700 Isaacs Sep 2013 B2
8527094 Kumar et al. Sep 2013 B2
8528440 Morley et al. Sep 2013 B2
8532741 Heruth et al. Sep 2013 B2
8541970 Nowlin et al. Sep 2013 B2
8548563 Simon et al. Oct 2013 B2
8549732 Burg et al. Oct 2013 B2
8551114 Ramos de la Pena Oct 2013 B2
8551116 Julian et al. Oct 2013 B2
8556807 Scott et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8560118 Greer et al. Oct 2013 B2
8561473 Blumenkranz Oct 2013 B2
8562594 Cooper et al. Oct 2013 B2
8571638 Shoham Oct 2013 B2
8571710 Coste-Maniere et al. Oct 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574303 Sharkey et al. Nov 2013 B2
8585420 Burbank et al. Nov 2013 B2
8594841 Zhao et al. Nov 2013 B2
8597198 Sanborn et al. Dec 2013 B2
8600478 Verard et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8611985 Lavallee et al. Dec 2013 B2
8613230 Blumenkranz et al. Dec 2013 B2
8621939 Blumenkranz et al. Jan 2014 B2
8624537 Nowlin et al. Jan 2014 B2
8630389 Kato Jan 2014 B2
8634897 Simon et al. Jan 2014 B2
8634957 Toth et al. Jan 2014 B2
8638056 Goldberg et al. Jan 2014 B2
8638057 Goldberg et al. Jan 2014 B2
8639000 Zhao et al. Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8644907 Hartmann et al. Feb 2014 B2
8657809 Schoepp Feb 2014 B2
8660635 Simon et al. Feb 2014 B2
8666544 Moll et al. Mar 2014 B2
8675939 Moctezuma de la Barrera Mar 2014 B2
8678647 Gregerson et al. Mar 2014 B2
8679125 Smith et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8682413 Lloyd Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8693730 Umasuthan et al. Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8696458 Foxlin et al. Apr 2014 B2
8700123 Okamura et al. Apr 2014 B2
8706086 Glerum Apr 2014 B2
8706185 Foley et al. Apr 2014 B2
8706301 Zhao et al. Apr 2014 B2
8717430 Simon et al. May 2014 B2
8727618 Maschke et al. May 2014 B2
8734432 Tuma et al. May 2014 B2
8738115 Amberg et al. May 2014 B2
8738181 Greer et al. May 2014 B2
8740882 Jun et al. Jun 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8761930 Nixon Jun 2014 B2
8764448 Yang et al. Jul 2014 B2
8771170 Mesallum et al. Jul 2014 B2
8781186 Clements et al. Jul 2014 B2
8781630 Banks et al. Jul 2014 B2
8784385 Boyden et al. Jul 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8787520 Baba Jul 2014 B2
8792704 Isaacs Jul 2014 B2
8798231 Notohara et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8812077 Dempsey Aug 2014 B2
8814793 Brabrand Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8818105 Myronenko et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821511 Von Jako et al. Sep 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8827996 Scott et al. Sep 2014 B2
8828024 Farritor et al. Sep 2014 B2
8830224 Zhao et al. Sep 2014 B2
8834489 Cooper et al. Sep 2014 B2
8834490 Bonutti Sep 2014 B2
8838270 Druke et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8855822 Bartol et al. Oct 2014 B2
8858598 Seifert et al. Oct 2014 B2
8860753 Bhandarkar et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8864798 Weiman et al. Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8867703 Shapiro et al. Oct 2014 B2
8870880 Himmelberger et al. Oct 2014 B2
8876866 Zappacosta et al. Nov 2014 B2
8880223 Raj et al. Nov 2014 B2
8882803 Iott et al. Nov 2014 B2
8883210 Truncale et al. Nov 2014 B1
8888821 Rezach et al. Nov 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8894652 Seifert et al. Nov 2014 B2
8894688 Suh Nov 2014 B2
8894691 Iott et al. Nov 2014 B2
8906069 Hansell et al. Dec 2014 B2
8964934 Ein-Gal Feb 2015 B2
8992580 Bar et al. Mar 2015 B2
8996169 Lightcap et al. Mar 2015 B2
9001963 Sowards-Emmerd et al. Apr 2015 B2
9002076 Khadem et al. Apr 2015 B2
9044190 Rubner et al. Jun 2015 B2
9107683 Hourtash et al. Aug 2015 B2
9125556 Zehavi et al. Sep 2015 B2
9131986 Greer et al. Sep 2015 B2
9215968 Schostek et al. Dec 2015 B2
9308050 Kostrzewski et al. Apr 2016 B2
9380984 Li et al. Jul 2016 B2
9393039 Lechner et al. Jul 2016 B2
9398886 Gregerson et al. Jul 2016 B2
9398890 Dong et al. Jul 2016 B2
9414859 Ballard et al. Aug 2016 B2
9420975 Gutfleisch et al. Aug 2016 B2
9492235 Hourtash et al. Nov 2016 B2
9592096 Maillet et al. Mar 2017 B2
9750465 Engel et al. Sep 2017 B2
9757203 Hourtash et al. Sep 2017 B2
9795354 Menegaz et al. Oct 2017 B2
9814535 Bar et al. Nov 2017 B2
9820783 Donner et al. Nov 2017 B2
9833265 Donner et al. Nov 2017 B2
9848922 Tohmeh et al. Dec 2017 B2
9925011 Gombert et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
10034717 Miller et al. Jul 2018 B2
20010036302 Miller Nov 2001 A1
20020035321 Bucholz et al. Mar 2002 A1
20040068172 Nowinski et al. Apr 2004 A1
20040076259 Jensen et al. Apr 2004 A1
20050096502 Khalili May 2005 A1
20050143651 Verard et al. Jun 2005 A1
20050171558 Abovitz et al. Aug 2005 A1
20060100610 Wallace et al. May 2006 A1
20060173329 Marquart et al. Aug 2006 A1
20060184396 Dennis et al. Aug 2006 A1
20060241416 Marquart et al. Oct 2006 A1
20060291612 Nishide et al. Dec 2006 A1
20070015987 Benlloch Baviera et al. Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070038059 Sheffer et al. Feb 2007 A1
20070073133 Schoenefeld Mar 2007 A1
20070156121 Millman et al. Jul 2007 A1
20070156157 Nahum et al. Jul 2007 A1
20070167712 Keglovich et al. Jul 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20080004523 Jensen Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080033283 Dellaca et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080108912 Node-Langlois May 2008 A1
20080108991 Von Jako May 2008 A1
20080109012 Falco et al. May 2008 A1
20080144906 Allred et al. Jun 2008 A1
20080161680 Von Jako et al. Jul 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080177203 von Jako Jul 2008 A1
20080214922 Hartmann et al. Sep 2008 A1
20080228068 Viswanathan et al. Sep 2008 A1
20080228196 Wang et al. Sep 2008 A1
20080235052 Node-Langlois et al. Sep 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080287771 Anderson Nov 2008 A1
20080287781 Revie et al. Nov 2008 A1
20080300477 Lloyd et al. Dec 2008 A1
20080300478 Zuhars et al. Dec 2008 A1
20080302950 Park et al. Dec 2008 A1
20080306490 Lakin et al. Dec 2008 A1
20080319311 Hamadeh Dec 2008 A1
20090012509 Csavoy et al. Jan 2009 A1
20090030428 Omori et al. Jan 2009 A1
20090080737 Battle et al. Mar 2009 A1
20090185655 Koken et al. Jul 2009 A1
20090198121 Hoheisel Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090228019 Gross et al. Sep 2009 A1
20090259123 Navab et al. Oct 2009 A1
20090259230 Khadem et al. Oct 2009 A1
20090264899 Appenrodt et al. Oct 2009 A1
20090281417 Hartmann et al. Nov 2009 A1
20100022874 Wang et al. Jan 2010 A1
20100039506 Sarvestani et al. Feb 2010 A1
20100125286 Wang et al. May 2010 A1
20100130986 Mailloux et al. May 2010 A1
20100228117 Hartmann Sep 2010 A1
20100228265 Prisco Sep 2010 A1
20100249571 Jensen et al. Sep 2010 A1
20100274120 Heuscher Oct 2010 A1
20100280363 Skarda et al. Nov 2010 A1
20100331858 Simaan et al. Dec 2010 A1
20110022229 Jang et al. Jan 2011 A1
20110077504 Fischer et al. Mar 2011 A1
20110098553 Robbins et al. Apr 2011 A1
20110137152 Li Jun 2011 A1
20110213384 Jeong Sep 2011 A1
20110224684 Larkin et al. Sep 2011 A1
20110224685 Larkin et al. Sep 2011 A1
20110224686 Larkin et al. Sep 2011 A1
20110224687 Larkin et al. Sep 2011 A1
20110224688 Larkin et al. Sep 2011 A1
20110224689 Larkin et al. Sep 2011 A1
20110224825 Larkin et al. Sep 2011 A1
20110230967 O'Halloran et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110276058 Choi et al. Nov 2011 A1
20110282189 Graumann Nov 2011 A1
20110286573 Schretter et al. Nov 2011 A1
20110295062 Gratacos Solsona et al. Dec 2011 A1
20110295370 Suh et al. Dec 2011 A1
20110306986 Lee et al. Dec 2011 A1
20120035507 George et al. Feb 2012 A1
20120046668 Gantes Feb 2012 A1
20120051498 Koishi Mar 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059248 Holsing et al. Mar 2012 A1
20120071753 Hunter et al. Mar 2012 A1
20120108954 Schulhauser et al. May 2012 A1
20120136372 Amat Girbau et al. May 2012 A1
20120143084 Shoham Jun 2012 A1
20120184839 Woerlein Jul 2012 A1
20120197182 Millman et al. Aug 2012 A1
20120226145 Chang et al. Sep 2012 A1
20120235909 Birkenbach et al. Sep 2012 A1
20120245596 Meenink Sep 2012 A1
20120253332 Moll Oct 2012 A1
20120253360 White et al. Oct 2012 A1
20120256092 Zingerman Oct 2012 A1
20120294498 Popovic Nov 2012 A1
20120296203 Hartmann et al. Nov 2012 A1
20130006267 Odermatt et al. Jan 2013 A1
20130016889 Myronenko et al. Jan 2013 A1
20130030571 Ruiz Morales et al. Jan 2013 A1
20130035583 Park et al. Feb 2013 A1
20130060146 Yang et al. Mar 2013 A1
20130060337 Petersheim et al. Mar 2013 A1
20130094742 Feilkas Apr 2013 A1
20130096574 Kang et al. Apr 2013 A1
20130113791 Isaacs et al. May 2013 A1
20130116706 Lee et al. May 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130144307 Jeong et al. Jun 2013 A1
20130158542 Manzo et al. Jun 2013 A1
20130165937 Patwardhan Jun 2013 A1
20130178867 Farritor et al. Jul 2013 A1
20130178868 Roh Jul 2013 A1
20130178870 Schena Jul 2013 A1
20130204271 Brisson et al. Aug 2013 A1
20130211419 Jensen Aug 2013 A1
20130211420 Jensen Aug 2013 A1
20130218142 Tuma et al. Aug 2013 A1
20130223702 Holsing et al. Aug 2013 A1
20130225942 Holsing et al. Aug 2013 A1
20130225943 Holsing et al. Aug 2013 A1
20130231556 Holsing et al. Sep 2013 A1
20130237995 Lee et al. Sep 2013 A1
20130245375 DiMaio et al. Sep 2013 A1
20130261640 Kim et al. Oct 2013 A1
20130272488 Bailey et al. Oct 2013 A1
20130272489 Dickman et al. Oct 2013 A1
20130274761 Devengenzo et al. Oct 2013 A1
20130281821 Liu et al. Oct 2013 A1
20130296884 Taylor et al. Nov 2013 A1
20130303887 Holsing et al. Nov 2013 A1
20130307955 Deitz et al. Nov 2013 A1
20130317521 Choi et al. Nov 2013 A1
20130325033 Schena et al. Dec 2013 A1
20130325035 Hauck et al. Dec 2013 A1
20130331686 Freysinger et al. Dec 2013 A1
20130331858 Devengenzo et al. Dec 2013 A1
20130331861 Yoon Dec 2013 A1
20130342578 Isaacs Dec 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20130345757 Stad Dec 2013 A1
20140001235 Shelton, IV Jan 2014 A1
20140012131 Heruth et al. Jan 2014 A1
20140031664 Kang et al. Jan 2014 A1
20140046128 Lee et al. Feb 2014 A1
20140046132 Hoeg et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140049629 Siewerdsen et al. Feb 2014 A1
20140058406 Tsekos Feb 2014 A1
20140073914 Lavallee et al. Mar 2014 A1
20140080086 Chen Mar 2014 A1
20140081128 Verard et al. Mar 2014 A1
20140088612 Bartol et al. Mar 2014 A1
20140094694 Moctezuma de la Barrera Apr 2014 A1
20140094851 Gordon Apr 2014 A1
20140096369 Matsumoto et al. Apr 2014 A1
20140100587 Farritor et al. Apr 2014 A1
20140121676 Kostrzewski et al. May 2014 A1
20140128882 Kwak et al. May 2014 A1
20140135796 Simon et al. May 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140142592 Moon et al. May 2014 A1
20140148692 Hartmann et al. May 2014 A1
20140163581 Devengenzo et al. Jun 2014 A1
20140171781 Stiles Jun 2014 A1
20140171900 Stiles Jun 2014 A1
20140171965 Loh et al. Jun 2014 A1
20140180308 von Grunberg Jun 2014 A1
20140180309 Seeber et al. Jun 2014 A1
20140187915 Yaroshenko et al. Jul 2014 A1
20140188132 Kang Jul 2014 A1
20140194699 Roh et al. Jul 2014 A1
20140130810 Azizian et al. Aug 2014 A1
20140221819 Sarment Aug 2014 A1
20140222023 Kim et al. Aug 2014 A1
20140228631 Kwak et al. Aug 2014 A1
20140234804 Huang et al. Aug 2014 A1
20140257328 Kim et al. Sep 2014 A1
20140257329 Jang et al. Sep 2014 A1
20140257330 Choi et al. Sep 2014 A1
20140275760 Lee et al. Sep 2014 A1
20140275985 Walker et al. Sep 2014 A1
20140276931 Parihar et al. Sep 2014 A1
20140276940 Seo Sep 2014 A1
20140276944 Farritor et al. Sep 2014 A1
20140288413 Hwang et al. Sep 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140305995 Shelton, IV et al. Oct 2014 A1
20140309659 Roh et al. Oct 2014 A1
20140316436 Bar et al. Oct 2014 A1
20140323803 Hoffman et al. Oct 2014 A1
20140324070 Min et al. Oct 2014 A1
20140330288 Date et al. Nov 2014 A1
20140364720 Darrow et al. Dec 2014 A1
20140371577 Maillet et al. Dec 2014 A1
20150039034 Frankel et al. Feb 2015 A1
20150085970 Bouhnik et al. Mar 2015 A1
20150146847 Liu May 2015 A1
20150150524 Yorkston et al. Jun 2015 A1
20150196261 Funk Jul 2015 A1
20150213633 Chang et al. Jul 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20150342647 Frankel et al. Dec 2015 A1
20160005194 Schretter et al. Jan 2016 A1
20160166329 Langan et al. Jun 2016 A1
20160235480 Scholl et al. Aug 2016 A1
20160249990 Glozman et al. Sep 2016 A1
20160302871 Gregerson et al. Oct 2016 A1
20160320322 Suzuki Nov 2016 A1
20160331335 Gregerson et al. Nov 2016 A1
20170135770 Scholl et al. May 2017 A1
20170143284 Sehnert et al. May 2017 A1
20170143426 Isaacs et al. May 2017 A1
20170156816 Ibrahim Jun 2017 A1
20170202629 Maillet et al. Jul 2017 A1
20170212723 Atarot et al. Jul 2017 A1
20170215825 Johnson et al. Aug 2017 A1
20170215826 Johnson et al. Aug 2017 A1
20170215827 Johnson et al. Aug 2017 A1
20170231710 Scholl et al. Aug 2017 A1
20170258426 Risher-Kelly et al. Sep 2017 A1
20170273748 Hourtash et al. Sep 2017 A1
20170296277 Hourtash et al. Oct 2017 A1
20170360493 Zucher et al. Dec 2017 A1
20190099232 Soto Apr 2019 A1
20200069383 Betsugi Mar 2020 A1
20200170724 Flatt Jun 2020 A1
Non-Patent Literature Citations (1)
Entry
US 8,231,638 B2, 07/2012, Swarup et al. (withdrawn)
Related Publications (1)
Number Date Country
20220022990 A1 Jan 2022 US